
CSC 2517: Discrete Mathematical Models
of Sentence Structure
Gerald Penn, PT 283A,
gpenn@cs.toronto.edu,
Tel: (416)978-7390

This class will meet during A&S reading week!

But we will not meet on Wednesday, 22nd March.

mailto:gpenn@cs.Toronto.edu

This is an advanced graduate seminar:
 I will assume that you are familiar with the material of CSC 2501,

although graduate seminars do not formally enforce prerequisites.

 No programming assignments, although your final paper may involve
some.

 Classes will hopefully be more interactive than normal lectures.

 You will do much of the presenting.

 If any of this doesn’t sound like what you signed up for, then you
probably belong in CSC 2511, Natural Language Computing, which
is also being offered this term.

CSC 2517: Discrete Mathematical Models
of Sentence Structure

This year, presentations will be of papers chosen from among the
following topics:

Algebraic Topology

Algebraic Invariance

Graphical/Algebraic Methods for Natural Language

Geometric Deep Learning

CSC 2517: Discrete Mathematical Models
of Sentence Structure

How I will compute your final mark for the class:
 30% your presentation(s) and participation in the seminar.

 70% a final paper, due on Friday, 28th April.

 Paper proposals are due on Tuesday, 14th March.

 Auditors are welcome, but they must present, just like everyone else.

 Group papers must be approved in advance. If I approve, everyone in the group will receive
the same mark.

 Your final paper must be on the subject of mathematical linguistics, broadly construed. It
needn’t be on one of the presentation topics.

 You may submit research you are conducting as part of your thesis or dissertation.

 This is a Methods Area 1 class. In terms of length and style, think of your final papers as MOL
or WoLLIC conference papers. Actually submitting to such a conference is encouraged but
not required.

CSC 2517: Discrete Mathematical Models
of Sentence Structure

Rules for presentations:
 Students will pick topics two weeks in advance of their presentation date.

 I reserve the right to reject papers on the grounds that they are:
 unsuitably difficult,

 unsuitably bad,

 insufficiently related to the topics of this seminar, or

 excessively devoted to material already covered.

Unless invited, you may not present your own research.

 I will also be offering pre-approved paper(s) to present.

CSC 2517: Discrete Mathematical Models
of Sentence Structure

More rules for presentations:
 The papers that we will be reading are highly technical. Expect your presentations

to be ≈1 hour long, or 1 hour of a 2-hour presentation that you will jointly give
with another student (for longer papers and collections of related papers).

 Your job as presenter is to teach the material. That not only includes the research
presented in the paper, but the background material necessary to understand it.
 Assume that no one has read the paper or understands what we have not discussed in

class yet.
 Your job as a non-presenter is to refute this assumption: read the paper, look up

the background you are missing and come to class with questions.
 Presenters must defend the work that they are presenting.

Think of these as opportunities not to present a conference paper, but to teach a
class – it’s good practice.

CSC 2517: Discrete Mathematical Models
of Sentence Structure

Combinatory
Categorial Grammar

15

16

parsers; generation
and information structure; automatic

• Account of syntax; semantics; prosody

founded (Steedman, 1996, 2000)
established and computationally well

• Combinator y Categorial Grammar now well

oldest grammar formalisms
• Categorial grammar (CG) is one of the

Combinator y Categorial Grammar (CCG)

• CCG is a lexicalized grammar

• An elementary syntactic structure – for CCG a lexical
category – is assigned to each word in a sentence

walked: S\NP “give me an NP to my left and I return a
sentence”

• A small number of rules define how categories can
combine

• Rules based on the combinators from Combinatory
Logic

Combinatory Categorial Grammar (CCG)

17

CCG Lexical Categories
• Atomic categories: S , N , NP , PP , . . . (not many more)

• Complex categories are built recursively from atomic categories
and slashes, which indicate the directions of arguments

