
CSC 2517: Discrete Mathematical Models
of Sentence Structure
Gerald Penn, PT 283A,
gpenn@cs.toronto.edu,
Tel: (416)978-7390

This class will meet during A&S reading week!

But we will not meet on Wednesday, 22nd March.

mailto:gpenn@cs.Toronto.edu

This is an advanced graduate seminar:
 I will assume that you are familiar with the material of CSC 2501,

although graduate seminars do not formally enforce prerequisites.

 No programming assignments, although your final paper may involve
some.

 Classes will hopefully be more interactive than normal lectures.

 You will do much of the presenting.

 If any of this doesn’t sound like what you signed up for, then you
probably belong in CSC 2511, Natural Language Computing, which
is also being offered this term.

CSC 2517: Discrete Mathematical Models
of Sentence Structure

This year, presentations will be of papers chosen from among the
following topics:

Algebraic Topology

Algebraic Invariance

Graphical/Algebraic Methods for Natural Language

Geometric Deep Learning

CSC 2517: Discrete Mathematical Models
of Sentence Structure

How I will compute your final mark for the class:
 30% your presentation(s) and participation in the seminar.

 70% a final paper, due on Friday, 28th April.

 Paper proposals are due on Tuesday, 14th March.

 Auditors are welcome, but they must present, just like everyone else.

 Group papers must be approved in advance. If I approve, everyone in the group will receive
the same mark.

 Your final paper must be on the subject of mathematical linguistics, broadly construed. It
needn’t be on one of the presentation topics.

 You may submit research you are conducting as part of your thesis or dissertation.

 This is a Methods Area 1 class. In terms of length and style, think of your final papers as MOL
or WoLLIC conference papers. Actually submitting to such a conference is encouraged but
not required.

CSC 2517: Discrete Mathematical Models
of Sentence Structure

Rules for presentations:
 Students will pick topics two weeks in advance of their presentation date.

 I reserve the right to reject papers on the grounds that they are:
 unsuitably difficult,

 unsuitably bad,

 insufficiently related to the topics of this seminar, or

 excessively devoted to material already covered.

Unless invited, you may not present your own research.

 I will also be offering pre-approved paper(s) to present.

CSC 2517: Discrete Mathematical Models
of Sentence Structure

More rules for presentations:
 The papers that we will be reading are highly technical. Expect your presentations

to be ≈1 hour long, or 1 hour of a 2-hour presentation that you will jointly give
with another student (for longer papers and collections of related papers).

 Your job as presenter is to teach the material. That not only includes the research
presented in the paper, but the background material necessary to understand it.
 Assume that no one has read the paper or understands what we have not discussed in

class yet.
 Your job as a non-presenter is to refute this assumption: read the paper, look up

the background you are missing and come to class with questions.
 Presenters must defend the work that they are presenting.

Think of these as opportunities not to present a conference paper, but to teach a
class – it’s good practice.

CSC 2517: Discrete Mathematical Models
of Sentence Structure

Combinatory
Categorial Grammar

15

16

parsers; generation
and information structure; automatic

• Account of syntax; semantics; prosody

founded (Steedman, 1996, 2000)
established and computationally well

• Combinator y Categorial Grammar now well

oldest grammar formalisms
• Categorial grammar (CG) is one of the

Combinator y Categorial Grammar (CCG)

• CCG is a lexicalized grammar

• An elementary syntactic structure – for CCG a lexical
category – is assigned to each word in a sentence

walked: S\NP “give me an NP to my left and I return a
sentence”

• A small number of rules define how categories can
combine

• Rules based on the combinators from Combinatory
Logic

Combinatory Categorial Grammar (CCG)

17

CCG Lexical Categories
• Atomic categories: S , N , NP , PP , . . . (not many more)

• Complex categories are built recursively from atomic categories
and slashes, which indicate the directions of arguments

