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LMs and Information Theory

* LMs may be evaluated extrinsically through their
embedded performance on other tasks

°* An LM may be evaluated intrinsically according to
how accurately it predicts language

* Information Theory was developed in the 1940s for
data compression and transmission

* Many of the concepts, chiefly entropy, apply directly
to LMs
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Information

* Imagine Darth Vader is about to say either “yes” or
“no” with equal probability.
* You don’t know what hée’ll say.
® You have a certain amount of uncertainty — a lack of

information.

s
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Information

* Imagine you then observe Darth Vader saying “no”
® You'd be surprised: he could’ve said “yes”

® Your uncertainty is gone; you’ve received information.
°* How much information do you receive about event x

when you observe it?

T
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Information

* Imagine communicating the outcome in binary

* The amount of information is the size of the message

* What’s the minimum, average number of bits needed
to encode any outcome?

®* Answer: 1

* Example:

L 1 B = Lo

llYESII llN OII

A
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Information

* What about 4 equiprobable words?

S(x) = 2 bits
llYESI’ llNOII llMaybe’I llsurell -
1
* In general S(x) = log, (%) = —log,P(x)

. UNIVERSITY OF
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Information

* Imagine Darth Vader is about to roll a fair die.

®* You have more uncertainty about an event because
there are more (equally probable) possibilities.

® You receive more information when you observe it.

® You are more surprised by any given outcome.

S(x) = log, P(x)

= log, 716 ~ 2.58 bits

T
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Information can be additive

* One property of S(x) = log, % is additivity.
°* From kindependent events x; ... Xy:
®* DoesS(xq ..xy) = S(xq) +S(xy) + -+ S(x) ?

®* The answer is yes!

1
S(xq ...x3) = log,

P(xq..xp)

1
= lo = lo +---+1lo
52P(e) P C2P(xy) 52 P ()

=S(xq) +S(xy) + -+ S(xp)

T
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Events with unequal information

* Events are not always equally likely
® Surprisal will therefore be dependent on the event

®* How surprising is the distribution overall?

® Suppose you still have 6
outcomes that are possible — but
you’re fairly sure it will be ‘No’.

* We expect to be less surprised on

average

M Yes (0.1) m No (0.7)
® Maybe (0.04) m Sure (0.03)
m Darkside (0.06) m Destiny (0.07)

st
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Entropy

°* Entropy: n. the average uncertainty/information/surprisal of
a (discrete) random variable X.

H(X) = Z P(x)loga s

J

|

Expectation over X

* A lower bound on the average number of bits necessary to
encode X (more on this later)

UNIVERSITY OF
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Entropy — examples

1
‘ H(X) =Zpi1082_
- Di

® Yes (0.1) = No (0.7) = 0.7log,(1/0.7) + 0.1log,(1/0.1) + -
W Maybe (0.04) m Sure (0.03)

® Darkside (0.06) m Destiny (0.07)

H(X)—Z: 1 1—6 11 L
‘ — LPP082 T P\ 6 7216
Nl m2 E3 N4 5 H6 = 2.585 bits
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Entropy characterizes the distribution

® Flatter distributions = higher entropy = hard to predict
* Peaky distributions = lower entropy = easy to predict

0.25 0.25
0.2 0.2
%O.lS %O.ls
8 8
o 0.1 o 01
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0.05 0.05
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0 0
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Bounds on entropy

* Maximum: uniformly distributed X;. Given V choices,

H(X;) = z Di logz > z log, — 1/V =log, V

0
* Minimum: only one choice, H(x,) = p;log, 5 = 1lody 1 =10

0.1
0.08 0.8
e 5
= 0.06 = 0.6
((°) ©
S 0.04 2 0.4
a a
0.02 0.2
0 0
Values Values
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Coding with fewer bits is better

* If we want to transmit Vader’s words efficiently, we can
encode them so that more probable words require fewer bits.
o On average fewer bits will need to be transmitted.

