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From symbolic to distributed
representations

The vast majority of rule-based and statistical NLP work regarded
words as atomic symbols: lhobel, é‘:omfarewﬁa, walle

In vector space terms, this is a vector with one 1 and a lot of zeroes
[coooooo0c00c01l 000 0]

We call this a “one-hot” representation.

Its problem:

motel [o oo 00000001 0000]
hotel [oo 000001000000 0] =0



Distributional similarity based representations

You can get a lot of value by representing a word by means of its
neighbors

“Noscitur a soclis”
- 19th-century rule of interpretation in English civil courts

One of the most successful ideas of modern NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

N These words will represent banking 77



With distributed, distributional representations,
syntactic and semantic patterning is captured
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[Rohde et al. 2005. An Improved Model of Semantic
Similarity Based on Lexical Co-Occurrence]
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LSA vs. word2vec

LSA: Count!

e Factorize a (maybe weighted, maybe log scaled) term-
document or word-context matrix (Schiitze 1992) into UzV'

e Retain only k singular values, in order to generalize
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[Cf. Baroni: Don’t count, predict! A systematic comparison of context-
counting vs. context-predicting semantic vectors. ACL 2014]



LSA vs. word2vec

LSA: Count! vs. Input projection  output
w(t-2)

word2vec CBOW/SkipGram: Predict!

* Train word vectors to try to either: w(t-1)

* Predict a word given its bag-of- |
words context (CBOW); or wit

e Predict a context word (position-
independent) from the center
word

e Update word vectors until they can
do this prediction well

ﬁ
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word2vec training regimen
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Word Analogies: word2vec captures
dimensions of similarity as linear relations

Test for linear relationships, examined by Mikolov et al. 2013
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Word Analogies

[Mikolov et al., 2012, 2013]

Task: predict the

last column
Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo | Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago Illinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective || Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks




COALS model (count-modified LSA)
[Rohde, Gonnerman & Plaut, ms., 2005]
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Analogy Reported Index 1st answer 2nd answer

Mikolov et al. (2013a)

man king woman queen 2 king queen

Paris France Tokyo Japan 1 Japan Tokyo
brother sister grandson granddaughter 1 granddaughter niece

big bigger cold colder 2 cold colder
Einstein scientist Picasso painter 1 painter scientist
Bolukbasi et al. (2016)

man computer_programmer woman homemaker 2 computer_programmer homemaker
he doctor she nurse 2 doctor nurse

she interior_designer he architect 2 interior_designer architect

she feminism he conservatism 4 feminism liberalism
she lovely he brilliant 10 lovely magnificent
she sewing he carpentry 4 sewing woodworking
Manzini et al. (2019b)

black criminal caucasian lawful 13 legal statutory
caucasian lawful black criminal 2 lawful criminal
caucasian hillbilly asian yuppie 3 hillbilly hippy

asian yuppie caucasian hillbilly 2 yuppie hillbilly
asian engineer black killer 39 operator jockey

black killer asian engineer 7 killer impostor
christian conservative jew liberal 4 centrist democrat
jew liberal christian conservative 2 liberal conservative
muslim terrorist jew journalist 4 hacker protestor
jew journalist muslim terrorist 2 purportedly terrorist
christian conservative muslim regressive 53 moderate conservative
muslim regressive christian conservative 13 regressive progressive

From Nissim et al. (2019) arXiv:1905.09866v1 [cs.CL]



Word analogy task [Mikolov, Yih & Zweig
2013a]

Dimensions Corpus size  Performance

(Syn + Sem)

CBOW (Mikolov et al. 2013b) 300 1.6 billion 36.1



Count based vs. direct prediction

LSA, HAL (Lund & Burgess), - NNLM, HLBL, RNN, word2vec

COALS (Rohde et al), Skip-gram/CBOW, (Bengio et al;

HeIIinger-PCA (Lebret & Collobert) Collobert & Weston; Huang et al; Mnih &
Hinton; Mikolov et al; Mnih & Kavukcuoglu)

- Fast training - Scales with corpus size
- Efficient usage of statistics

- Inefficient usage of statistics

- Generate improved
performance
on other tasks

 Can capture complex patterns
beyond word similarity

* Primarily used to capture
word similarity

* Disproportionate importance
given to small counts




Encoding meaning in vector differences
[Pennington, Socher, and Manning, EMNLP 2014]

Crucial insight:

X

P(zlice)
P(z|steam)

P(xlice)
P(z]steam)

Ratios of co-occurrence probabilities can encode
meaning components

= solid X = gas X = water X =random
large small large small
small large large small
large small ~1 ~1



Encoding meaning in vector differences
[Pennington, Socher, and Manning, EMNLP 2014]

Crucial insight: Ratios of co-occurrence probabilities can encode
meaning components

_ x = solid X = gas X = water x = fashion

Plfie) 300 Bt 00wt
P(x|steam) i '02_5X Z.O%‘X ibz_gx 155)(

Plalice) 8.5 X 36 .

