
Offline Arabic Handwriting Recognition with
Multidimensional Recurrent Neural Networks

Alex Graves

Offline handwriting recognition is usually performed by first extracting a sequence
of features from the image, then using either a hidden Markov model (HMM) [9] or
an HMM / neural network hybrid [10] to transcribe the features.

However a system trained directly on pixel data has several potential advantages.
One is that defining input features suitable for an HMM requires considerable time
and expertise. Furthermore, the features must be redesigned for every different al-
phabet. In contrast, a system trained on raw images can be applied with equal ease
to, for example, Arabic and English. Another potential benefit is that using raw data
allows the visual and sequential aspects of handwriting recognition to be learned
together, rather than treated as two separate problems. This kind of ‘end-to-end’
training is often beneficial for machine learning algorithms, since it allows them
more freedom to adapt to the task [13].

Furthermore, recent results suggest that recurrent neural networks (RNNs) may
be preferable to HMMs for sequence labelling tasks such as speech [5] and online
handwriting recognition [6]. One possible reason for this is that RNNs are trained
discriminatively, whereas HMMs are generative. Although generative approaches
offer more insight into the data, discriminative methods tend to perform better at
tasks such as classification and labelling, at least when large amounts of data are
available [15]. Indeed much work has been in recent years to introduce discrimi-
native training to HMMs [11]. Another important difference is that RNNs, unlike
HMMs, do not assume successive data points to be conditionally independent given
some discrete internal state, which is often unrealistic for cursive handwriting.

This chapter will describe an offline handwriting recognition system based on
recurrent neural networks. The system is trained directly on raw images, with no
manual feature extraction. It won several prizes at the 2009 International Conference
on Document Analysis and Recognition, including first place in the offline Arabic
handwriting recognition competition [14].

Alex Graves
Technical University of Munich, Germany, e-mail: graves@in.tum.de

1

2 Alex Graves

The system was an extended version of a method used for online handwriting
recognition from raw pen trajectories [6]. The Long Short-Term Memory (LSTM)
network architecture [8, 3] was chosen for its ability to access long-range context,
and the Connectionist Temporal Classification [5] output layer allowed the network
to transcribe the data with no prior segmentation.

Applying RNNs to offline handwriting is more challenging, since the input is no
longer one-dimensional. A naive approach would be to present the images to the
network one vertical line at a time, thereby transforming them into 1D sequences.
However such a system would be unable to handle distortions along the vertical
axis; for example the same image shifted up by one pixel would appear completely
different. A more robust method is offered by multidimensional recurrent neural
networks (MDRNNs) [7]. MDRNNs, which are a special case of directed acyclic
graph networks [1], generalise standard RNNs by providing recurrent connections
along all spatio-temporal dimensions present in the data. These connections make
MDRNNs robust to local distortions along any combination of input dimensions
(e.g. image rotations and shears, which mix vertical and horizontal displacements)
and allow them to model multidimensional context in a flexible way. We use mul-
tidimensional LSTM [7] because it is able to access long-range context along both
input directions.

The problem remains, however, of how to transform two-dimensional images
into one-dimensional label sequences. The solution presented here is to pass the
data through a hierarchy of MDRNN layers, with subsampling windows applied
after each level. The heights of the windows are chosen to incrementally collapse
the 2D images onto 1D sequences, which can then be labelled by the output layer.
Hierarchical structures are common in computer vision [17], because they allow
complex features to be built up in stages. In particular our multilayered structure
is similar to that used by convolutional networks [12], although it should be noted
that because convolutional networks are not recurrent, they are difficult to apply to
unsegmented cursive handwriting recognition.

The system is described in Section 1, experimental results are given in Section 2,
and conclusions and directions for future work are given in Section 3.

1 Method

The three components of the recognition system are: (1) multidimensional recurrent
neural networks, and multidimensional LSTM in particular; (2) the Connectionist
Temporal Classification output layer; and (3) the hierarchical structure. In what fol-
lows we describe each component in turn, then show how they fit together to form a
complete system. For a more detailed description of (1) and (2) we refer the reader
to [4]

Arabic Handwriting Recognition with multidimensional recurrent networks 3

1.1 Multidimensional Recurrent Neural Networks

The basic idea of multidimensional recurrent neural networks (MDRNNs) [7] is to
replace the single recurrent connection found in standard recurrent networks with as
many connections as there are spatio-temporal dimensions in the data. These con-
nections allow the network to create a flexible internal representation of surrounding
context, which is robust to localised distortions.

