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The utility of our personally identifiable information is pervasive and 
we don’t know who it’s being shared with!

WHY PRIVACY-PRESERVING ML?
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With over 2.6 billion records breached in 2017 alone (76% due to 
accidental loss, 23% due to malicious outsiders) [1] and a 

growing shortage of cybersecurity professionals:
more data privacy = more data security

[1] https://breachlevelindex.com/assets/Breach-Level-Index-Report-2017-Gemalto.pdf

WHY PRIVACY-PRESERVING ML?

https://breachlevelindex.com/assets/Breach-Level-Index-Report-2017-Gemalto.pdf


SOME ML TASKS THAT USE SENSITIVE DATA

Gait Detection
Fingerprint Recognition

Facial Recognition
Authorship Recognition

Machine Translation
Named Entity Recognition

Recommendation Systems
Question Answering

Automatic Speech Recognition
Text-to-Speech

Speaker Recognition
Speaker Profiling

Disease Prediction



WHAT WOULD PERFECTLY PRIVACY-PRESERVING 
ML LOOK LIKE?



Sources: https://i.ytimg.com/vi/-1FInW1HCbw/maxresdefault.jpg https://www.ssl2buy.com/wiki/wp-content/uploads/2015/12/Symmetric-Encryption.png
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SECURE TWO-PARTY COMPUTATION

Service provider

Suppose we were able to use 2PC to provide input and output data 
privacy …

Limitations:
• Could incur very high communication costs
• Data owner could have low computational capacity
• Data owner could be offline

Data 
owner



HOMOMORPHIC ENCRYPTION

Service provider

∀"#,"% ∈ ',( "# ⊙' "% ← ( "# ⊙' (("%)
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HOMOMORPHIC ENCRYPTION

1. training data privacy;
2. input data privacy;
3. model weight privacy;
4. output data privacy.
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WHY HOMOMORPHIC ENCRYPTION?

Semantically secure probabilistic encryption: “for any function ! and
any plaintext " , and with only polynomial resources [...], the
probability to guess !(") (knowing ! but not ") does not increase if
the adversary knows a ciphertext corresponding to "” (Fontaine and
Garland 2007).



HOMOMORPHIC ENCRYPTION IN PRACTICE

Easy Operations: linear and polynomial

Difficult Operations: non-polynomial



PRIOR WORK

● ! " = "$ used as an activation function instead of ReLU (Gilad-
Bachrach et al., 2016).

● Distant polynomial approximation of sigmoid function used for
training a neural network on encrypted data (Hesamifard et al.,
2016).

DEALING WITH NON-POLYNOMIAL EQUATIONS 
IN PRIVATE DEEP LEARNING



PRIOR WORK: Polynomial Alternative to ReLU

! " = "$ used as an activation function instead of ReLU in
CryptoNets. No alternative proposed for sigmoid. 99% accuracy on
MNIST OCR (Gilad-Bachrach et al., 2016).

PRIVATE DL COPING METHOD I 



PRIOR WORK: Polynomial Approximation of Sigmoid

Approximation of sigmoid function used for training a neural network
on encrypted data (Hesamifard et al., 2016/2017).

PRIVATE DL COPING METHOD II 



CONTRIBUTION

We show how to represent the value of any 
function over a defined and bounded interval, 
given encrypted input data, without needing to 
decrypt any intermediate values before obtaining 
the function’s output.
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PRIVACY-PRESERVING MACHINE LEARNING
PRIVACY-PRESERVING NUMERICAL 

COMPUTATION
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We use the RLWE-based Brakerski/Fan-Vercauteren (B/FV) 
homomorphic encryption scheme.

We perform component-wise addition and component-wise 
multiplication in the encrypted domain.

We use E(∗) to denote that ∗ is an encrypted value.

We encode floating point numbers by multiplying them by 10& and 
rounding to the nearest integer, where ' is our desired level of 
precision.

Homomorphic Encryption & NotationOUR SETUP AND NOTATION



HOMOMORPHIC ENCRYPTION OVERVIEW

Component-wise vs. Polynomial Operations

Option #1 Option #2

Addition Multiplication Addition Multiplication

0x⁴ + 4x³ + 6x² + 2x + 5
+ 1x⁴ + 6x³ + 3x² + 5x + 2

1x⁴ + 10x³ + 9x² +7x + 7

0x⁴ + 4x³ + 6x² + 2x + 5
*    1x⁴ + 6x³ + 3x² + 5x + 2

0x⁴ + 24x³ + 18x² +10x + 10

0x⁴ + 4x³ + 6x² + 2x + 5
+ 1x⁴ + 6x³ + 3x² + 5x + 2

1x⁴ + 10x³ + 9x² +7x + 7

0x⁴ + 4x³ + 6x² + 2x + 5
*     1x⁴ + 6x³ + 3x² + 5x + 2

4x⁷+30x⁶+50x⁵+55x⁴+74x³+37x²
+29x+10



1) No information about the inputs provided by the client is revealed 
to even a malicious server.

2) Assuming the server is semi-honest, no information about the 
inputs is revealed, and the client learns the correct results of its 
desired computations.

Homomorphic Encryption & NotationSECURITY, INTEGRITY, AND CORRECTNESS



OUR METHOD WITH A SIMPLE EXAMPLE

Input: an encrypted number ! "# , a function $, and a range of values 
(e.g., 1 to 8) with a step between those values (e.g., 1).
Output: %# = $ "#
Step 1: create a vector of indices, ', from the input range, a vector of the 
results of $ applied to each of these indices plus 1 denoted by $ ' , and a 
vector, (, which has E "# as a repeated value. Say, "# = 4.