• Complex categories encode subcategorisation information

• intransitive verb: S \NP walked

• transitive verb: (S \NP)/NP respected

• ditransitive verb: ((S \NP)/NP)/NP gave

• Complex categories can encode modification

• PP nominal: (NP \NP)/NP

• PP verbal: ((S \NP)\(S \NP))/NP

18

Simple CCG Derivationccg Grammar 21

A Simple ccg Derivation

interleukin − 10 inhibits production

NP (S\NP)/NP NP
>

S\NP
<

S

> forward application
< backward application

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

19

Function Application Schemata
ccg Grammar 22

Function Application Rule Schemata

• Forward (>) and backward (<) application:

X /Y Y ⇒ X (>)
Y X \Y ⇒ X (<)

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

20

Classical Categorial Grammar
ccg Grammar 23

Classical Categorial Grammar

• ‘Classical’ Categorial Grammar only has application rules

• Classical Categorial Grammar is context free

 interleukin-10 inhibits production

NP (S\NP)/NP NP

S\NP

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 200921

Classical Categorial Grammar
ccg Grammar 24

Classical Categorial Grammar

• ‘Classical’ Categorial Grammar only has application rules

• Classical Categorial Grammar is context free

 interleukin-10 inhibits production

NP V NP

VP

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 200922

ccg Grammar 25

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
NP S/(S\NP)

S/NP
NP\NP

NP

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

23

ccg Grammar 26

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

NP S/(S\NP)
S/NP

NP\NP
NP

> T type-raising

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

24

ccg Grammar 27

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

NP S/(S\NP)
>B

S/NP
NP\NP

NP

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

25

ccg Grammar 28

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

S/(S\NP)
>B

S/NP
>

NP\NP
NP

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

26

ccg Grammar 29

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
> >T

NP S/(S\NP)
>B

S/NP
>

NP\NP
<

NP

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

27

ccg Grammar 30

Forward Composition and Type-Raising

• Forward composition (>B):

X /Y Y /Z ⇒ X /Z (>B)

• Type-raising (T):

X ⇒ T/(T\X) (>T)
X ⇒ T\(T/X) (<T)

• Extra combinatory rules increase the weak generative power to
mild context -sensitivity

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

28

ccg Grammar 31

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
S/NP S/NP

S/NP
S

> T type-raising

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

29

ccg Grammar 32

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
S/NP

S

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

30

ccg Grammar 33

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<Φ>

S/NP
S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

31

ccg Grammar 34

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<Φ>

S/NP
>

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

32

ccg Grammar 35

Combinatory Categorial Grammar

• ccg is mildly context sensitive

• Natural language is provably non-context free
• Constructions in Dutch and Swiss German (Shieber, 1985) require

more than context free power for their analysis
• these have crossing dependencies (which ccg can handle)

Type 0 languages

Context sensitive languages

Context free languages

Regular languages

Mildly context sensitive languages =

natural languages (?)

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

33

CCG Semantics

• Categories encode argument sequences

• Parallel syntactic combinator operations
and lambda calculus semantic operations

!"