An MDRNN hidden layer scans through the input in 1D strips, storing its ac-
tivations in a buffer. The strips are ordered in such a way that at every point the
layer has already visited the points one step back along every dimension. The hid-
den activations at these previous points are fed to the current point through recurrent
connections, along with the input. The 2D case is illustrated in Fig. 1.

Fig. 1 Two dimensional RNN. The thick lines show connections to the current point (i, j). The
connections within the hidden layer plane are recurrent. The dashed lines show the scanning strips
along which previous points were visited, starting at the top left corner.

One such layer is sufficient to give the network access to all context against the
direction of scanning from the current point (e.g. to the top and left of (i, j) in
Fig. 1). However we usually want surrounding context in all directions. The same
problem exists in 1D networks, where it is often useful to have information about
the future as well as the past. The canonical 1D solution is to use bidirectional
recurrent neural networks [18], where two separate hidden layers scan through the
input forwards and backwards. The generalisation of bidirectional networks to n
dimensions (multidirectional networks) requires 2n hidden layers, starting in every
corner of the n dimensional hypercube and scanning in opposite directions. The two
dimensional case is shown in Fig. 2. All the hidden layers are connected to a single
output layer, which therefore receives context information from all direction.

The error gradient of an MDRNN can be calculated with an n-dimensional ex-
tension of backpropagation through time. As in the 1D case, the data is processed
in the reverse order of the forward pass, with each hidden layer receiving both the
output derivatives and its own n ‘future’ derivatives at every timestep.

Let ap
j and bp

j be respectively the input and activation of unit j at point p =

(p1, . . . , pn) in an n-dimensional input sequence x with dimensions (D1, . . . ,Dn).
Let p−d = (p1, . . . , pd−1, . . . , pn) and p+

d = (p1, . . . , pd +1, . . . , pn). Let wi j and wd
i j

be respectively the weight of the feedforward connection from unit i to unit j and the

4 Alex Graves

Fig. 2 Axes used by the 4 hidden layers in a multidirectional 2D RNN. The arrows inside the
rectangle indicate the direction of propagation during the forward pass.

recurrent connection from i to j along dimension d. Let θh be the activation function
of hidden unit h, and for some unit j and some differentiable objective function O let
δ

p
j =

∂O
∂ap

j
. Then the forward and backward equations for an n-dimensional MDRNN

with I input units, K output units, and H hidden summation units are as follows:

Forward Pass

ap
h =

I

∑
i=1

xp
i wih +

n

∑
d=1:
pd>0

H

∑
ĥ=1

b
p−d
ĥ

wd
ĥh

bp
h = θh(a

p
h)

Backward Pass

δ
p
h = θ

′
h(a

p
h)

 K

∑
k=1

δ
p
k whk +

n

∑
d=1:

pd<Dd−1

H

∑
ĥ=1

δ
p+d
ĥ

wd
hĥ

1.1.1 Multidimensional LSTM

Long Short-Term Memory (LSTM) [8, 3] is an RNN architecture designed for data
with long-range interdependencies. An LSTM layer consists of recurrently con-
nected ‘memory cells’, whose activations are controlled by three multiplicative gate
units: the input gate, forget gate and output gate. The gates allows the cells to store
and retrieve information over time, giving them access to long-range context. An
illustration of an LSTM memory cell is shown in Figure 3.

The standard formulation of LSTM is explicitly one-dimensional, since each cell
contains a single recurrent connection, whose activation is controlled by a single
forget gate. However we can extend this to n dimensions by using instead n recurrent
connections (one for each of the cell’s previous states along every dimension) with
n forget gates.

Consider an multidimensional LSTM (MDLTSM) memory cell in a hidden layer
of H cells, connected to I input units and K output units. The subscripts c, ι , φ and ω

refer to the cell, input gate, forget gate and output gate respectively. bp
h is the output

of cell h in the hidden layer at point p in the input sequence, and sp
c is the state of

cell c at p. f1 is the activation function of the gates, and f2 and f3 are respectively
the cell input and output activation functions. The suffix φ ,d denotes the forget gate
corresponding to recurrent connection d. The input gate ι is connected to previous

Arabic Handwriting Recognition with multidimensional recurrent networks 5

NET OUTPUT

FORGET GATE

NET INPUT

INPUT GATE

OUTPUT GATE

CEC

1.0

Fig. 3 LSTM memory cell. The internal state of the cell is maintained with a recurrent connection
of fixed weight 1.0. The three gates collect activations from inside and outside the block, and
control the cell via multiplicative units (small circles). The input and output gates scale the input
and output of the cell while the forget gate scales the internal state.

cell c along all dimensions with the same weight (wcι) whereas the forget gates are
connected to cell c with a separate weight wc(φ ,d) for each dimension d. Then the
forward and backward pass are as follows:

Forward Pass

Input Gate: bp
ι = f1

 I

∑
i=1

xp
i wiι +

n

∑
d=1:
pd>0

(
wcι s

p−d
c +

H

∑
h=1

b
p−d
h wd

hι

)
Forget Gate: bp

φ ,d = f1

 I

∑
i=1

xp
i wi(φ ,d)+

n

∑
d′=1:
pd′>0

H

∑
h=1

b
p−

d′
h wd′

h(φ ,d)+

{
wc(φ ,d)s

p−d
c if pd > 0

0 otherwise

Cell: ap

c =
I

∑
i=1

xp
i wic +

n

∑
d=1:
pd>0

H

∑
h=1

b
p−d
h wd

hc

State: sp
c = bp

ι f2(ap
c)+

n

∑
d=1:
pd>0

s
p−d
c bp

φ ,d

Output Gate: bp
ω = f1

 I

∑
i=1

xp
i wiω +

n

∑
d=1:
pd>0

H

∑
h=1

b
p−d
h wd

hω +wcω sp
c

Cell Output: bp

c = bp
ω f3(sp

c)

6 Alex Graves

Backward Pass

Cell Output: ε
p
c

def
=

∂O
∂bp

c
=

K

∑
k=1

δ
p
k wck +

n

∑
d=1:

pd<Dd−1

H

∑
h=1

δ
p+d
h wd

ch

Output Gate: δ
p
ω = f ′1(a

p
ω)ε

p
c f3(sp

c)

State: ε
p
s

def
=

∂O
∂ sp

c
= bp

ω f ′3(s
p
c)ε

p
c +δ

p
ω wcω +

n

∑
d=1:

pd<Dd−1

(
ε

p+d
s b

p+d
φ ,d +δ

p+d
ι wcι +δ

p+d
φ ,dwc(φ ,d)

)
Cell: δ

p
c = bp

ι f ′2(a
p
c)ε

p
s

Forget Gate: δ
p
φ ,d =

{
f ′1(a

p
φ ,d)s

p−d
c ε

p
s if pd > 0

0 otherwise

Input Gate: δ
p
ι = f ′1(a

p
ι) f2(ap

c)ε
p
s

1.2 Connectionist Temporal Classification

Connectionist temporal classification (CTC) [5] is an output layer designed for se-
quence labelling with RNNs. It does not require pre-segmented training data, or
postprocessing to transform its outputs into transcriptions. It trains the network
to predict a conditional probability distribution over all possible output label se-
quences, or labellings, given the complete input sequence.

A CTC output layer contains one more unit than there are elements in the alpha-
bet L of labels for the task. The output activations are normalised at each timestep
with the softmax activation function [2]. The first |L| outputs estimate the probabili-
ties of observing the corresponding labels at that time, and the extra output estimates
the probability of observing a ‘blank’, or no label. For a length T input sequence x,
the complete sequence of CTC outputs therefore defines a probability distribution
over the set L′T of length T sequences over the alphabet L′ = L∪{blank}. We refer
to the elements of L′T as paths. Since the probabilities of the labels at each timestep
are conditionally independent given x, the conditional probability of a path π ∈ L′T

is given by

p(π|x) =
T

∏
t=1

yt
π(t). (1)

where yt
k is the activation of output unit k at time t.

Paths are mapped onto labellings l ∈ L≤T by an operator B that removes first
the repeated labels, then the blanks. So for example, both B(a,−,a,b,−) and
B(−,a,a,−,−,a,b,b) yield the labelling (a,a,b). Since the paths are mutually ex-
clusive, the conditional probability of some labelling l ∈ L≤T is the sum of the
probabilities of all paths corresponding to it:

Arabic Handwriting Recognition with multidimensional recurrent networks 7

p(l|x) = ∑
π∈B−1(l)

p(π|x). (2)

This ‘collapsing together’ of different paths onto the same labelling is what allows
CTC to use unsegmented data, because it means that the network only has to learn
the order of the labels, and not their alignment with the input sequence.

Although a naive calculation of Eq. 2 is unfeasible, it can be efficiently evaluated
with a dynamic programming algorithm, similar to the forward-backward algorithm
for HMMs.

To allow for blanks in the output paths, for each labelling l ∈ L≤T consider a
modified labelling l′ ∈ L′≤T , with blanks added to the beginning and the end and
inserted between every pair of labels. The length |l′| of l′ is therefore 2|l|+1.

