Is this a Programming Language?

Why (not)?



What is a Programming Language?

“A set of conventions for communicating an
algorithm” (Horowitz)

These conventions differ very greatly — broadly
speaking, three basic paradigms today:

1. Procedural / Imperative (e.g., C, Fortran),
2. Functional (e.g., ML, LISP),
3. Logic (e.g., Prolog).

But many paradigmatic conventions cut through
these distinctions, such as:

e message-passing / object-orientation,
e event-handling,

e concurrency / threading,

e domain-specificity,

e security.



What is a Programming Language?

“A set of conventions for communicating an
algorithm” (Horowitz)

These conventions differ very greatly — broadly
speaking, three basic paradigms today:

1. Procedural / Imperative (e.g., C, Python),

2. Functional (e.g., ML, OCaML, Haskell),
3. Logic (e.g., Prolog).

In this course, we will focus on functional and logic
programming languages ...as well as illustrate a
lot of the principles behind the design of any PL.



So Why then is (practically) Everybody using
Imperative PLs?

For a few reasons:

e Inertia: lots of code out there to maintain
already:.

e Lack of competent programmers: lots of the
maintainers finished university a long time ago.

e ifficiency: there has been progress . ..

— some functional languages can stay within a
factor of 2 of C,

— almost every language can beat C at certain
kinds of programs,

but this 1s still a big problem.



And What’s Wrong with Imperative PLs anyway”

e not expressive power — plenty of that;

e they specify how as well as what to compute —
in many cases, how can be inferred;

e many “hows” can be subsumed under the
description of a single “what,” e.g., database
access:

— retrieve telephone number of Gerald Penn,
— retrieve name of person at 978-7390;
e imperative programming languages are often (but

incidentally) naive in the methods they provide
for articulating how;



And What’s Wrong with Imperative PLs anyway”

e more advanced methods can result in code that
IS:
— shorter,
— better captures the intuitions of the designer(s),
— easler to prove correct, e.g.:

0 N =0
fib(N) =4 1 N=1
Fib(N — 1) + fib(N —2) N > 1



Declarative Programming

By contrast to imperative PLs, functional and logic
PLs are more “declarative,” e.g. in this linear
system:

x+y=1

T —1y =2
the solutions for z and y are implicit in these
equations — even if we don’t define determinants,
implement Gaussian elimination, etc.

Both functional and logic PLs have extensions
(“constraint” functional /logic programming) that
allow you to specify these equations as your
program — with the implicit request to find
solutions for all of the variables.



Declarative Programming

Pure declarative languages don’t even care about
order. In an imperative language . ..

x:= 1; Vs. X:=x + 1;

x:=x + 1 x:= 1

Variables in pure declarative languages are logical,
not nicknames for machine registers.



Properties of a Good PL

e Code should be easy to read and understand.
e Reflects intuitions of the programmer.

e No synonyms.

e Not many primitive concepts to master.

e Orthogonality: primitives combine cleanly and
systematically — no exceptions.

e Meaning of construct (control and data)
independent of context.

e Natural for intended applications
e Fasy to learn.

e Efficient.

e Portable.

e ...and more technical properties that we will
discuss later.

Examples of lousy languages: BASIC, C++, Perl



Properties of a Good Programming Environment

e A good PL.

e Graphical IDE.

e Version control system.

e Profiler (and tools for diff’ing profiles).
e [ssue tracking system.

e Dashboard: monitors status of builds, regular
tests, team discussions, issue tracker, etc.

e Unit testing system and test suite creation.
e Coverage analyser.
e Source-code analyser.

e GUI testing system.

On this point, modern programming languages have
lagged way behind until quite recently, in part
thanks to better open-source collaboration.



In What Sense are PLs really Languages?

A language is an arbitrary assocation of a
collection of forms with their meanings.

Syntax: the specification of the forms.
Semantics: the specification of the meanings.

We're actually not going to say much to formalize
meaning in this course, but we’ve already seen a
few different kinds:

e denotational: a declaration of what an
expression means, e.g., £ + y = 1 means that
the value of x added to the value of y is the
same as the value of this expression: 1.

e operational: an elucidation of what the
programmer is asking us to do, e.g., x ;= x + 1
means we should look up the value stored in
the location called x, add 1 to it, and store the
result in the location called x.



In What Sense are PLs really Languages?

A language is an arbitrary assocation of a
collection of forms with their meanings.

Syntax: the specification of the forms.
Semantics: the specification of the meanings.

We're actually not going to say much to formalize
meaning in this course, but we've already seen a
few different kinds:

But remember: both kinds of statements have
both kinds of semantics. It’s just that some PLs
emphasize one more than another in how they're
used.



Syntax
There are a few ways to think about syntax, too

e Grammars for string languages (e.g., regular
grammars), or

e Specifications of form that abstract away from
their realization as strings, e.g.:

(Infix) arithmetic: 3+ (2%x4)—T
Reverse Polish notation: 324 x+ 7 —

Let’s start with the former, using context-free
grammars.