• Complex categories encode subcategorisation information

• intransitive verb: S \NP walked

• transitive verb: (S \NP)/NP respected

• ditransitive verb: ((S \NP)/NP)/NP gave

• Complex categories can encode modification

• PP nominal: (NP \NP)/NP

• PP verbal: ((S \NP)\(S \NP))/NP

18

Simple CCG Derivationccg Grammar 21

A Simple ccg Derivation

interleukin − 10 inhibits production

NP (S\NP)/NP NP
>

S\NP
<

S

> forward application
< backward application

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

19

Function Application Schemata
ccg Grammar 22

Function Application Rule Schemata

• Forward (>) and backward (<) application:

X /Y Y ⇒ X (>)
Y X \Y ⇒ X (<)

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

20

Classical Categorial Grammar
ccg Grammar 23

Classical Categorial Grammar

• ‘Classical’ Categorial Grammar only has application rules

• Classical Categorial Grammar is context free

 interleukin-10 inhibits production

NP (S\NP)/NP NP

S\NP

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 200921

Classical Categorial Grammar
ccg Grammar 24

Classical Categorial Grammar

• ‘Classical’ Categorial Grammar only has application rules

• Classical Categorial Grammar is context free

 interleukin-10 inhibits production

NP V NP

VP

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 200922

ccg Grammar 25

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
NP S/(S\NP)

S/NP
NP\NP

NP

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

23

ccg Grammar 26

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

NP S/(S\NP)
S/NP

NP\NP
NP

> T type-raising

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

24

ccg Grammar 27

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

NP S/(S\NP)
>B

S/NP
NP\NP

NP

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

25

ccg Grammar 28

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T

S/(S\NP)
>B

S/NP
>

NP\NP
NP

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

26

ccg Grammar 29

Extraction out of a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
> >T

NP S/(S\NP)
>B

S/NP
>

NP\NP
<

NP

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

27

ccg Grammar 30

Forward Composition and Type-Raising

• Forward composition (>B):

X /Y Y /Z ⇒ X /Z (>B)

• Type-raising (T):

X ⇒ T/(T\X) (>T)
X ⇒ T\(T/X) (<T)

• Extra combinatory rules increase the weak generative power to
mild context -sensitivity

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

28

ccg Grammar 31

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
S/NP S/NP

S/NP
S

> T type-raising

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

29

ccg Grammar 32

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
S/NP

S

> T type-raising
> B forward composition

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

30

ccg Grammar 33

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<Φ>

S/NP
S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

31

ccg Grammar 34

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<Φ>

S/NP
>

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

32

ccg Grammar 35

Combinatory Categorial Grammar

• ccg is mildly context sensitive

• Natural language is provably non-context free
• Constructions in Dutch and Swiss German (Shieber, 1985) require

more than context free power for their analysis
• these have crossing dependencies (which ccg can handle)

Type 0 languages

Context sensitive languages

Context free languages

Regular languages

Mildly context sensitive languages =

natural languages (?)

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009

33

CCG Semantics

• Categories encode argument sequences

• Parallel syntactic combinator operations
and lambda calculus semantic operations

!"