P(z|steam) 107



Encoding meaning in vector differences

Q: How can we capture ratios of co-occurrence probabilities as
meaning components in a word vector space?

A: Log-bilinear model: w; - w; = log P(i|7)

with vector differences Wy - (wa — wb) = log



GloVe: A new model for learning word
representations [Pennington et al., EMNLP 2014] =&

w; - w; = log P(i[7)

Wy - (W, —wp) = log

v
J = Z f (Xij) (W?Wj + b; +[;j - lOgXij)z [~
,j=1




Word similarities

Nearest words to frog:

. frogs

. toad

litoria

. leptodactylidae

. rana

. lizard

. eleutherodactylus

No b wNR

rana eIeutherodactIus
http://nlp.stanford.edu/projects/glove/




Glove Visualizations
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Glove Visualizations: Company - CEO
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Glove Visualizations: Superlatives
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Analogy evaluation and hyperparameters

Training Time (hrs)
3 6 9 12 15 18 21 24

72¢
70} |
g 68_ N’/\
>
(@)
©
> 66
)
<
cal GloVe
@ SKip-Gram
62}
20 40 60 80 100
| =
N B . Iterations (GloVe)

12345 6 7 10 12 15 20
Negative Samples (Skip-Gram)



Accuracy [%]

85

Analogy evaluation and hyperparameters

- Semantic - Syntactic - Overall

Gigaword5 +
Wiki2014 Common Crawl

1B tokens 1.6B tokens 4.3B tokens 6B tokens 42B tokens

Wiki2010 Wiki2014 Gigaword5



Word Embeddings Conclusion

Developed a model that can translate meaningful relationships
between word-word co-occurrence probabilities into linear
relations in the word vector space

GloVe shows the connection between Count! work and Predict!
work — appropriate scaling of counts gives the properties and
performance of Predict! models

Can one explain word2vec’s linear structure?

See Arora, Li, Liang, Ma, & Risteski. 2015. Random Walks on
Context Spaces: Towards an Explanation of the Mysteries of
Semantic Word Embeddings. [Develops a generative model.]
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WE need more! What of larger semantic
units?

How can we know when larger units are similar in

meaning?

People interpret the meaning of larger text units —
entities, descriptive terms, facts, arguments, stories — by
semantic composition of smaller elements



Representing Phrases as Vectors
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Vector for single words are useful as features but limited!
the country of my birth

the place where | was born

Can we extend the ideas of word vector spaces to phrases?



How should we map phra

ses into a vector space?

Use the principle of compositional

ity!

The meaning (vector) of a sentence
is determined by

(1) the meanings of its words and
(2) a method that combine them.
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Tree Recursive Neural Networks (Tree RNNs)

Basic computational unit: (Goller & Kuchler 1996,

Recursive Neural Network Costa et al. 2003, Socher
et al. ICML, 2011)

Neural
Network




Version 1: Simple concatenation Tree RNN

‘C
p = tanh(W Ci +b),

where tanh: f

score = VTp

Only a single weight matrix = composition function!

a f S\
WSCOFE
(e00000)
8 /'W\ J

(oooooo) [oooooo)

C1

No real interaction between the input words!

Not adequate for human language composition function



Version 2: PCFG + Syntactically-Untied RNN

A symbolic Context-Free Grammar (CFG) backbone is
adequate for basic syntactic structure

We use the discrete syntactic categories of the
children to choose the composition matrix

An RNN can do better with a different composition
matrix for different syntactic environments

The result gives us a better semantics

Standard Recursive Neural Network

Syntactically Untied Recursive Neural Network

- a
{P(z), p¥=G9 = f{ w [p“]




SU-RNN

Learns soft notion of head words
Initialization: W) = 0.5[L,nlnxnOnx1] + €




SU-RNN




Version 3: Matrix-vector RNNs
[Socher, Huval, Bhat, Manning, & Ng, 2012]

G = (v[ %)




Version 3: Matrix-vector RNNs
[Socher, Huval, Bhat, Manning, & Ng, 2012]
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Classification of Semantic Relationships

 Can an MV-RNN learn how a large syntactic context
conveys a semantic relationship?