#$%&'()*+,)-&./0()/1

! 203()*+4$'&+50.)()*6

! 7(*+%(88&.&)-&+9&/5&&)+:/0/(:/(-0'+%(:0;9(*<0/($)+0)%+:/0/(:/(-0'+
.&0:$)()*=

! >(/4+3.$909('(:/(-+30.:&.:?+-0)+:01+/4()*:+'(@&+ABCD+9&'(&8+/40/+/4&+EE+
0//0-4&:+/$+/4&+FE=G

! H40/+;&0):+/40/+!"#$%$&' /4&+&)&;1+40:+)(*4/+I(:($)+*$**'&:=

! J$5&I&.?+1$<+-0)K/+/4.$5+0+'$*(-0'+0::&./($)+()/$+0+/4&$.&;+3.$I&.+
5(/4+BCD+-$)8(%&)-&=

! F$/+-'&0.+4<;0):+.&0''1+&L/.0-/+0)%+3.$-&::+'$*(-0'+:/0/&;&)/:+
:1;9$'(-0''1+0)1501=

! ,:&+/4(:+/$+%&-(%&+/4&+&L3&-/&%+</('(/1+$8+-0''()*+.&()8$.-&;&)/:M

! N)+:4$./?+5&+)&&%+3.$909('(:/(-+.&0:$)()*?+)$/+O<:/+3.$909('(:/(-+
%(:0;9(*<0/($)+8$''$5&%+91+:1;9$'(-+.&0:$)()*6

()*+,-#./+,%0+/)*+*1*2'+,#&34*",+04/)+145)/+5#55&*,6

PP2+E0.:()*

! P$;9()0/$.1+
P0/&*$.(0'+
2.0;;0.
! Q<''1+R;$)$ST+
'&L(-0'(U&%+
*.0;;0.

! P0/&*$.(&:+&)-$%&+
0.*<;&)/+
:&V<&)-&:

! W&.1+-'$:&'1+
.&'0/&%+/$+/4&+
'0;9%0+-0'-<'<:

! P0)+40I&+:3<.($<:+
0;9(*<(/(&:+R541MT

!"

#$%&'()*+,)-&./0()/1

! 203()*+4$'&+50.)()*6

! 7(*+%(88&.&)-&+9&/5&&)+:/0/(:/(-0'+%(:0;9(*<0/($)+0)%+:/0/(:/(-0'+
.&0:$)()*=

! >(/4+3.$909('(:/(-+30.:&.:?+-0)+:01+/4()*:+'(@&+ABCD+9&'(&8+/40/+/4&+EE+
0//0-4&:+/$+/4&+FE=G

! H40/+;&0):+/40/+!"#$%$&' /4&+&)&;1+40:+)(*4/+I(:($)+*$**'&:=

! J$5&I&.?+1$<+-0)K/+/4.$5+0+'$*(-0'+0::&./($)+()/$+0+/4&$.&;+3.$I&.+
5(/4+BCD+-$)8(%&)-&=

! F$/+-'&0.+4<;0):+.&0''1+&L/.0-/+0)%+3.$-&::+'$*(-0'+:/0/&;&)/:+
:1;9$'(-0''1+0)1501=

! ,:&+/4(:+/$+%&-(%&+/4&+&L3&-/&%+</('(/1+$8+-0''()*+.&()8$.-&;&)/:M

! N)+:4$./?+5&+)&&%+3.$909('(:/(-+.&0:$)()*?+)$/+O<:/+3.$909('(:/(-+
%(:0;9(*<0/($)+8$''$5&%+91+:1;9$'(-+.&0:$)()*6

()*+,-#./+,%0+/)*+*1*2'+,#&34*",+04/)+145)/+5#55&*,6

PP2+E0.:()*

! P$;9()0/$.1+
P0/&*$.(0'+
2.0;;0.
! Q<''1+R;$)$ST+
'&L(-0'(U&%+
*.0;;0.

! P0/&*$.(&:+&)-$%&+
0.*<;&)/+
:&V<&)-&:

! W&.1+-'$:&'1+
.&'0/&%+/$+/4&+
'0;9%0+-0'-<'<:

! P0)+40I&+:3<.($<:+
0;9(*<(/(&:+R541MT

34

CCG Semantics
Left arg. Right arg. Operation Result

X/Y : f Y : a Forward
application

X : f(a)

Y : a X\Y : f Backward
application

X : f(a)

X/Y : f Y/Z : g Forward
composition

X/Z : λx.f(g(x))

X : a Type raising T/(T\X) : λf.f(a)

etc.
35

Tree Adjoining
Grammar

36

TAG Building Blocks

TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

• Elementary trees (of many depths)

• Substitution at ↓

• Tree Substitution Grammar equivalent to
CFG

TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

37

TAG Building Blocks

• Auxiliary trees for adjunction

• Adds extra power beyond CFG
TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

38

Derivation Tree Derived Tree

α1

!!!!!!!!!!!!!