Word Linear Probab|I Huffman
sorted) Code Code

Yes 001 0.1 100

Destiny 010 0.07 101

Darkside 011 0.06 110
M Yes (0.1) m No (0.7)

Maybe 100 0.04 1111
® Maybe (0.04) m Sure (0.03)

Sure 101 0.03 1110

m Darkside (0.06) m Destiny (0.07)

Average codelength (Huffman) = 1*0.7+3*(0.1+.07+.06)+
4*(.04+.03) = 1.67 bits > 1.54 bits = H(X)

&
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The entropy rate of language

®* Can we use entropy to measure how predictable language is?
°* Imagine that language follows an LM P which infinitely
generates one word after another: X = X, X,, ...
®* A corpus c is a prefix of x
* Uhoh:asN - oo, H(X) = o
* Instead, we take the per-word entropy rate

1
Hrate(X) — ]\lll—l;roloNH(Xl’ ,XN) < lOgZV

* How do we handle more than one variable?
* How do we evaluate P(x)?
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Entropy of several variables

= o
-83 -89 .81 -80

®* Consider the vocabulary of a meteorologist describing
Temperature and Wetness.
* Temperature € {hot, mild, cold} <
°* Wetness € {dry, wet}

P(W = dry) = 0.6,

1 1
H(W) = 0.6log, — + 0.4log, — = 0.970951 bits
P(W = wet) = 0.4 “0.6 “0.4

P(T = hot) = 0.3,

1 1 1 _
P(T _ mild) — 0.5, H(T) = 0.31og, 03 + 0.5log, 0= + 0.2 log, 02 °= 1.48548 bits

P(T = cold) =0.2

But W and T are not independent,
P(W,T) = P(W)P(T)

Example from Roni Rosenfeld = UNIVERSITY OF
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Joint entropy

* Joint Entropy: n. the average amount of information needed
to specify multiple variables simultaneously.

VO 1
H(X,Y) = Z % p(x,)l0gz

* Hint: this is very similar to univariate entropy — we just replace
univariate probabilities with joint probabilities and sum over
everything.

A
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Entropy of several variables

* Consider joint probability, P(W,T)

* Joint entropy, H(W,T), computed as a sum over the space
of joint events (W =w,T =t)

H(W, T) = 0.1 10g2 1/0_1 + 0.4 logz 1/0_4_ + 0.1 logz 1/0_1
+0.2 10g2 1/0_2 + 0.1 logz 1/0_1 + 0.1 logz 1/0_1 = 2.32193 bits

&
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Entropy given knowledge

° In our example, joint entropy of two variables together is
lower than the sum of their individual entropies
* HW,T) = 232< 246 = HW) + H(T)

°* Why?

* Information is shared among variables
* There are dependencies, e.g., between temperature and

wetness.
°* E.g., if we knew exactly how wet it is, is there less

confusion about what the temperature is ... ?
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Conditional entropy

* Conditional entropy: n. the average amount of information
needed to specify one variable given
that you know another.

HOYIX) = ) pOH(YIX = x)

xeX

°* Comment: this is the expectation of H(Y | X), w.r.t. x.

T
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Entropy given knowledge

* Consider conditional probability, P(T |W)

P(W,T) m“_

PT W
0.1/0.6 0.4/ "
BT o o

0.1/0.6
0.1/

UMNIVERSITY OF
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Entropy given knowledge

* Consider conditional probability, P(T |W)

TN N T

T EETEE
e EOEEETENETE

* HT|W = dry) = H ({Z,2,<}) = 1.25163 bits
e H(T|W = wet) = H ({%%%}) — 1.5 bits

* Conditional entropy combines these:

H(T|W) bife 0.4
) [p(W(d/W)H(TIW — dry)] + [p(W.=et) 1 (T — wet)]
= 1.350978 bits

UMNIVERSITY OF
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Equivocation removes uncertainty

* Remember H(T) = 1.48548 bits Entropy (i.e., confusion) about
o H(W} T) = 2.32193 bits temperature is reduced if we know
° H(TlW) — 1.350978 bits how wet it is outside.

* How much does W tell us about T?
* H(T) — H(T|W) = 1.48548 — 1.350978 ~ 0.1345 bits

* Well, a little bit!

T
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Perhaps T is more informative?