. My [apartment],, has a pretty large [kitchen] ,
- component-whole relationship (e2,e1)

* Build a single compositional semantics for the minimal
constituent including both terms

~
Classifier: Message-Topic \
H
__: : ;
... (@0) (@O
@0 D, e @O

the [movie] showed [wars]




Classification of Semantic Relationships

Classifier Features F1

SVM POS, stemming, syntactic patterns 60.1

MaxEnt POS, WordNet, morphological features, noun  77.6
compound system, thesauri, Google n-grams

SVM POS, WordNet, prefixes, morphological 82.2
features, dependency parse features, Levin
classes, PropBank, FrameNet, NomLex-Plus,
Google n-grams, paraphrases, TextRunner

RNN — 74.8
MV-RNN - 79.1
MV-RNN POS, WordNet, NER 82.4



Version 4: Recursive Neural Tensor Network

* Less parameters than MV-RNN

* Allows the two word or phrase vectors to interact
multiplicatively

Neural Tensor Layer
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Version 4: Recursive Neural Tensor Network

Idea: Allow both additive and mediated

multiplicative interactions of vectors
[Mitchell & Lapata, 2010]
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Recursive Neural Tensor Network

g(a,pl)




Recursive Neural Tensor Network

©o P2 = g(a,p1)
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* Train all weights jointly with gradient descent

Recursive Neural Tensor Network

Use resulting vectors in tree as input to
a classifier like logistic regression

©o P2 =g(a,p1)

©o p1=g(b,c)

Neural Tensor Layer

Slices of
Tensor Layer
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Version 5:

Improving Deep Learning Semantic

Representations using a TreelLSTM
[Tai et al., ACL 2015]

Goals:

e Still trying to represent the meaning of a sentence as a location
in a (high-dimensional, continuous) vector space

* |n a way that accurately handles semantic composition and
sentence meaning

e Beat Paragraph Vector!



Tree-Structured Long Short-Term Memory
Networks

Use Long Short-
Term Memories
01 —>$

(Hochreiter and
Schmidhuber

1997) C1 ; > Co >
/ /
1 LT /2 12 LT
Vihe Vcat
dobj

Use syntactic
structure



e An LSTM creates a sentence representation via left-to-right
composition

e Natural language has syntactic structure

e We can use this additional structure over inputs to guide how
representations should be composed



Tree-Structured Long Short-Term Memory

Networks [Tai et al., ACL 2015]
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Results: Semantic Relatedness
SICK 2014 (Sentences Involving Compositional Knowledge)

Method Pearson
correlation
Meaning Factory (Bjerva et al. 2014) 0.827
ECNU (Zhao et al. 2014) 0.841
LSTM (sequence model) 0.853

Tree LSTM 0.868



Natural Language Inference

Can we tell if one piece of text follows from
another?

e Two senators received contributions engineered
by lobbyist Jack Abramoff in return for political favors.

e Jack Abramoff attempted to bribe two legislators.

Natural Language Inference = Recognizing Textual
Entailment [Dagan 2005, MacCartney & Manning, 2009]



The task: Natural language inference

James Byron Dean refused to move without blue jeans
{entails, contradicts, neither}

James Dean didn’t dance without pants



MacCartney’s natural logic

An implementable logic for natural language inference without

logical forms.

® Sound logical interpretation

P .g;rzze’;s‘ refz;s‘ ed move  without  blue  jeans
James
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The task: Natural language inference

Claim: Simple task to define, but engages the full complexity of
compositional semantics:

e Lexical entailment

e Quantification

e Coreference

e Lexical/scope ambiguity

e Commonsense knowledge
e Propositional attitudes

e Modality

e Factivity and implicativity



Natural logic: relations

Seven possible relations between phrases/sentences:

o

O XEy equivalence couch = sofa
’ forward entailment '
O Xcy (stict) crow c bird
reverse entailment
O Xy ‘stiot) European 1 French
XNy negation human » nonhuman
(exhaustive exclusion)
alternation
X | y (non-exhaustive exclusion) cat | dog
X_y cover animal _ nonhuman
~ (exhaustive non-exclusion) ~

" ¢ X#y independence hungry # hippo



Natural logic: relation joins

= cCc O A -  #
== C O " -
C| C C | :
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# | ## #

Can our NNs learn to make these inferences
over pairs of embedding vectors?