' =

0
1
2
3
4
5
6
7
8

, $ ' =

$(1)
$(2)
$(3)
$(4)
$(5)
$(6)
$(7)
$(8)
0

, (=

!(4)
!(4)
!(4)
!(4)
!(4)
!(4)
!(4)
!(4)
!(4)

EFFICIENT TABLE LOOKUP



OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)

Step 2: subtract.

!(4)
!(4)
!(4)
!(4)
!(4)
!(4)
!(4)
!(4)
!(4)

−

0
1
2
3
4
5
6
7
8

= 

!(4)
!(3)
!(2)
!(1)
!(0)
!(−1)
!(−2)
!(−3)
!(−4)

EFFICIENT TABLE LOOKUP



OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)

Step 3: rotate by one and multiply.

!(4)
!(3)
!(2)
!(1)
!(0)
!(−1)
!(−2)
!(−3)
!(−4)

×

!(−4)
!(4)
!(3)
!(2)
!(1)
!(0)
!(−1)
!(−2)
!(−3)

=

!(−16)
!(12)
!(6)
!(2)
!(0)
!(0)
!(2)
!(6)
!(12)

EFFICIENT TABLE LOOKUP



OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)

Step 4: rotate by two and multiply.

!(−16)
!(12)
!(6)
!(2)
!(0)
!(0)
!(2)
!(6)
!(12)

×

!(6)
!(12)
!(−16)
!(12)
!(6)
!(2)
!(0)
!(0)
!(2)

=

!(−96)
!(144)
!(−96)
!(24)
!(0)
!(0)
!(0)
!(0)
!(24)

EFFICIENT TABLE LOOKUP



OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)

Step 5: rotate by four and multiply.

!(−96)
!(144)
!(−96)
!(24)
!(0)
!(0)
!(0)
!(0)
!(24)

×

!(0)
!(0)
!(0)
!(24)
!(−96)
!(144)
!(−96)
!(24)
!(0)

=

!(0)
!(0)
!(0)
!(576)
!(0)
!(0)
!(0)
!(0)
!(0)

EFFICIENT TABLE LOOKUP

Uh oh!



OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)EFFICIENT TABLE LOOKUP

Step 6 (preamble): We can…

● Simply keep track of a denominator? 

Simple in the short term, potentially problematic in the long term.

Or…

● Exploit the fact that RLWE-based cryptosystems use plaintext 

moduli!

E.g., 0"# + 4"& + 6"( + 2" + 5 +
+ 1"⁴ + 6"³ + 3"² + 5" + 2 +
= 1"# + 3"& + 2"( + 0" + 0 +



OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)EFFICIENT TABLE LOOKUP

Step 6 (preamble): Since we know !, as well as every possible value 
that "# can be, and the plaintext modulus $, we can pre-compute the 
following vectors (say p = 65537):

7711
5780
53977
12234
53977
5780
7711
56381
0

×

−5040
1440
−720
39:
−720
1440
−5040
40320
0

=

1 (mod 65537)
1 (mod 65537)
1 (mod 65537)
1 (?@A :33B9)
1 (mod 65537)
1 (mod 65537)
1 (mod 65537)
1 (mod 65537)

0



OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)

Step 6:

7711
5780
53977
())*+
53977
5780
7711
56381
0

×

.(0)

.(0)

.(0)
.(576)
.(0)
.(0)
.(0)
.(0)
.(0)

=

.(0)

.(0)

.(0)

.(1)

.(0)

.(0)

.(0)

.(0)

.(0)

EFFICIENT TABLE LOOKUP



OUR METHOD WITH A SIMPLE EXAMPLE (CONT’D)

Step 7: Solved in log $ + 2 multiplications!

'(0)
'(0)
'(0)
'(1)
'(0)
'(0)
'(0)
'(0)
'(0)

⋅

-(1)
-(2)
-(3)
-(4)
-(5)
-(6)
-(7)
-(8)
0

= '(- 4 )

EFFICIENT TABLE LOOKUP



SECURITY & RUNTIME

Results for over a 256-bit security level, using an Intel Core i-7-8650U 

CPU @1.90GHz and 16GB RAM. Runtime increments linearly with 

the size of the lookup table.

EFFICIENT TABLE LOOKUP
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Losses for VAE on MNIST

Rounded Truncated

● Replacing the 2 ReLU
and 1 sigmoid with our 
approximation method.

● Loss minimized at ! = 1
(truncation method).

● Loss at ! = 0 (rounding
method) still reasonable.

EXPERIMENTS: VARIATIONAL AUTOENCODER (VAE)



● Aggregate number of distinct values over 10 epochs input into VAE’s
sigmoid function.

● x-axis: input values; y-axis: quantity of inputs with those values.
● (a) 549301760 many distinct values; (b) 52; (c) 6.
● We only need a lookup table of size 65 for this sigmoid function!

EXPERIMENTS: VARIATIONAL AUTOENCODER (VAE)



EXPERIMENTS: MNIST IMAGE CLASSIFICATION

Resulting losses and number of correct classifications of 10000 test set
images from MNIST with the inputs to its three ReLU activation
functions approximated at various precisions.



TAKEAWAYS

● Using HE for ML is less of an ML problem and more of a NA
problem.

● We can protect users’ private data while continuing to use them for
ML in general.

● When deciding how to implement a neural network using
homomorphic encryption, we need a very clear understanding of
the problem we are solving.



Thank you!

@PrivateNLP

https://medium.com/privacy-preserving-natural-language-processing

https://medium.com/privacy-preserving-natural-language-processing
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