Consider another conditional probability, P(W|T)

POVIT) | T=cod | mid | ot

H(W
H(W
H(W

:

wer G

.1/0.3 0.4/0.5 0.1/0.2
.2/0.3 0.1/0.5 0.1/0.2

T=cold)=H(

=,21) = 0.918295 bits

T = mild) = H ({‘E}) — (.721928 bits

T=hot)=H({

L) = 1o

H(W|T) = 0.8364528 bits

CSC401/2511 — Fall 2024
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A little bit of knowledge still removes

uncertainty, but ...

* H(T) = 1.48548 bits

e H(W) = 0.970951 bits

e H(W,T) = 2.32193 bits

e H(T|W) = 1.350978 hits

* H(T) — H(T|W) =~ 0.1345 bits

‘ Previously
computed

®* How much does T tell us about I/ on average?
s HW) — H(W|T) = 0970951 — 0.8364528
~ 0.1345 bits

® Interesting ... is that a coincidence?

st
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Mutual information

°* Mutual information: n. the average amount of information
shared between variables.

1(X;Y) = H(X) — H(X|Y) = H(Y) — H(Y|X)

- p(x,y)
= Ly P )08 200

® Hint: The amount of uncertainty removed in variable X if you know Y.
* Hint2: If X and Y are independent, p(x,y) = p(x)p(y), then

p(x,y) _ N B - . .
log, PO log, 1 = 0 Vx, y — there is no mutual information!

i
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Relations between entropies

H(X,Y)

H(X,Y) = H(X) + H(Y) = I(X;Y)

i
C UMIVERSITY OF
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Returning to language

* Recall Hyqre (X) = lim ~H (X1, Xz, .., Xy)

°* Now we have
1
HX, X5, ..., Xy) = z P(xq,...,xy)log
o . X1,e0XN . N : P(xq ..., xy)
* But we still don’t know how to compute P(...)
* We will approximate the log terms with our trained LM Q

T
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Cross-entropy

* Cross-entropy measures the uncertainty of a
distribution Q of samples drawn from P

HX Q) = ) P(x)loga o

°* As (Q nears P, cross-entropy nears entropy
* We pay for this mismatch with added uncertainty
®* More on this shortly
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Estimating cross-entropy

* We can evaluate Q but not P
® But corpus ¢ = x4, ..., Xy is drawn from P!

* Let 54, S5, ..., Sy be c’s sentences where )...|s,,| = N
1
Hyqte(X) = —H(Xq, ... Xy) < (large N)

N
1
~LH(, X Q) (@~ P)
l 1 : '
py log, 0 V4 (it happened!)
~ % 11\7/11=1 ]()g2 Q(;m)_ Negative Log Likelihood (NLL)

* Aside: With time invariance, ergodicity, and Q = P,
NLL approaches N X H,,;, as N — oo
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Quantifying the approximation

* How well does cross-entropy approximate entropy?
* Well if P and Q are close
* Poorly if P and Q are far apart
* |f we can quantify the “closeness” of P and Q, we
can quantify how good/bad our NLL estimate is

T
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Relatedness of two distributions

°* How similar are two probability distributions?
°* e.g., Distribution P learned from Kylo Ren
Distribution Q learned from Darth Vader

Probability
Probability

Words

T
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Relatedness of two distributions

* An optimal code based on Vader (Q) instead of Kylo (P) will

be less efficient at coding symbols that Kylo will say.
* What is the average number of extra bits required to code

symbols from P when using a code based on Q?

Probability
Probability

Words

T
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Kullback-Leibler divergence

* KL divergence: n. the average log difference between the
distributions P and Q, relative to Q.

a.k.a. relative entropy.
caveat: we assume Olog0 =0

Probability
Probability

Words

Words

T
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Kullback-Leibler divergence

P(x)
Q(x)

D1 (P|lQ) = ZP(X) log,

* |t is somewhat like a ‘distance’ :

* D (Pl[Q) =0 VP, 0

®* D1 (P||Q) = 0iff P and Q are identical.
® It is not symmetric, Di; (P||Q) # Dk (Q||P)
* Aside: normally computed in base e
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KL and cross-entropy

* Manipulating KL, we get
Dk (P|[Q)