A minimal NN for lexical relations
[Bowman 2014]

Words are learned embedding vectors.

One plain TreeRNN or uP(entaiImeﬁt)=0.9
TreeRNTN layer |
jeans vs. pants
. . vv
Softmax emits relation labels
., jeans’ .. pants'

Learn everything with SGD.



Lexical relations: results

Train Test

# only 53.8 (10.5) 53.8 (10.5)
15d NN 99.8 (99.0) 94.0 (87.0)
ISANTN 100 (100) 99.6 (95.5)

Both models tuned, then trained to convergence
on five randomly generated datasets

Reported figures: % correct (macroaveraged F1)

Both NNs used 15d embeddings, 75d comparison
layer



Quantifiers

Experimental paradigm: Train on relational statements
generated from some formal system, test on other such
relational statements.

The model needs to:

® Learn the relations between individual words. (lexical
relations)

® Learn how lexical relations impact phrasal relations.
(projectivity)

e Quantifiers present some of the harder cases of both of
these.



Quantifiers

e Small vocabulary

o Three basic types:
= Quantifiers: some, all, no, most, two, three, not-all, not-most,

less-than-two, less-than-three
= Predicates: dog, cat, mammal, animal ...

= Negation: not
e 60k examples generated using a generative implementation
of the relevant portion of MacCartney and Manning’s logic.
e All sentences of the form QPP, with optional negation on

each predicate.

(most warthogs) walk A (not-most warthogs) walk
(most mammals) move #  (not-most (not turtles)) move
(most (not pets)) (not swim) = (not-most (not pets)) move



Quantifier results

Most freq. class (# only)
25d SumNN (sum of words)
25d TreeRNN

25d TreeRNTN

Train

35.4%
96.9%
99.6%
100%

Test

35.4%
93.9%
99.2%
99.7%



Natural language inference data
[Bowman, Manning & Potts 2015]

e To do NLI on real English, we need to teach an NN model
English almost from scratch.

e What data do we have to work with:
o GloVe/word2vec (useful w/ any data source)
o SICK: Thousands of examples created by editing and pairing
hundreds of sentences.
o RTE: Hundreds of examples created by hand.
o DenotationGraph: Millions of extremely noisy examples
(~73% correct?) constructed fully automatically.



Results on SICK (+DG, +tricks) so far

SICK Train DG Train Test
Most freq. class 56.7% 50.0% 56.7%
30 dim TreeRNN 95.4% 67.0% 74.9%

50 dim TreeRNTN 97.8% 74.0% 76.9%



Is it competitive? Sort of...

Best result (Ulllinois) 84.5%
Median submission (out of 18): 77%
TreeRNTN: 76.9%

TreeRNTN is a purely-learned system
None of the ones in the competition were
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Natural language inference data

e To do NLI on real English, we need to teach an NN model
English almost from scratch.
e What data do we have to work with:
o GloVe/word2vec (useful w/ any data source)
o SICK: Thousands of examples created by editing and pairing
hundreds of sentences.
o RTE: Hundreds of examples created by hand.
o DenotationGraph: Millions of extremely noisy examples
(~73% correct?) constructed fully automatically.
o Stanford NLI corpus: “600k examples, written by Turkers.



The Stanford NLI corpus

The Stanford University NLP Group is collecting data for use in research on computer understanding of English. We appreciate your help!

We will show you the caption for a photo. We will not show you the photo. Using only the caption and what you know about the world:

« Write one alternate caption that is definitely a true description of the photo.
+ Write one alternate caption that might be a true description of the photo.
« Write one alternate caption that is definitely an false description of the photo.

Photo caption A little boy in an apron helps his mother cook.

Definitely correct Example: For the caption "Two dogs are running through a field." you could write "There are animals outdoors."

Write a sentence that follows from the given caption.

Maybe correct Example: For the caption "Two dogs are running through a field." you could write "Some puppies are running to catch a stick."”

Write a sentence which may be true given the caption, and may not be.

Definitely incorrect Example: For the caption "Two dogs are running through a field." you could write "The pets are sitting on a couch.”

Write a sentence which contradicts the caption.

Problems (optional) If something is wrong with the caption that makes it difficult to understand, do your best above and let us know here.



Envoi

There are very good reasons to want to represent meaning with
distributed representations

So far, distributional learning has been most effective for this

But cf. [Young, Lai, Hodosh & Hockenmaier 2014] on
denotational representations, using visual scenes

However, we want not just word meanings! We want:
Meanings of larger units, calculated compositionally

The ability to do natural language inference



