Parts of Speech (POSs)

Part of speech is a formal property of word-types that determines their acceptable uses in syntax

Parts of speech (syntactic categories) can be regarded as classes of words. Examples:

- nouns
- verbs
- adjectives
- adverbs

POS does not define how a word participates in the semantic interpretation of a sentence (although not entirely independent)

A word-type can have more than one POS, but a word-token has exactly one, e.g.:

I can Aux kick the $\operatorname{can}_{\mathrm{N}}$.

Tagging: Assigning Parts of Speech

POS Tagging is a first step towards

- classification (POS tag can be feature)
- finding meaning of word
- parsing a sentence
- partial parsing, e.g., noun-phrase detection

Sources of Knowledge about POS

Input: The red ducks can run down steep banks Det

- Adj - - -
- Noun Noun Noun
- Veb Veb Verb Ver Verb Verb Verb Verb Verb Verb
- \quad - $\quad-\quad$ Prep \quad -

True: Det Adj Noun Verb Verb Prep Adj Noun

Syntagmatic statistics (horizontal): how likely is a sequence of tags?
Paradigmatic statistics (vertical): how likely is a given word to have one tag vs. another?

Sources of Knowledge about POS

Input: The red ducks can run down steep banks

Det	-	-	-	-	-	-	-
-	Adj	-	-	-	(Adj)	Adj	-
-	Noun	Noun	Noun	Noun Noun	Noun		
-	-	Verb	Verb	Verb	Verb	Verb	Verb
-	-	-	-	-	Prep	-	-

True: Det Adj Noun Verb Verb Prep Adj Noun

Syntagmatic statistics (horizontal): how likely is a sequence of tags?
Paradigmatic statistics (vertical): how likely is a given word to have one tag vs. another?

Syntagmatic looks useful, but isn't: $\approx 77 \%$ accuracy.

Sources of Knowledge about POS

Input: The red ducks can run down steep banks

Det	-	-	-	-	-	-	-
-	Adj	-	-	-	(Adj)	Adj	-
-	Noun	Noun	Noun	Noun Noun	Noun		
-	-	Verb	Verb	Verb	Verb	Verb	Verb
-	-	-	-	-	Prep	-	-

True: Det Adj Noun Verb Verb Prep Adj Noun

Syntagmatic statistics (horizontal): how likely is a sequence of tags?
Paradigmatic statistics (vertical): how likely is a given word to have one tag vs. another?

Paradigmatic is very useful: as high as $\approx 90 \%$ accuracy.

Use both: as high as $\approx 95 \%$.
Warning: these are per-word accuracies.

How do we combine these sources of knowledge?

$$
\begin{aligned}
& \underset{t_{1} \ldots t_{n}}{\operatorname{argmax}} P\left(t_{1} \ldots t_{n} \mid w_{1} \ldots w_{n}\right) \\
& \doteq \underset{t_{1} \ldots t_{n}}{\operatorname{argmax}} \frac{P\left(w_{1} \ldots w_{n} \mid t_{1} \ldots t_{n}\right) P\left(t_{1} \ldots t_{n}\right)}{P\left(w_{1} \ldots w_{n}\right)} \\
& =\underset{t_{1} \ldots t_{n}}{\operatorname{argmax}} P\left(w_{1} \ldots w_{n} \mid t_{1} \ldots t_{n}\right) P\left(t_{1} \ldots t_{n}\right) \\
& \doteq \underset{t_{1} \ldots t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(w_{i} \mid t_{1} \ldots t_{n}\right) P\left(t_{1} \ldots t_{n}\right) \\
& \doteq \underset{t_{1} \ldots t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right) P\left(t_{1} \ldots t_{n}\right) \\
& \doteq \underset{t_{1} \ldots t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right) P\left(t_{n} \mid t_{n-1}\right) \ldots P\left(t_{2} \mid t_{1}\right) P\left(t_{1}\right) \\
& =\underset{t_{1} \ldots t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right) P\left(t_{i} \mid t_{i-1}\right) \\
& \quad\left[P\left(t_{1} \mid t_{0}\right) \equiv P\left(t_{1}\right)\right]
\end{aligned}
$$

With an HMM!

