Parts of Speech (POSs)

Part of speech is a formal property of word-types that determines their acceptable uses in syntax

Parts of speech (*syntactic categories*) can be regarded as classes of words. Examples:

- nouns
- verbs
- adjectives
- adverbs

POS does *not* define how a word participates in the semantic interpretation of a sentence (although not entirely independent)

A word-type can have more than one POS, but a word-token has exactly one, e.g.:

 $I \operatorname{can}_{\operatorname{Aux}}$ kick the can_N .

Tagging: Assigning Parts of Speech

POS Tagging is a first step towards

- classification (POS tag can be feature)
- finding meaning of word
- parsing a sentence
- partial parsing, e.g., noun-phrase detection

Sources of Knowledge about POS

Input:	The	red	ducks	can	run	down	steep	banks
	Det							
		Adj				(Adj)	Adj	
		Noun	Noun	Noun	Noun	Noun		Noun
			Verb	Verb	Verb	Verb	Verb	Verb
						Prep		
True:	Det	Adj	Noun	Verb	Verb	Prep	Adj	Noun

Syntagmatic statistics (horizontal): how likely is a sequence of tags?

Paradigmatic statistics (vertical): how likely is a given word to have one tag vs. another?

Sources of Knowledge about POS

Input:	The	red	ducks	can	run	down	steep	banks
	Det							
		Adj				(Adj)	Adj	
		Noun	Noun	Noun	Noun	Noun		Noun
			Verb	Verb	Verb	Verb	Verb	Verb
						Prep		
True:	Det	Adj	Noun	Verb	Verb	Prep	Adj	Noun

Syntagmatic statistics (horizontal): how likely is a sequence of tags? Paradigmatic statistics (vertical): how likely is a

given word to have one tag vs. another?

Syntagmatic looks useful, but isn't: $\approx 77\%$ accuracy.

Sources of Knowledge about POS

I	nput:	The	red	ducks	can	run	down	steep	banks
		Det							
			Adj				(Adj)	Adj	
			Noun	Noun	Noun	Noun	Noun		Noun
				Verb	Verb	Verb	Verb	Verb	Verb
							Prep		
	True:	Det	Adj	Noun	Verb	Verb	Prep	Adj	Noun

Syntagmatic statistics (horizontal): how likely is a sequence of tags?

Paradigmatic statistics (vertical): how likely is a given word to have one tag vs. another?

Paradigmatic is very useful: as high as $\approx 90\%$ accuracy.

Use both: as high as $\approx 95\%$. Warning: these are per-word accuracies. How do we combine these sources of knowledge?

$$\begin{aligned} \underset{t_{1}...t_{n}}{\operatorname{argmax}} P(t_{1}...t_{n} \mid w_{1}...w_{n}) \\ \doteq \underset{t_{1}...t_{n}}{\operatorname{argmax}} \frac{P(w_{1}...w_{n}|t_{1}...t_{n})P(t_{1}...t_{n})}{P(w_{1}...w_{n})} \\ = \underset{t_{1}...t_{n}}{\operatorname{argmax}} P(w_{1}...w_{n} \mid t_{1}...t_{n})P(t_{1}...t_{n}) \\ \doteq \underset{t_{1}...t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_{i} \mid t_{1}...t_{n})P(t_{1}...t_{n}) \\ \doteq \underset{t_{1}...t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_{i} \mid t_{i})P(t_{1}...t_{n}) \\ \doteq \underset{t_{1}...t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_{i} \mid t_{i})P(t_{n} \mid t_{n-1})...P(t_{2} \mid t_{1})P(t_{1}) \\ = \underset{t_{1}...t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_{i} \mid t_{i})P(t_{i} \mid t_{i-1}) \\ \left[P(t_{1}|t_{0}) \equiv P(t_{1})\right] \end{aligned}$$

With an HMM!

$$\begin{aligned} \underset{t_{1}...t_{n}}{\operatorname{argmax}} & P(t_{1}...t_{n} \mid w_{1}...w_{n}) \\ \doteq \underset{t_{1}...t_{n}}{\operatorname{argmax}} \frac{P(w_{1}...w_{n} \mid t_{1}...t_{n}) P(t_{1}...t_{n})}{P(w_{1}...w_{n})} \\ = \underset{t_{1}...t_{n}}{\operatorname{argmax}} P(w_{1}...w_{n} \mid t_{1}...t_{n}) P(t_{1}...t_{n}) \\ \doteq \underset{t_{1}...t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_{i} \mid t_{1}...t_{n}) P(t_{1}...t_{n}) \\ \doteq \underset{t_{1}...t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_{i} \mid t_{i}) P(t_{1}...t_{n}) \\ \doteq \underset{t_{1}...t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_{i} \mid t_{i}) P(t_{n} \mid t_{n-1}) \dots P(t_{2} \mid t_{1}) P(t_{1}) \\ = \underset{t_{1}...t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_{i} \mid t_{i}) P(t_{i} \mid t_{i-1}) \\ [P(t_{1} \mid t_{0}) \equiv P(t_{1})] \end{aligned}$$

Use tags as states, words as output symbols $P(w_i | t_i)$: emission probabilities (B) $P(t_i | t_{i-1})$: transition probabilities (A) $P(t_1)$: initial probabilities (π)

Setting parameters of the HMM

$$P(t^k \mid t^j) = \frac{C(t^j t^k)}{C(t^j)}$$
$$P(w^k \mid t^j) = \frac{C(t^j, w^k)}{C(t^j)}$$

- Counts are generally determined from a manually tagged corpus.
- If training data are sampled from the same domain as the test data, then Baum-Welch is likely to hurt performance.
- If training data are sampled from a different domain, then a few iterations of Baum-Welch might help.

Conditionalizing the probability of a tag on preceding word is much harder to train Alternative: "transformation-based" tagger - make an imperfect tagging, then correct using (learned) transformational rules. Dealing with Unknown Words

Three kinds:

- 1. training word not in lexicon
- 2. training word in lexicon, but not in corpus
- 3. test word unknown

Solutions:

- heuristic rules (1,3), e.g., capitalization (noun), morphology (-ing,-ed is probably verb)
- parameter tying using "meta-words" (2): classes with same POS alternations, e.g., {can, run, ducks, banks} can all be nouns or verbs.

The Brill Tagger

Transformation-based

Transformation rule: $t^i \longrightarrow t^j$ when **X** 9 kinds of **X** Examples:

- NN \longrightarrow VB when $t_{i-2} =$ Det & $w_{i+1} =$ n't (9)
- NN \longrightarrow VB when $t_{i-2} =$ NN or $t_{i-1} =$ NN (3)

Unknown words:

- 1. capitalized \Rightarrow NNP (proper)
- 2. otherwise NN (common)
- 3. Then apply morphological transformations, e.g.:

 \bullet NN \longrightarrow NNS if suffix is -s

Then what do we learn?

The *order* of the transformations:

- 1. $C_0 :=$ initially tagged corpus (e.g., paradigmatic info only)
- 2. for k := 0 step 1 do
 - $v := \operatorname{argmin}_{\bar{v}} E(\bar{v}(C_k))$
 - \bullet if $[E(C_k)-E(v(C_k))]<\epsilon$ then break

$$\bullet \ C_{k+1} := v(C_k)$$

•
$$\tau_{k+1} := v$$

Why does order matter?

Depends on the style of transformational system:

Example: $A \longrightarrow B$ if $t_{i-1} = A$. Input: AAAA

Effect/Direction	left-to-right	right-to-left
immediate	ABAB	ABBB
delayed	ABBB	ABBB

Brill tagger uses a delayed-effect, left-to-right system.