For a labelling l, define the forward variable α(s, t) as the summed probability of
all path beginnings reaching index s of l′ at time t, and the backward variables β (s, t)
as the summed probability of all path endings that would complete the labelling l if
the path beginning had reached s at time t. Both the forward and backward variables
are calculated recursively [5]. The label sequence probability is given by the sum of
the products of the forward and backward variables at any timestep, i.e.

p(l|x) =
|l′|

∑
s=1

α(s, t)β (s, t). (3)

1.2.1 Objective Function

Let S be a training set, consisting of pairs of input and target sequences (x,z), where
|z| ≤ |x|. Then the objective function O for CTC is the negative log probability of
the network correctly labelling all of S:

O =− ∑
(x,z)∈S

ln p(z|x) (4)

The network can be trained with gradient descent by first differentiating O with re-
spect to the outputs, then using backpropagation through time to find the derivatives
with respect to the weights.

Note that the same label (or blank) may be repeated several times for a single
labelling l. We define the set of positions where label k occurs as

lab(l,k) = {s : l′s = k}, (5)

which may be empty. Setting l = z and differentiating O with respect to the network
outputs for a particular element (x,z) in the training set, we obtain:

∂O

∂at
k
=−∂ ln p(z|x)

∂at
k

= yt
k−

1
p(z|x) ∑

s∈lab(z,k)
α(s, t)β (s, t), (6)

8 Alex Graves

where at
k and yt

k are respectively the input and output of CTC unit k at time t for
some (x,z) ∈ S.

1.2.2 Decoding

Once the network is trained, we can label some unknown input sequence x by choos-
ing the labelling l∗ with the highest conditional probability, i.e.

l∗ = argmax
l

p(l|x). (7)

In cases where a dictionary is used, the labelling can be constrained to yield only
sequences of complete words using the CTC token passing algorithm [6]. For the
experiments in this paper, the labellings were further constrained to give single word
sequences only, and the n most probable words were recorded. For words with vari-
ant spellings, the summed probability of all variants was used as the probability.

Let D be a dictionary of words. All words in a subset U of D are unique and all
other words in D are variants of some word in U . For each word u∈U , define v(u) as
the set of variants of u, which includes u itself. For each word w, define the modified
word w′ as w with blanks added at the beginning and end and between each pair of
labels. Therefore |w′|= 2|w|+1. For segment s of word w′ at timestep t in the output
sequence, the value of tok(w,s, t) is defined as the probability of the most probable
partial output path π(1 : t) such that π(t) = w′(s) and B(π(1 : t)) = w(1 : s/2),
where A(b : c) denotes the subsequence of sequence A from index b to index c.

At every timestep t of the length T output sequence, each segment s of each
modified word w′ holds a single token tok(w,s, t). This is the highest token reaching
that segment at that time. The output token tok(w,−1, t) is the highest token leaving
word w at time t.

Pseudocode is provided in Algorithm 1. Note that in cases where decoding speed
is important, the algorithm could be optimised by storing the words in a trie struc-
ture.

1.3 Network Hierarchy

Many computer vision systems use a hierarchical approach to feature extraction,
with the features at each level used as input to the next level [17]. This allows com-
plex visual properties to be built up in stages. Typically, such systems use subsam-
pling, with the feature resolution decreased at each stage. They also generally have
more features at the higher levels. The basic idea is to progress from a small number
of simple local features to a large number of complex global features.

We created a hierarchical structure by repeatedly composing MDLSTM layers
with feedforward layers. The basic procedure is as follows: (1) the image is divided
into pixel windows, each of which is presented as a single input to the first set of

Arabic Handwriting Recognition with multidimensional recurrent networks 9

1: Initialisation:
2: for all words w ∈ D do
3: tok(w,1,1) = lny1

b
4: tok(w,2,1) = lny1

w1
5: if |w|= 1 then
6: tok(w,−1,1) = tok(w,2,1)
7: else
8: tok(w,−1,1) =−∞

9: tok(w,s,1) =−∞ for all other s
10:
11: Algorithm:
12: for t = 2 to T do
13: sort output tokens tok(w,−1, t−1) by ascending value
14: for all words w ∈ D do
15: for segment s = 1 to |w′| do
16: P = {tok(w,s, t−1), tok(w,s−1, t−1)}
17: if w′(s) 6= blank and s > 2 and w′(s−2) 6= w′(s) then
18: add tok(w,s−2, t−1) to P
19: tok(w,s, t) = max(P)+ lnyt

w′(s)
20: tok(w,−1, t) = max(tok(w, |w′|, t), tok(w, |w′|−1, t))
21:
22: Termination:
23: for all unique words u ∈U do
24: tok(u,−1,T) = ∑w∈v(u) tok(w,−1,T)
25: output n best tok(u,−1,T)

Algorithm 1: CTC Token Passing Algorithm for single words.