#$%&'()*+,)-&./0()/1

! 203()*+4$'&+50.)()*6

! 7(*+%(88&.&)-&+9&/5&&)+:/0/(:/(-0'+%(:0;9(*<0/($)+0)%+:/0/(:/(-0'+
.&0:$)()*=

! >(/4+3.$909('(:/(-+30.:&.:?+-0)+:01+/4()*:+'(@&+ABCD+9&'(&8+/40/+/4&+EE+
0//0-4&:+/$+/4&+FE=G

! H40/+;&0):+/40/+!"#$%$&' /4&+&)&;1+40:+)(*4/+I(:($)+*$**'&:=

! J$5&I&.?+1$<+-0)K/+/4.$5+0+'$*(-0'+0::&./($)+()/$+0+/4&$.&;+3.$I&.+
5(/4+BCD+-$)8(%&)-&=

! F$/+-'&0.+4<;0):+.&0''1+&L/.0-/+0)%+3.$-&::+'$*(-0'+:/0/&;&)/:+
:1;9$'(-0''1+0)1501=

! ,:&+/4(:+/$+%&-(%&+/4&+&L3&-/&%+</('(/1+$8+-0''()*+.&()8$.-&;&)/:M

! N)+:4$./?+5&+)&&%+3.$909('(:/(-+.&0:$)()*?+)$/+O<:/+3.$909('(:/(-+
%(:0;9(*<0/($)+8$''$5&%+91+:1;9$'(-+.&0:$)()*6

()*+,-#./+,%0+/)*+*1*2'+,#&34*",+04/)+145)/+5#55&*,6

PP2+E0.:()*

! P$;9()0/$.1+
P0/&*$.(0'+
2.0;;0.
! Q<''1+R;$)$ST+
'&L(-0'(U&%+
*.0;;0.

! P0/&*$.(&:+&)-$%&+
0.*<;&)/+
:&V<&)-&:

! W&.1+-'$:&'1+
.&'0/&%+/$+/4&+
'0;9%0+-0'-<'<:

! P0)+40I&+:3<.($<:+
0;9(*<(/(&:+R541MT

!"

#$%&'()*+,)-&./0()/1

! 203()*+4$'&+50.)()*6

! 7(*+%(88&.&)-&+9&/5&&)+:/0/(:/(-0'+%(:0;9(*<0/($)+0)%+:/0/(:/(-0'+
.&0:$)()*=

! >(/4+3.$909('(:/(-+30.:&.:?+-0)+:01+/4()*:+'(@&+ABCD+9&'(&8+/40/+/4&+EE+
0//0-4&:+/$+/4&+FE=G

! H40/+;&0):+/40/+!"#$%$&' /4&+&)&;1+40:+)(*4/+I(:($)+*$**'&:=

! J$5&I&.?+1$<+-0)K/+/4.$5+0+'$*(-0'+0::&./($)+()/$+0+/4&$.&;+3.$I&.+
5(/4+BCD+-$)8(%&)-&=

! F$/+-'&0.+4<;0):+.&0''1+&L/.0-/+0)%+3.$-&::+'$*(-0'+:/0/&;&)/:+
:1;9$'(-0''1+0)1501=

! ,:&+/4(:+/$+%&-(%&+/4&+&L3&-/&%+</('(/1+$8+-0''()*+.&()8$.-&;&)/:M

! N)+:4$./?+5&+)&&%+3.$909('(:/(-+.&0:$)()*?+)$/+O<:/+3.$909('(:/(-+
%(:0;9(*<0/($)+8$''$5&%+91+:1;9$'(-+.&0:$)()*6

()*+,-#./+,%0+/)*+*1*2'+,#&34*",+04/)+145)/+5#55&*,6

PP2+E0.:()*

! P$;9()0/$.1+
P0/&*$.(0'+
2.0;;0.
! Q<''1+R;$)$ST+
'&L(-0'(U&%+
*.0;;0.

! P0/&*$.(&:+&)-$%&+
0.*<;&)/+
:&V<&)-&:

! W&.1+-'$:&'1+
.&'0/&%+/$+/4&+
'0;9%0+-0'-<'<:

! P0)+40I&+:3<.($<:+
0;9(*<(/(&:+R541MT

34

CCG Semantics
Left arg. Right arg. Operation Result

X/Y : f Y : a Forward
application

X : f(a)

Y : a X\Y : f Backward
application

X : f(a)

X/Y : f Y/Z : g Forward
composition

X/Z : λx.f(g(x))

X : a Type raising T/(T\X) : λf.f(a)

etc.
35

Tree Adjoining
Grammar

36

TAG Building Blocks

TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

• Elementary trees (of many depths)

• Substitution at ↓

• Tree Substitution Grammar equivalent to
CFG

TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

37

TAG Building Blocks

• Auxiliary trees for adjunction

• Adds extra power beyond CFG
TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

38

Derivation Tree Derived Tree

α1

!!!!!!!!!!!!!

