Iterative Scaling Algorithm

Given:

- Training corpus, (\vec{x}_j, c_j)
- Feature values for f_i on training corpus
- \bullet Empirical distribution \tilde{p}

Assumptions:

• All features are binary

• For all
$$j$$
, $\sum_{i} f_i(\vec{x}_j, c_j) = k$

1. Initialise $\lambda_i := 0$ for each feature i

2. Compute $E_{\tilde{p}}(f_i)$ for each feature *i*

3. Compute $p_{\vec{\lambda}}(\vec{x}_j, c_j)$ for each datum j

4. Compute $E_{p_{\vec{\lambda}}}(f_i)$, for each feature *i* 5. For all *i*:

$$\lambda_i := \lambda_i + \frac{1}{k} (\log \frac{E_{\tilde{p}}(f_i)}{E_{p_\lambda}(f_i)})$$

6. Goto (3) if not converged

Iterative Scaling Algorithm

Advantages:

- incorporates feature selection,
- scales up well in numbers of features w.r.t. other methods,
- resilient to feature dependence.

Disadvantages:

- slow in training relative to other classification methods,
- problems with smoothing,
- binary and summation assumptions (not a big deal).