MDLSTM layers (e.g. a 4x3 window is collapsed to a length 12 vector). If the image
does not divide exactly into windows, it is padded with zeros. (2) the four MDLSTM
layers scan through the window vectors in all directions. (3) the activations of the
MDLSTM layers are collected into windows. (4) these windows are given as input
to a feedforward layer. Note that all the layers have a 2D array of activations: e.g. a
10 unit feedforward layer with input from a 5x5 array of MDLSTM windows has a
total of 250 activations.

The above process is repeated as many times as required, with the activations
of the feedforward layer taking the place of the original image. The purpose of the
windows is twofold: to collect local contextual information, and to reduce the area
of the activation arrays. In particular, we want to reduce the vertical dimension,
since the CTC output layer requires a 1D sequence as input. Note that the windows
themselves do not reduce the overall amount of data; that is done by the layers that
process them, which are therefore analogous to the subsampling steps in other ap-
proaches (although with trainable weights rather than a fixed subsampling function).

For most tasks we find that a hierarchy of three MDLSTM/feedforward stages
gives the best results. We use the standard ‘inverted pyramid’ structure, with small
layers at the bottom and large layers at the top. As well as allowing for more fea-
tures at higher levels, this leads to efficient networks, since most of the weights are
concentrated in the upper layers, which have a smaller input area.

10 Alex Graves

Unless we know that the input images are of fixed height, it is difficult to
choose window heights that ensure that the final feature map will always be one-
dimensional, as required by CTC. A simple solution is to collapse the final array by
summing over all the inputs in each vertical line, i.e. the input at time t to CTC unit
k is given by

at
k = ∑

x
a(x,t)k (8)

where a(x,y)k is the uncollapsed input to unit k at point (x,y) in the final array.
Furthermore, the widths of the windows must be chosen to prevent the final fea-

ture map from being shorter (horizontally) than the number of labels for a particular
sequence, since CTC assumes that the input sequence is at least as long as the label
sequence. If the trained system is to be applied to images of unknown dimensions,
it is therefore a good idea to ensure that the final feature map is considerably longer
than the target label sequence for every element of the training set.

1.4 Combined System

Fig. 4 shows how MDLSTM, CTC, and the layer hierarchy combine to form a com-
plete recogniser.

2 Experiments

Variants of the above system won several competitions at the 2009 International
Conference on Document Analysis and Recognition (ICDAR 2009). In this section
we describe the winning entry to the offline Arabic handwriting recognition compe-
tition.

2.1 Data

The competition was based on the publicly available IFN/ENIT database of hand-
written Arabic words [16]. The data consists of 32,492 images of individual hand-
written Tunisian town and village names, of which we used 30,000 for training, and
2,492 for validation. The images were extracted from artificial forms filled in by
over 400 Tunisian people. The forms were designed to simulate writing on a letter,
and contained no lines or boxes to constrain the writing style.

Each image was supplied with a ground truth transcription for the individual
characters, and the postcode of the corresponding town. There were 120 distinct
characters in total, including variant forms for initial, medial, final and isolated char-

Arabic Handwriting Recognition with multidimensional recurrent networks 11

Fig. 4 A complete handwriting recognition system. First the input image is collected into win-
dows 3 pixels wide and 4 pixels high which are then scanned by four MDLSTM layers. The activa-
tions of the cells in each layer are displayed separately, and the arrows in the corners indicates the
scanning direction. Next the MDLSTM activations are gathered into 4 x 3 windows and fed to a
feedforward layer of tanh summation units. Again the activations are. This process is repeated two
more times, until the final MDLSTM activations are collapsed to a 1D sequence and transcribed
by the CTC layer. In this case all characters are correctly labelled except the second last one.

acters. The goal of the competition was to identify the postcode, from a list of 937
town names and corresponding postcodes. Many of the town names had transcrip-
tion variants, giving a total of 1,518 entries in the complete dictionary.

The test data (which is not published) was divided into sets ‘f’ and ‘s’. The
main competition results were based on set ‘f’. Set ‘s’ contains data collected in the
United Arab Emirates using the same forms; its purpose was to test the robustness of
the recognisers to regional writing variations. The systems were allowed to choose
up to 10 postcodes for each image, in order of preference. The test set performance
using the top 1, top 5, and top 10 answers was recorded by the organisers.