= 2 P(x)log ! Z P(x)log 1
x “Qx) Ly 2 P(x)
=HX:0)—HX) =0

* Therefore,
Hrate (X) = H(Xq, ... Xy)
< H(Xy,...Xy; Q) = NLL(c; Q)
* The NLL is an approximate upper bound on H, . (X)
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Perplexity

* The intrinsic quality of an LM is often quantified by its

perplexity on held-out data ¢ by exponentiating its NLL
1/N

PP(c; Q) 2%2%““’*32@(; ) 71
C, = m) =
Ulmsm)

* A uniform Q over a vocabulary of size V gives PP(c; Q) =V
®* PP is sort of like an “effective” vocabulary size

* If an LM Q has a lower PP than Q' (for large N), then
* () better predicts ¢

* D1, (P]1Q) < Dk, (P||Q")
* PP(c; Q) is a tighter bound on 2rate(X)
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Perplexity (per token)

* The intrinsic quality of an LM is often quantified by its
perplexity on held-out data ¢ by exponentiating its@

M
M_ logy = 1_[ 1
(C Q) @Z m=1 Q(Sm)

* A uniform Q over a vocabulary of size V gives PP(c; Q) =V
®* PP is sort of like an “effective” vocabulary size

* If an LM Q has a lower PP than Q' (for large N), then
* () better predicts ¢

* D1, (P]1Q) < Dk, (P||Q")
* PP(c; Q) is a tighter bound on 2rate(X)
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Decisions
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Deciding what we know

* (Cross-)entropy, KL divergence, and perplexity can all be
used to justify a preference for one method/idea over
another

* “0 is a better language model than Q

* Engineering statistics are often not enough to be truly

meaningful.
* “My ASR system is 95% accurate on my test data. Yours is
only 94.5% accurate! Heh heh heh”
* What if the test data was biased somehow?
°* What if our estimates were inaccurate due to simple
randomness?
* We need tests to increase our confidence in our results.

I¥)
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Statistical significance testing

Step 1: State a hypothesis (and choose a test)
* Decide on the null hypothesis H
Step 2: Compute some test statistics and associated p-value
e Such as the t-statistic
Step 3: Reject Hy if p < «, otherwise do not reject it
* Significance level a usually < 0.05
* Ifyou canreject Hy, then the result is significant
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Null hypothesis and p-value

* Null hypothesis H, usually states that “there is no effect”.
*° It is the negation of what you hope for
* The phrasing of “there is no effect” dictates the

appropriate test (and its negation)
* “The sample is drawn from a normal distribution with
some fixed mean”
* You want to cast doubt on the plausibility of H,
* It’s very unlikely that this measurement would be
observed randomly under the H|
* The p-value of is the probability that the measured effect

occurs under Hy by chance
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Statistical tests

®* Here are some popular tests (no need to memorize)

— 1 .
e X = NZ"X" is the sample mean

Two-sided, one-
sample t test

One-sided, two-
sample t test

One-way ANOVA

One-sided Mann
Whitney U test

CSC401/2511 — Fall 2024

X ~ N (u, o) for known y,
unknown o

A~ N(ug0), B~ N(ug,0)
for unknown py, ug, o where
Ha < pp (Or uy = pp)

X1, X5, ... ~ N (u,0) for
unknown u, o

P(4, > B,) < 0.5 (or = 0.5)

44

Whether Elon’s average tweet
length is different from the
average user’s (u = 100)

Whether ASR system A (trained
N times) makes fewer mistakes
than B (trained N times)

Whether network architecture
predicts accuracy

Whether ASR system A (trained
N times) makes fewer mistakes
than B (trained N times)

st
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Pitfall 1: parametric assumptions

* Parametric tests make assumptions about the parameters
and distribution of RVs
* Often normally distributed with some fixed variance
* |f untrue, H, could be rejected for spurious reasons
® Must first pass tests of normality — difficult with small N
® If non-normal, must use non-parametric tests
* Tend to be less powerful (p-values are higher)

T
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Pitfall 2: multiple comparisons

