

Levels of Programming Languages

Gerald Penn
 CSC 324

Levels of Programming Language

• Microcode

• Machine code

• Assembly Language

• Low-level Programming Language

• High-level Programming Language

Levels of Programming Language

• Microcode
– Machine-specific code that directs the individual

components of a CPU’s data-path to perform small-scale
operations.

– CPU: central processing unit of a computer, typically
consisting of:
• Control unit
• Arithmetic/logical unit (ALU)
• Registers – high-speed memory locations to store temporary

results and control information. Foremost among these is the
program counter, which points to the next instruction to be
executed.

– The CPU is connected to I/O devices and main memory by
parallel channels called buses.

Levels of Programming Language

• Microcode
– Machine-specific code that directs the individual components of

a CPU’s data-path to perform small-scale operations.
– Data-path: the ALU, its inputs and outputs.
– People who build computers program in micro-code. The

programs that you write are converted (as explained later) into
machine code.

– Every machine code instruction tells the CPU to execute a
certain microprogram, written in micro-code.

– Often these programs are implemented in hardware.
– On the other hand, some microprocessors are:

• programmable, e.g., many digital signal processing chips that mobile
telephones use, FPGAs, or

• reconfigurable – they can actually rewire themselves.

Levels of Programming Language

• Machine code / Assembly Language
– Machine code instructions still depend on the computer’s

architecture, but the variation isn’t as great; many CPUs
manufactured around the same time or by the same
company will use the same machine code sets, in fact.

– Assembly language is a symbolic presentation of machine
code so that people (very dedicated people with lots of
free time) can read programs written in it.

– Most assemblers (programs that convert assembly code to
machine code) support labelling and macros to make
assembly language programming easier.

– Some recent assemblers support looping control
structures, simple data structures and even types!

Address Label Instruction Object Code

.begin

.org 2048

a_start .equ 3000

2048 ld length,%

2064 be done 00000010 100…

2068 addcc %r1, -4,%r1 10000010 100…

2072 addcc
%41,%r2,%r4

10001000 100…

2076 ld %r4,%r5 11001010 000…

2080 ba loop 00010000 101…

2084 addcc
%r3,%r5,%r3

10000110 100…

2088 done: jmpl %r15+4,%r0 10000001 110…

2092 length: 20 00000000 000…

2096 address: a_start

.org a_start

3000 a:

Levels of Programming Language

• Low-level Programming Language

– Formerly known as high-level programming
languages. 

– e.g.: FORTRAN, COBOL, BASIC, arguably C

– These languages have looping constructs,
procedures, functions, some typing – the
trappings of modern programming languages.

– Big improvement over assembly language.

Levels of Programming Language

• High-level Programming Language

– e.g.: Java, Python, ML, Prolog, MATLAB, etc.

– These are very convenient, but also very far removed
from the computer they are running on.

• Type checking

• Easier to debug

• You may never even see a memory address.

– As a result, they typically aren’t as efficient.

– They still may not be portable: implementation
dependence. Java has had some problems with this.

Compilation

• A compiler is a program that converts a
program written at one of the higher levels
into an equivalent program at some lower
level.

– Some people have even tried to use C as a target
language for Java, ML or Prolog compilers.

– Not always the next level down, though.

– Native code compilers compile the code all the
way down into the machine code level.

Compilation

• Advantages:
– Compile once, run target many times
– Compiler can optimize the speed of the target, even if

the optimization itself takes a long time.
• Actually, most compilers define their own intermediate code

levels, and perform optimizations at the source level, the
intermediate level, and at the target level. Which level is
best depends on the optimization.

• Disadvantage: debugging requires much more
software support
– typically through annotated object code and IDE

extensions.

Interpreted Code

• Code that isn’t compiled before execution is
interpreted.

• Some programming languages have both
compilers and interpreters.

• Not a black-and-white distinction either – it’s very
rare for an interpreter to perform no compilation
whatsoever
– a byte compiler translates source code into a more

compact form by coding keywords and hashing
variables names and other strings.

Interpreted Code

• Advantages:
– Creates the impression that your computer actually runs

on a high-level language

– Easier to provide feedback for debugging because
execution proceeds from (something close to) source code

– Easier to rapidly prototype

– Often easier to add code while running code.

• Disadvantages:
– Slower

– Independent executions repeat much of the same work.

Inside your Interpreter

• The fetch-execute cycle
– initialize the program counter

– loop
• fetch instruction pointed to by PC

• increment the PC

• decode the instruction

• fetch data from memory, as necessary

• execute the instruction

• store the result

– end loop

Inside your Interpreter

• The idea that an imperative program is sitting
around executing your precious ML code is
anathema to functional programmers.

• But we can think of it functionally: then it’s called
the read-eval-print loop, a recursive program that
repeatedly:
– initializes the evaluation environment

– reads an expression

– evaluates the expression, and then

– prints the expression.

