read the whole assignment
Q1
srsly, read the whole assignment
code should be importable

work incrementally!
def complete(self):
 '''bool: return true iff the PartialParse is complete
 Assume that the PartialParse is valid
 ...

 def parse_step(self, transition_id, deprel=None):
 '''Update the PartialParse with a transition'''

 - Use your answer to 1(a) as a reference
 - Remember to raise a ValueError if the transition is illegal e.g.
 raise ValueError('Something bad happened')
def minibatch_parse(sentences, model, batch_size):
 """Parses a list of sentences in minibatches using a model."""

 - Remember that calls to parse_step may raise a ValueError exception. Remove any such ‘stuck’ parses from your list of unfinished parses e.g.

 try:
 # Do stuff
 except (ValueError):
 # Do other stuff
1(f)

def get_oracle(self, graph):
 '''Given a projective dependency graph, determine an appropriate transition'''

 - Once again, use your answer to 1(a) as a reference
 - Think through all cases carefully!
test your code

the included tests are minimal and **not exhaustive**
Q2
You define a computational graph, which is then compiled at compile-time and may be run on multiple CPUs, GPUs, etc.

Constants: Don't change once the computational graph is constructed.

Variables: These may change once the computational graph is constructed. Your optimizer will try and change these.

Placeholders: Are the ____s. Fill in the ____s using your feed-dict. Use the actual placeholders rather than strings.
PyTorch

You specify:

- Operations on data in terms of layers
- How data set is batched
- Loss function
- Optimizer (SGD, Adam, …)

Online tutorial should get you started
PyTorch: on your own machines

$ pip3 install torch nltk tqdm

- Assignment code will use GPU if available
- Code in question 2(b) runs in ~2h on my laptop
PyTorch: in labs

- Python packages already installed
- Labs with GPUs: BA 2200, 2210, 2220, 2240, 2270, 3200, 3175, 3185, 3195
- Runtime down to ~10m on my GPU
Toy Example

Say we wanted to figure out $f(x)$ for $x = [1, 2, 3]$ and $y = [3, 5, 7]$

Let's try $y = f(x) = mx + c$

```python
import torch

def y_(x):
    return m * x + c

# The data set
x = torch.tensor([1, 2, 3])
y = torch.tensor([3, 5, 7])

# The parameters
m = torch.tensor(0)
c = torch.tensor(0)

# The forward pass (predicted output)

# The loss
def l2_loss(y_pred, y):
    l2 = torch.pow(y_pred - y, 2)
    return torch.mean(l2)

# The optimizer
sgd = torch.optim.SGD([m, c], 0.1)

# Train for 10 epochs
for i in range(10):
    y_pred = y_(x)  # do the forward pass
    loss = l2_loss(y_pred, y)  # calculate loss
    loss.backward()  # accumulate gradients
    sgd.step()  # apply gradients

print(m.data, c.data, y_(test).data)
```

Say we wanted to figure out \(f(x) \) for \(x = [1,2,3] \) and \(y = [3,5,7] \)

Let's try \(y = f(x) = mx + c \)

```python
import torch

# The data set
x = torch.tensor([1.0, 2.0, 3.0])
y = torch.tensor([3, 5, 7], dtype=torch.float32)

# The parameters
m = torch.tensor(0.0)
c = torch.tensor(0.0)

# The forward pass (predicted output)

def y_(x):
    return m * x + c

# The loss

def l2_loss(y_pred, y):
    l2 = torch.pow(y_pred - y, 2)
    return torch.mean(l2)

# The optimizer

sgd = torch.optim.SGD([m, c], 0.1)

# Train for 10 epochs

for i in range(10):
    y_pred = y_(x)  # do the forward pass
    loss = l2_loss(y_pred, y)  # calculate loss
    loss.backward()  # accumulate gradients
    sgd.step()  # apply gradients
    print(m.data, c.data, y_(test).data)
```
Toy Example

Say we wanted to figure out $f(x)$ for $x = [1,2,3]$ and $y = [3,5,7]$
Let’s try $y = f(x) = mx + c$

```python
import torch

# The data set
x = torch.tensor([1.0, 2.0, 3.0])
y = torch.tensor([3, 5, 7], dtype=torch.float32)

# The parameters
m = torch.tensor(0.0, requires_grad=True)
c = torch.tensor(0.0, requires_grad=True)

# The forward pass (predicted output)
def y_(x):
    return m * x + c
```

The loss
```python
def l2_loss(y_pred, y):
    l2 = torch.pow(y_pred - y, 2)
    return torch.mean(l2)
```

The optimizer
```python
sgd = torch.optim.SGD([m, c], 0.1)
```

test = torch.tensor(4.0)
print(m.data, c.data, y_(test).data)

Train for 10 epochs
```python
for i in range(10):
    y_pred = y_(x)  # do the forward pass
    loss = l2_loss(y_pred, y)  # calculate loss
    loss.backward()  # accumulate gradients
    sgd.step()  # apply gradients

print(m.data, c.data, y_(test).data)
```
Toy Example

Say we wanted to figure out $f(x)$ for $x = [1,2,3]$ and $y = [3,5,7]$
Let’s try $y = f(x) = mx + c$

```python
import torch

def y_(x):
    return m * x + c

def l2_loss(y_pred, y):
    l2 = torch.pow(y_pred - y, 2)
    return torch.mean(l2)

sgd = torch.optim.SGD([m, c], 0.1)

test = torch.tensor(4.0)
print(m.data, c.data, y_(test).data)
```

```python
# The data set
x = torch.tensor([1.0, 2.0, 3.0])
y = torch.tensor([3, 5, 7], dtype=torch.float32)

# The parameters
m = torch.tensor(0.0, requires_grad=True)
c = torch.tensor(0.0, requires_grad=True)

# The forward pass (predicted output)

# The loss
```
2(b)

- Take a peek at the Config class and try and figure out how your model uses it.
- Getting the initialization right is vital.
- Docstring instructions give lots of guidance & hints.
 - So we might be a bit stringent in marking...
your code should be importable!!!