12 Alex Graves

2.2 Network Parameters

Three versions of the MDLSTM handwriting recognition system were entered for
the competition, with slightly different parameters. Within the competition, they
were given the collective group ID ‘MDLSTM’. For the first two networks (assigned
system IDs 9 and 10 in the competition) the topology shown in Figure 4 was used,
with each layer fully connected to the next layer in the hierarchy, all MDLSTM
layers connected to themselves, and all units connected to a bias weight. These
networks had 159,369 weights in total. The third network (system ID 11) had twice
as many units in each of the hidden layers. That is, the four MDLSTM layers in
the first level had four cells each, the first feedforward layer had twelve units, the
MDLSTM layers in the second level had 20 cells each, the second feedforward layer
had 40 units and MDLSTM layers in the third level had 100 cells each. This gave a
total of 583,289 weights.

For all networks the activation function used for the LSTM gates was the logistic
sigmoid f1(x) = 1/(1+e−x), while tanh was used for f2 and f3 (c.f. Section 1.1.1).

The networks were trained with online gradient descent, using a learning rate of
10−4 and a momentum of 0.9. Both the CTC objective function O (Section 1.2.1)
and the character error rate (total number of insertions, deletions and substitutions
needed to transform the network outputs into the target sequences, divided by the
total length of the target sequences) were evaluated on the validation set after every
pass through the training set. For networks 9 and 11 the error measure was the
character error rate, while for network 10 the error measure was the CTC objective
function. Networks 9 and 10 were created during the same training run, with the two
different error measures used as a stopping criterion. For all networks training was
stopped after 30 evaluations with no reduction in the error measure on the validation
set. The weights giving the lowest error on the validation set were passed to the
competition organisers for assessment on the test sets.

Figure 5 shows the error curves for networks 9 and 10 during training. Note that,
by the time the character error is minimised, the CTC error is already well past its
minimum and has risen substantially. This is typical for networks trained with CTC
output layers.

Network 9 took 86 passes through the training set to complete training, network
10 took 49 passes and network 11 took 153 passes. The time per pass, which grows
with the number of network weights, was around 62 minutes for networks one and
two, and around 180 minutes for network three. The fact the network three required
more training passes than network two is untypical, since usually the more weights
a network has the fewer passes it takes to minimise a particular error measure. How-
ever the same network minimised the CTC error on the validation set after only 22
passes, and that the decrease in validation character error rate between 22 and 152
passes was only 0.2.

Table 1 summarises the differences between the three networks.

Arabic Handwriting Recognition with multidimensional recurrent networks 13

Fig. 5 Error curves during training of networks 9 and 10. The CTC error is shown on the
left, and the character error is shown on the left. In both plots the solid line shows the error on
the validation set, the dashed line shows the error on the training set, and the vertical dotted line
indicates the point of lowest error on the validation set.

Table 1 The three MDLTSM networks entered for the Arabic handwriting competition.
ID Weights Error Measure Passes Approx. Pass time (mins)
9 159,369 Character 86 62
10 159,369 CTC 49 62
11 583,289 Character 153 180

2.3 Results

Table 2 [14] shows that all three MDLSTM networks (group ID MDLSTM, system
ID 9–11) outperformed all other entries in the 2009 International Conference on
Document Analysis and Recognition (ICDAR 2009), in terms of both recognition
rate and speed. The recognition rates were also better than any of the entries in the
ICDAR 2007 competition, which used the same training and test data, although the
Siemens and MIE systems were faster.

The overall difference in performance between networks 9 and 10 is negligible,
suggesting that it isn’t that important which error measure is used for early stopping.
This is significant, since, as discussed above, using CTC error for early stopping can
leading to much shorter training times. Of particular interest is that the performance
on set s (with handwriting from the United Arab Emirates) is about the same for both
error measures. One hypothesis was that, because using CTC error leads to fewer
training passes, network 10 would overfit less on the training data and therefore
generalise better to test data drawn from a different distribution.

Network 11 gave about a 2% improvement over networks 9 And 10 in word
recognition for both test sets, if only the best word was used. Although significant,
this improvement comes at a cost of a more than threefold increase in word recogni-
tion time. For applications where time must be traded against accuracy, the number
of units in the network layers (and hence the number of network weights) should be
tuned accordingly.

14 Alex Graves

Ta
bl

e
2

IC
D

A
R

20
09

A
ra

bi
c

of
fli

ne
ha

nd
w

ri
tin

g
re

co
gn

iti
on

co
m

pe
tit

io
n

re
su

lts
.R

es
ul

ts
ar

e
%

of
co

rr
ec

tly
re

co
gn

is
ed

im
ag

es
on

re
fe

re
nc

e
da

ta
se

ts
d

an
d

e,
ne

w
da

ta
se

ts
f

an
d

s,
su

bs
et

s
f a

,f
f,

an
d

f g
.T

he
av

er
ag

e
re

co
gn

iti
on

tim
e

in
m

s
pe

ri
m

ag
e

on
su

bs
et

s
ta

nd
t 1

is
sh

ow
n

in
th

e
la

st
tw

o
co

lu
m

ns
.(

G
-I

D
:G

ro
up

ID
,S

-I
D

:S
ys

te
m

ID
).