"""""""""""""

α2
Harry

β
passionately

α3
peanuts

S

!!!!!!!!!!

""""""""""

NP

Harry

VP1

!!!!!!!!!

"""""""""

VP2

!!!!!
"""""

V

likes

NP

peanuts

Adv

passionately

Semantics

Harry(x) ∧ likes(e, x, y) ∧ peanuts(y) ∧ passionately(e)

4

TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

39

WHY SUPERTAG?

 If lexical items have more description associated

with them, parsing is easier

 Only useful if the supertag space is not huge

 Straightforward to compile parse from accurate

supertagging

 But impossible if there are any supertag errors

 We can account for some supertag errors

 Don’t always want a full parse anyway

WHAT IS SUPERTAGGING?

 Systematic assignment of supertags

 Supertags are:

 Statistically selected

 Robust

 Tends to work

 Linguistically motivated

 This makes sense

WHAT IS SUPERTAGGING?

 Many supertags for each word

 Extended Domain of Locality

 Each lexical item has one supertag for every syntactic

environment it appears in

 Inspiration comes from LTAG, lexicalized tree-adjoining

grammars, in which all dependencies are localized.

 Generally, agreement features such as number and tense,

are not part of the supertag.

HOW TO SUPERTAG

“Alice opened her eyes and saw.”

 Supertags:

 Verb

 Transitive verb

 Intransitive verb

 Infinitive verb

 …

 Noun

 Noun phrase (subject)

 Nominal predicative

 Nominal modifier

 Nominal predicative subject extraction

 …

HOW TO SUPERTAG

“Alice opened her eyes and saw.”

 Supertags:

 Verb

 Transitive verb

 Intransitive verb

 Infinitive verb

 …

 Noun

 Noun phrase (subject)

 Nominal predicative

 Nominal modifier

 Nominal predicative subject extraction

 …

VP

NP↓sawNP↓

S

HOW TO SUPERTAG

 A supertag can be ruled out for a given word in a

given input string…

 Left and/or right context is too long/short for the

input

 If the supertag contains other terminals not found in

the input

HOW TO SUPERTAG

“Alice opened her eyes and saw.”

 Supertags:

 Verb

 Transitive verb

 Intransitive verb

 Infinitive verb

 …

 Noun

 Noun phrase (subject)

 Nominal predicative

 Nominal modifier

 Nominal predicative subject extraction

 …

…

to saw…

…

…

…

HOW TO SUPERTAG

 This works fairly well

 50% average reduction in number of possible

supertags

HOW TO SUPERTAG

 …but there’s more to be done

 Good: average number of possible supertags per word

reduced from 47 to 25

 Bad: average of 25 possible supertags per word

HOW TO SUPERTAG

 Disambiguation by unigrams?

 Give each word its most frequent supertag after PoS

tagging

 ~75% accurate

 Better results than one might expect given large number

of possible supertags

 Common words (determiners, etc.) usually correct

 This helps accuracy

 Back off to PoS for unknown words

 Also usually correct

HOW TO SUPERTAG

 Disambiguation by n-grams?

 We assume that subsequent words are independent

 Trigrams plus Good-Turing smoothing

 Accuracy around 90%

 Versus 75% from unigrams

 Contextual information more important than lexical

 Reversal of trend for PoS tagging

HOWEVER…

 Correctly supertagged text yields a 30X parsing

speedup

 But even one mistake can cause parsing to fail

completely

 This is rather likely

 Solution: n-best supertags?

 When n=3, we get up to 96% accuracy…

 Not bad at all for such a simple method

 425 lexical categories (PTB-CFG: ~50)

 12 combinatory rules (PTB-CFG: > 500,000)