* Imagine you're flipping a coin to see if it’s fair. You claim
that if you get ‘heads’ in 9/10 flips, it’s biased.
* Assuming H,, the coin is fair, the probability that one fair
coin would come up heads = 9 out of 10 times is
p; =11 x 0.51° =~ 0.01

® But the probability that any of 173 coins hits = 1—90 is
p173=1—(1 —p)*"° =~ 0.84
* The more tests you conduct with a statistical test, the more

likely you are to accidentally find spurious (incorrect)
significance accidentally.
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Pitfall 3: effect size

* Just because an effect is reliably measured doesn’t make it
Important
°* Even u; = 1and u, = 1.00000000000001 can be
significantly different
°* One must decide whether the purported difference is worth
the extra attention
* There are various measures of effect size to support this
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More information

® This is a cursory introduction to experimental statistics and

hypothesis testing
* You should be aware of their key concepts and some of

their pitfalls
* Before you run your own experiments:
* Take STA248 “Statistics for computer scientists”
* Look up stats packages for R, Python
®* Read a book, e.g.:

* Using multivariate statistics, 7t ed., Tabachnick,
Pearson; 2019.
* Categorical Data Analysis, 37 ed., Agresti, Wiley, 2013.

* Ask a statistician for help

UNIVERSITY OF
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https://librarysearch.library.utoronto.ca/permalink/01UTORONTO_INST/14bjeso/alma991106135775306196
https://librarysearch.library.utoronto.ca/permalink/01UTORONTO_INST/14bjeso/alma991106421830806196

Appendix

Everything beyond this slide is not on the exam.

st
UMNIVEESITY OF

CSC401/2511 — Fall 2024 49 @ TORONTO



Samples, events, and probabilities

* Samples are the unique outcomes of an experiment
* The set of all samples is the sample space
®* Examples:
* What DV could say (“yes” or “no”)
* The face-up side of a die (1..6)
* Events are subsets of the sample space assigned a probability
® This is usually any subset of the sample space
* Examples:
* {“yes”}, {“no”}, {"yes”, “no”}, @
* The face-up side is even
* The function assigning probabilities to events is the probability
function

T
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Random variables

* Random variables (RVs) are real-valued functions on
samples/outcomes of a probability space
®* The RV is usually upper-case X while its value is lower x
°* Examples:
* A function returning the sum of face-up sides of N dice
* A function counting a discrete sample space
°* Eg.“Yes"=1,“No”" =2
* Like a programming variable, but with uncertainty
* Let X be defined over samples w and a, b real
*Z=aX+bmeansVw:Z(w) = aX(w) + b
* X = x occurs with some probability P(x)
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PMFs and laziness

* A probability mass function (pmf) sums the probabilities of
samples mapped to a given RV value

PX=x)= ) P(]), % = (@:X(@) = 2)

° It is often expressed as P(x) or p(x)
* If the values of X are 1-to-1 with samples, the pmf is easily
confused with the probability function
* P(x) could be either
* P(X =x) is the pmf
* P(X = yes) is an abuse of notation

T
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Expected value

* The expected value of an RV is its average (or mean) value

over the distribution
* More formally, the expected value of X is the arithmetic mean

of its values weighted by the pmf
E,[X] = 2 P(X = %) x
X

* E[-]is alinear operator
= EX’Y[aX ~+ Y ~+ b] —_ aEx[X] ~+ Ey[Y] ~+ b
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Expected value - examples

°* What is the average sum of face-up values of 2 fair, 6-sided

dice?

* Let X, be the sum

2 (3 a4 [s 6 |7 [8 |9 ]l u |12

{11} {21} {31} {41}
{12} {22} {32}
{13} {2,3}

{1,4}

{5,1}
{4,2}
{3,3}
{2,4}
{1,5}

{6,1}
{5,2}
{4,3}
{3,4}
{2,5}
{1,6}

{6,2} {6,3} ({6,4} {6,5} {6,6}
{5,3y {54} {55} {5,6}
{4,4y {45} {4,6}

{3,5} {3,6}

{2,6}

*E[X,] =312, P, =x)x =—-2+ =3+ =7

* Alternatively, let X, = 2X;

CSC401/2511 — Fall 2024

s
UMNIVEESITY OF

54 % TORONTO