G
-I

D
S-

ID
se

td
se

te
se

tf
a

se
tf

f
se

tf
g

se
tf

se
ts

tim
e

(m
s)

to
p

1
to

p
1

to
p

1
to

p
1

to
p

1
to

p
1

to
p

5
to

p
10

to
p

1
to

p
5

to
p

10
se

tt
se

tt
1

U
O

B
-E

N
ST

1
92

.5
2

85
.3

8
83

.5
7

84
.7

7
85

.0
9

82
.0

7
89

.7
4

91
.2

2
69

.9
9

81
.4

4
84

.6
8

81
2.

69
84

1.
25

2
89

.0
6

81
.8

5
79

.4
9

80
.9

0
81

.1
1

78
.1

6
89

.0
6

91
.8

8
65

.6
1

81
.4

4
85

.9
5

23
65

.4
8

27
55

.0
1

3
89

.8
4

83
.5

2
80

.8
9

82
.1

5
82

.1
7

79
.5

5
90

.6
0

92
.1

6
67

.8
3

83
.4

7
86

.6
5

22
36

.5
8

27
54

.0
8

4
92

.5
9

86
.2

8
85

.4
2

86
.9

6
87

.2
1

83
.9

8
91

.8
5

93
.0

0
72

.2
8

85
.1

9
87

.9
2

21
54

.4
8

26
51

.5
7

R
E

G
IM

5
79

.5
2

63
.5

3
58

.8
1

59
.2

7
60

.4
2

57
.9

3
73

.4
3

78
.1

0
49

.3
3

65
.1

0
71

.1
4

15
64

.7
5

17
12

.1
5

A
i2

A
6

93
.9

0
87

.2
5

86
.7

3
88

.5
4

89
.3

6
85

.5
8

92
.5

7
94

.1
2

70
.4

4
82

.0
1

84
.8

7
10

56
,9

8
95

6,
82

7
94

.9
2

82
.2

1
83

.5
3

84
.8

6
84

.6
7

82
.2

1
91

.2
4

92
.4

7
66

.4
5

80
.5

2
83

.1
3

51
9,

61
16

16
,8

2
8

97
.0

2
91

.6
8

90
.6

6
91

.9
2

92
.3

1
89

.4
2

95
.3

3
95

.9
4

76
.6

6
88

.0
1

90
.2

8
25

83
,6

4
15

85
,4

9

M
D

L
ST

M
9

99
.7

2
98

.6
4

92
.5

9
93

.7
9

94
.2

2
91

.4
3

96
.1

1
96

.6
1

78
.8

3
87

.9
8

90
.4

0
11

5.
24

12
2.

97
10

99
.6

0
97

.6
0

92
.5

8
94

.0
3

94
.4

0
91

.3
7

96
.2

4
96

.6
1

78
.8

9
88

.4
9

90
.2

7
11

4.
61

12
2.

05
11

99
.9

4
99

.4
4

94
.6

8
95

.6
5

96
.0

2
93

.3
7

96
.4

6
96

.7
7

81
.0

6
88

.9
4

90
.7

2
37

1.
85

46
7.

07

R
W

T
H

-O
C

R

12
99

.9
1

98
.7

1
86

.9
7

88
.0

8
87

.9
8

85
.5

1
93

.3
2

94
.6

1
71

.3
3

83
.6

6
86

.5
2

17
84

5.
12

18
64

1.
93

13
99

.7
9

98
.2

9
87

.1
7

88
.6

3
88

.6
8

85
.6

9
93

.3
6

94
.7

2
72

.5
4

83
.4

7
86

.7
8

14
99

.7
9

98
.2

9
87

.1
7

88
.6

3
88

.6
8

85
.6

9
93

.3
6

94
.7

2
72

.5
4

83
.4

7
86

.7
8

15
96

.7
2

91
.2

5
86

.9
7

88
.0

8
87

.9
8

83
.9

0
-

-
65

.9
9

-
-

54
2.

12
56

0.
44

L
IT

IS
-M

IR
A

C
L

16
93

.0
4

85
.4

6
83

.2
9

84
.5

1
84

.3
5

82
.0

9
90

.2
7

92
.3

7
74

.5
1

86
.1

4
88

.8
7

14
32

69
.8

1
14

51
57

.2
3

L
ST

S
17

18
.5

8
14

.7
5

15
.3

4
16

.0
0

15
.6

5
15

.0
5

29
.5

8
35

.7
6

11
.7

6
23

.3
3

29
.6

2
61

2.
56

68
5.

