
CSC485/2501 A1 Tutorial #1

TA: Zhewei Sun

Assignment 1

▪ Is now available!

▪ Asks you to implement a set of neural dependency parsers.

▪ Due on Oct. 8th, at 11:59 pm.

Assignment 1

▪ Part 1: Transition-based dependency parser

▪ Part 2: Graph-based dependency parser

Assignment 1

▪ Part 1: Transition-based dependency parser
§ We will focus on this part today.

▪ Part 2: Graph-based dependency parser

Outline

▪ Dependency Parsing Example
– Obtaining the necessary parsing steps for a dependency tree.

▪ Gap Degree Example

▪ Neural Dependency Parser
– With PyTorch pointers J

Transition-based Parser - Review

▪ Dependency parser: Given a sentence, output a dependency
parse tree.

▪ Three things to keep track of:
1. A stack of words being processed.

2. A buffer of words to be eventually pushed onto the stack.

3. A list of predicted dependencies (i.e. arcs).

Transition-based Parser - Review

▪ Three possible operations:
1. SHIFT: removes the first word from the buffer and pushes it onto the

stack.

2. LEFT-ARC: marks the second-from-top item (i.e., second-most recently
added word) on the stack as a dependent of the first item and
removes the second item from the stack.

3. RIGHT-ARC: marks the top item (i.e., most recently added word) on the
stack as a dependent of the second item and removes the first item
from the stack.

SHIFT Operation

▪ Removes the first word from the buffer and pushes it onto the
stack.

▪ Step T:
– Stack: [ROOT, John, saw]; Buffer: [dogs, yesterday]

▪ Step T+1:
– Stack: [ROOT, John, saw, dogs]; Buffer: [yesterday]

– Action: SHIFT

LEFT-ARC Operation

▪ Marks the second-from-top item (i.e., second-most recently added
word) on the stack as a dependent of the first item and removes the
second item from the stack.

▪ Step T:
– Stack: [ROOT, John, saw]; Buffer: [dogs, yesterday]

▪ Step T+1:
– Stack: [ROOT, saw]; Buffer: [dogs, yesterday]

– New Dependency: saw -> John, nsubj

– Action: LEFT-ARC

RIGHT-ARC Operation

▪ Marks the top item (i.e., most recently added word) on the stack as
a dependent of the second item and removes the first item from the
stack.

▪ Step T:
– Stack: [ROOT, saw, dogs]; Buffer: [yesterday]

▪ Step T+1:
– Stack: [ROOT, saw]; Buffer: [yesterday]

– New Dependency: saw -> dogs, dobj

– Action: RIGHT-ARC

Dependency Parse Example

▪ Given a dependency tree, figure out the intermediate parsing steps.

▪ Check the top of your stack to see whether it is appropriate to create
an arc.

▪ After creating an arc, record it, and then remove the dependent word
from the stack.

Dependency Parse Example

▪ Step 0:
– Stack: [ROOT]; Buffer: [John, saw, dogs, yesterday]

Dependency Parse Example

▪ Step 0:
– Stack: [ROOT]; Buffer: [John, saw, dogs, yesterday]

▪ Step 1:
– Stack: [ROOT, John]; Buffer: [saw, dogs, yesterday]
– New Dependency: None
– Action: SHIFT

Dependency Parse Example

▪ From Step 1:
– Stack: [ROOT, John]; Buffer: [saw, dogs, yesterday]

▪ Step 2:
– Stack: [ROOT, John, saw]; Buffer: [dogs, yesterday]
– New Dependency: None
– Action: SHIFT

Dependency Parse Example

▪ From Step 2:
– Stack: [ROOT, John, saw]; Buffer: [dogs, yesterday]

▪ Step 3:
– Stack: [ROOT, saw]; Buffer: [dogs, yesterday]
– New Dependency: saw -> John, nsubj
– Action: LEFT-ARC

For this assignment:

Choose LEFT-ARC over SHIFT
when both are valid and
generate the same tree.