$$
\begin{aligned}
& \underset{t_{1} \ldots t_{n}}{\operatorname{argmax}} P\left(t_{1} \ldots t_{n} \mid w_{1} \ldots w_{n}\right) \\
& \doteq \underset{t_{1} \ldots t_{n}}{\operatorname{argmax}} \frac{P\left(w_{1} \ldots w_{n} \mid t_{1} \ldots t_{n}\right) P\left(t_{1} \ldots t_{n}\right)}{P\left(w_{1} \ldots w_{n}\right)} \\
& =\underset{t_{1} \ldots t_{n}}{\operatorname{argmax}} P\left(w_{1} \ldots w_{n} \mid t_{1} \ldots t_{n}\right) P\left(t_{1} \ldots t_{n}\right) \\
& \doteq \underset{t_{1} \ldots t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(w_{i} \mid t_{1} \ldots t_{n}\right) P\left(t_{1} \ldots t_{n}\right) \\
& \doteq \underset{t_{1} \ldots t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right) P\left(t_{1} \ldots t_{n}\right) \\
& \doteq \underset{t_{1} \ldots t_{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right) P\left(t_{n} \mid t_{n-1}\right) \ldots P\left(t_{2} \mid t_{1}\right) P\left(t_{1}\right) \\
& =\underset{t_{1}}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right) P\left(t_{i} \mid t_{i-1}\right) \\
& t_{1} \ldots t_{n} \\
&
\end{aligned}
$$

Use tags as states, words as output symbols $P\left(w_{i} \mid t_{i}\right)$: emission probabilities (B) $P\left(t_{i} \mid t_{i-1}\right)$: transition probabilities (A) $P\left(t_{1}\right)$: initial probabilities (π)

Setting parameters of the HMM

$$
\begin{aligned}
& P\left(t^{k} \mid t^{j}\right)=\frac{C\left(t^{j} t^{k}\right)}{C\left(t^{j}\right)} \\
& P\left(w^{k} \mid t^{j}\right)=\frac{C\left(t^{j}, w^{k}\right)}{C\left(t^{j}\right)}
\end{aligned}
$$

- Counts are generally determined from a manually tagged corpus.
- If training data are sampled from the same domain as the test data, then Baum-Welch is likely to hurt performance.
- If training data are sampled from a different domain, then a few iterations of Baum-Welch might help.

Conditionalizing the probability of a tag on preceding word is much harder to train Alternative: "transformation-based" tagger - make an imperfect tagging, then correct using (learned) transformational rules.

Dealing with Unknown Words

Three kinds:

1. training word not in lexicon
2. training word in lexicon, but not in corpus
3. test word unknown

Solutions:

- heuristic rules (1,3), e.g., capitalization (noun), morphology (-ing,-ed is probably verb)
- parameter tying using "meta-words" (2): classes with same POS alternations, e.g., \{can, run, ducks, banks $\}$ can all be nouns or verbs.

The Brill Tagger

Transformation-based
Transformation rule: $t^{i} \longrightarrow t^{j}$ when \mathbf{X}
9 kinds of \mathbf{X}
Examples:

- $\mathrm{NN} \longrightarrow \mathrm{VB}$ when $t_{i-2}=\operatorname{Det} \& w_{i+1}=$ n't (9)
- $\mathrm{NN} \longrightarrow \mathrm{VB}$ when $t_{i-2}=\mathrm{NN}$ or $t_{i-1}=\mathrm{NN}(3)$

Unknown words:

1. capitalized \Rightarrow NNP (proper)
2. otherwise NN (common)
3. Then apply morphological transformations, e.g.:

- NN \longrightarrow NNS if suffix is -s

Then what do we learn?

The order of the transformations:

1. $C_{0}:=$ initially tagged corpus (e.g., paradigmatic info only)
2. for $k:=0$ step 1 do

- $v:=\operatorname{argmin}_{\bar{v}} E\left(\bar{v}\left(C_{k}\right)\right)$
- if $\left[E\left(C_{k}\right)-E\left(v\left(C_{k}\right)\right)\right]<\epsilon$ then break
- $C_{k+1}:=v\left(C_{k}\right)$
- $\tau_{k+1}:=v$

Why does order matter?

Depends on the style of transformational system:

Example: $\mathrm{A} \longrightarrow \mathrm{B}$ if $t_{i-1}=\mathrm{A}$.
Input: AAAA

Effect/Direction	left-to-right	right-to-left
immediate	ABAB	ABBB
delayed	ABBB	ABBB

Brill tagger uses a delayed-effect, left-to-right system.