42
R

es
ul

ts
of

th
e

3
be

st
sy

st
em

s
at

IC
D

A
R

20
07

Si
em

en
s

08
94

.5
8

87
.7

7
88

.4
1

89
.2

6
89

.7
2

87
.2

2
94

.0
5

95
.4

2
73

.9
4

85
.4

4
88

.1
8

10
9.

40
6

12
5.

31
M

IE
06

93
.6

3
86

.6
7

84
.3

8
85

.2
1

85
.5

6
83

.3
4

91
.6

7
93

.4
8

68
.4

0
80

.9
3

83
.7

3
18

8.
43

9
21

0.
55

U
O

B
-E

N
ST

11
92

.3
8

83
.9

2
83

.3
9

84
.9

3
85

.1
8

81
.9

3
91

.2
0

92
.7

6
69

.9
3

84
.1

1
87

.0
3

21
72

.5
5

24
25

.4
7

Arabic Handwriting Recognition with multidimensional recurrent networks 15

3 Conclusion

This chapter introduced a general offline handwriting recognition system based on
MDLSTM recurrent neural networks. The system works directly on raw pixel data,
and therefore requires minimal changes to be used for languages with different al-
phabets. It won several competitions at the ICDAR 2009 conference, including the
Arabic offline handwriting recognition competition.

Various extensions to the system are currently being explored, including more
efficient decoding, complete page transcription and weight pruning for increased
speed.

References

1. P. Baldi and G. Pollastri. The principled design of large-scale recursive neural network
architectures–dag-rnns and the protein structure prediction problem. J. Mach. Learn. Res.,
4:575–602, 2003.

2. J. S. Bridle. Probabilistic interpretation of feedforward classification network outputs, with re-
lationships to statistical pattern recognition. In F. Fogleman-Soulie and J.Herault, editors, Neu-
rocomputing: Algorithms, Architectures and Applications, pages 227–236. Springer-Verlag,
1990.

3. F. Gers, N. Schraudolph, and J. Schmidhuber. Learning precise timing with LSTM recurrent
networks. Journal of Machine Learning Research, 3:115–143, 2002.

4. A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks. Ph.D. in Infor-
matics, Fakultat für Informatik – Technische Universität München, Boltzmannstras̈e 3, D -
85748, Garching bei München, Germany, 2008.

5. A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. Connectionist temporal classifica-
tion: Labelling unsegmented sequence data with recurrent neural networks. In Proceedings of
the International Conference on Machine Learning, ICML 2006, Pittsburgh, USA, 2006.

6. A. Graves, S. Fernández, M. Liwicki, H. Bunke, and J. Schmidhuber. Unconstrained online
handwriting recognition with recurrent neural networks. In J. Platt, D. Koller, Y. Singer,
and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press,
Cambridge, MA, 2008.

7. A. Graves, S. Fernández, and J. Schmidhuber. Multidimensional recurrent neural networks.
In Proceedings of the 2007 International Conference on Artificial Neural Networks, Porto,
Portugal, September 2007.

8. S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, 1997.

9. J. Hu, S. G. Lim, and M. K. Brown. Writer independent on-line handwriting recognition using
an HMM approach. Pattern Recognition, 33:133–147, 2000.

10. S. Jaeger, S. Manke, J. Reichert, and A. Waibel. On-line handwriting recognition: the NPen++
recognizer. International Journal on Document Analysis and Recognition, 3:169–180, 2001.

11. H. Jiang. Discriminative training of hmms for automatic speech recognition: A survey. Com-
puter Speech Language, 24(4):589 – 608, 2010.

12. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

13. Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp. Off-road obstacle avoidance through
end-to-end learning. In Advances in Neural Information Processing Systems (NIPS 2005).
MIT Press, 2005.

14. V. Margner and H. El Abed. Icdar 2009 arabic handwriting recognition competition. pages
1383 –1387, jul. 2009.

16 Alex Graves

15. A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes. In NIPS, pages 841–848, 2001.

16. M. Pechwitz, S. S. Maddouri, V. Mrgner, N. Ellouze, and H. Amiri. IFN/ENIT-database
of handwritten arabic words. In 7th Colloque International Francophone sur l’Ecrit et le
Document (CIFED 2002), Hammamet, Tunis, 2002.

17. M. Reisenhuber and T. Poggio. Hierarchical models of object recognition in cortex. Nature
Neuroscience, 2(11):1019–1025, 1999.

18. M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45:2673–2681, November 1997.