Dependency Parse Example

▪ From Step 3:
– Stack: [ROOT, saw]; Buffer: [dogs, yesterday]

▪ Step 4:
– Stack: [ROOT, saw, dogs]; Buffer: [yesterday]
– New Dependency: None
– Action: SHIFT

Dependency Parse Example

▪ From Step 4:
– Stack: [ROOT, saw, dogs]; Buffer: [yesterday]

▪ Step 5:
– Stack: [ROOT, saw]; Buffer: [yesterday]
– New Dependency: saw -> dogs, dobj
– Action: RIGHT-ARC

Dependency Parse Example

▪ From Step 5:
– Stack: [ROOT, saw]; Buffer: [yesterday]

▪ Step 6:
– Stack: [ROOT, saw, yesterday]; Buffer: []
– New Dependency: None
– Action: SHIFT

Dependency Parse Example

▪ From Step 6:
– Stack: [ROOT, saw, yesterday]; Buffer: []

▪ Step 7:
– Stack: [ROOT, saw]; Buffer: []
– New Dependency: saw -> yesterday, npadvmod
– Action: RIGHT-ARC

Dependency Parse Example

▪ From Step 7:
– Stack: [ROOT, saw]; Buffer: []

▪ Step 8:
– Stack: [ROOT]; Buffer: []
– New Dependency: ROOT -> saw, root
– Action: RIGHT-ARC

Dependency Parse Example

▪ We’ve figured out all the parsing steps!

▪ Similar exercise in the assignment.

▪ How to do this algorithmically? What are the conditions?

Gap Degree Example

▪ The gap degree of a word in a dependency tree is the least k for which
the subsequence consisting of the word and its descendants (both
direct and indirect) is entirely comprised of k + 1 maximally
contiguous substrings. Equivalently, the gap degree of a word is the
number of gaps in the subsequence formed by the word and all of its
descendants, regardless of the size of the gaps.

▪ The gap degree of a dependency tree is the greatest gap degree of
any word in the tree.

Gap Degree Example

▪ For each word, check the substring consisting itself and all its
descendants:
– ROOT: ROOT John saw dogs yesterday
– John: John
– saw: John saw dogs yesterday
– dogs: dogs:
– yesterday: yesterday

All substrings are contiguous!
k = 0

Neural Dependency Parser

▪ Now assume we don’t have the dependency tree.

Neural Dependency Parser

▪ Now assume we don’t have the dependency tree.

▪ When do we need to make decisions when parsing?

Neural Dependency Parser

▪ Suppose we have the following partial parse:
– Stack: [ROOT, John, saw]; Buffer: [dogs, yesterday]

▪ Now we need to decide which transition to do next:
a) SHIFT: Shift dogs onto the stack
b) LEFT-ARC: create the arc: saw -> john
c) RIGHT-ARC: create the arc john -> saw

Neural Dependency Parser

▪ Use a neural network to make a prediction at each parse step.

▪ Implement this in PyTorch, read the docs if you’re not familiar:
– https://pytorch.org/docs/stable/index.html

https://pytorch.org/docs/stable/index.html

Neural Dependency Parser

▪ Input: Word level features (e.g. word embeddings) for each
word in the sentence.
– torch.nn.Embedding(size, shape)

– torch.nn.Embedding.from_pretrained(…)

▪ Make sure you DON’T freeze the pre-trained embeddings!!

Neural Dependency Parser

▪ Input: Word level features (e.g. word embeddings) for each word in the sentence.

▪ One linear (fully-connected) hidden layer.
– hidden_layer = torch.nn.Linear(input_size, output_size)

– To apply: hidden_layer(features)

▪ Also checkout torch.nn.functional.relu(…) and torch.nn.functional.dropout(…).

Neural Dependency Parser

▪ Input: Word level features (e.g. word embeddings) for each word in
the sentence.

▪ One linear (fully-connected) hidden layer.

▪ A softmax layer to obtain a probability distribution over transitions.
– torch.nn.CrossEntropyLoss / torch.nn.functional.CrossEntropy

Neural Dependency Parser

▪ Suppose our neural network gives us an answer:
a) SHIFT: Shift dogs onto the stack

b) LEFT-ARC: create the arc: saw -> john

c) RIGHT-ARC: create the arc john -> saw

▪ How can we tell whether we have made the right choice?

Neural Dependency Parser

▪ How can we tell whether we have made the right choice?
– Implement an ”oracle” that peaks into the parsed tree and tells us the
correct transition to make.

▪ Think about the first example we did in this tutorial.
– How to make the process automatic?
– What conditions need to be met to make a particular transition?

To be continued…

▪ The transition-based parser can only handle projective parse trees
(think about why this is the case).

▪ Next time, we will take a look at graph-based dependency parsing,
which takes into account the non-projective cases.
§ Another A1 tutorial Friday next week (Oct 1) on Zoom.

