9B. Supertagging

Gerald Penn
Department of Computer Science, University of Toronto

Based upon slides by Michael Auli, Rober Hass and Aravind Joshi
WHY SUPERTAG?

- If lexical items have more description associated with them, parsing is easier
 - Only useful if the supertag space is not huge

- Straightforward to compile parse from accurate supertagging
 - But impossible if there are any supertag errors
 - We can account for *some* supertag errors
 - Don’t always want a full parse anyway
What is Supertagging?

- Systematic assignment of supertags

 Supertags are:

 - Statistically selected
 - Robust
 - Tends to work

 - Linguistically motivated
 - This makes sense
What is supertagging?

- Many supertags for each word
 - **Extended Domain of Locality**
 - Each lexical item has one supertag for every syntactic environment it appears in.
 - Inspiration comes from LTAG, lexicalized tree-adjointing grammars, in which *all* dependencies are localized.
 - Generally, agreement features such as number and tense, are not part of the supertag.
HOW TO SUPERTAG

“Alice opened her eyes and saw.”

Supertags:

- Verb
 - Transitive verb
 - Intransitive verb
 - Infinitive verb
 - ...

- Noun
 - Noun phrase (subject)
 - Nominal predicative
 - Nominal modifier
 - Nominal predicative subject extraction
 - ...
HOW TO SUPERTAG

“Alice opened her eyes and **saw**.”

- **Supertags**:
 - **Verb**
 - Transitive verb
 - Intransitive verb
 - Infinitive verb
 - ...
 - **Noun**
 - Noun phrase (subject)
 - Nominal predicative
 - Nominal modifier
 - Nominal predicative subject extraction
 - ...

```
S  VP  NP↓  saw  NP↓
```
HOW TO SUPERTAG

- A supertag can be ruled out for a given word in a given input string...
 - Left and/or right context is too long/short for the input
 - If the supertag contains other terminals not found in the input
HOW TO SUPERTAG

“Alice opened her eyes and saw.”

Supertags:

- Verb
 - Transitive verb
 - Intransitive verb
 - Infinitive verb
 - ...

- Noun
 - Noun phrase (subject)
 - Nominal predicative
 - Nominal modifier
 - Nominal predicative subject extraction
 - ...

HOW TO SUPERTAG

- This works fairly well
 - 50% average reduction in number of possible supertags
How to Supertag

...but there’s more to be done

- Good: average number of possible supertags per word reduced from 47 to 25
- Bad: average of 25 possible supertags per word
HOW TO SUPERTAG

- Disambiguation by unigrams?
 - Give each word its most frequent supertag after PoS tagging
 - ~75% accurate
 - Better results than one might expect given large number of possible supertags
 - Common words (determiners, etc.) usually correct
 - This helps accuracy
 - Back off to PoS for unknown words
 - Also usually correct
HOW TO SUPERTAG

- Disambiguation by n-grams?

\[
T = \text{argmax}_T \Pr(T_1, T_2, ..., T_N) \times \Pr(W_1, W_2, ..., W_N|T_1, T_2, ..., T_N)
\]

- We assume that subsequent words are independent

\[
\Pr(W_1, W_2, ..., W_N|T_1, T_2, ..., T_N) \approx \prod_{i=1}^{N} \Pr(W_i|T_i)
\]

- Trigrams plus Good-Turing smoothing
 - Accuracy around 90%
 - Versus 75% from unigrams
 - Contextual information more important than lexical
 - Reversal of trend for PoS tagging
However...

- Correctly supertagged text yields a 30X parsing speedup
 - But even one mistake can cause parsing to fail completely
 - This is rather likely

- Solution: n-best supertags?
 - When n=3, we get up to 96% accuracy...
 - Not bad at all for such a simple method
 - 425 lexical categories (PTB-CFG: ~50)
 - 12 combinatory rules (PTB-CFG: > 500,000)