"""""""""""""

α2
Harry

β
passionately

α3
peanuts

S

!!!!!!!!!!

""""""""""

NP

Harry

VP1

!!!!!!!!!

"""""""""

VP2

!!!!!
"""""

V

likes

NP

peanuts

Adv

passionately

Semantics

Harry(x) ∧ likes(e, x, y) ∧ peanuts(y) ∧ passionately(e)

4

TAG Building Blocks

Harry likes peanuts passionately.

α1 NP

Harry

α2 S

!!!!!

"""""

NP↓ VP
!!!!

""""

V

likes
NP↓

α3 NP

peanuts

β VP

!!!!!!

""""""

VP* Adv

passionately

3

39

WHY SUPERTAG?

 If lexical items have more description associated

with them, parsing is easier

 Only useful if the supertag space is not huge

 Straightforward to compile parse from accurate

supertagging

 But impossible if there are any supertag errors

 We can account for some supertag errors

 Don’t always want a full parse anyway

WHAT IS SUPERTAGGING?

 Systematic assignment of supertags

 Supertags are:

 Statistically selected

 Robust

 Tends to work

 Linguistically motivated

 This makes sense

WHAT IS SUPERTAGGING?

 Many supertags for each word

 Extended Domain of Locality

 Each lexical item has one supertag for every syntactic

environment it appears in

 Inspiration comes from LTAG, lexicalized tree-adjoining

grammars, in which all dependencies are localized.

 Generally, agreement features such as number and tense,

are not part of the supertag.

HOW TO SUPERTAG

“Alice opened her eyes and saw.”

 Supertags:

 Verb

 Transitive verb

 Intransitive verb

 Infinitive verb

 …

 Noun

 Noun phrase (subject)

 Nominal predicative

 Nominal modifier

 Nominal predicative subject extraction

 …

HOW TO SUPERTAG

“Alice opened her eyes and saw.”

 Supertags:

 Verb

 Transitive verb

 Intransitive verb

 Infinitive verb

 …

 Noun

 Noun phrase (subject)

 Nominal predicative

 Nominal modifier

 Nominal predicative subject extraction

 …

VP

NP↓sawNP↓

S

HOW TO SUPERTAG

 A supertag can be ruled out for a given word in a

given input string…

 Left and/or right context is too long/short for the

input

 If the supertag contains other terminals not found in

the input

HOW TO SUPERTAG

“Alice opened her eyes and saw.”

 Supertags:

 Verb

 Transitive verb

 Intransitive verb

 Infinitive verb

 …

 Noun

 Noun phrase (subject)

 Nominal predicative

 Nominal modifier

 Nominal predicative subject extraction

 …

…

to saw…

…

…

…

HOW TO SUPERTAG

 This works fairly well

 50% average reduction in number of possible

supertags

HOW TO SUPERTAG

 …but there’s more to be done

 Good: average number of possible supertags per word

reduced from 47 to 25

 Bad: average of 25 possible supertags per word

HOW TO SUPERTAG

 Disambiguation by unigrams?

 Give each word its most frequent supertag after PoS

tagging

 ~75% accurate

 Better results than one might expect given large number

of possible supertags

 Common words (determiners, etc.) usually correct

 This helps accuracy

 Back off to PoS for unknown words

 Also usually correct

HOW TO SUPERTAG

 Disambiguation by n-grams?

 We assume that subsequent words are independent

 Trigrams plus Good-Turing smoothing

 Accuracy around 90%

 Versus 75% from unigrams

 Contextual information more important than lexical

 Reversal of trend for PoS tagging

HOWEVER…

 Correctly supertagged text yields a 30X parsing

speedup

 But even one mistake can cause parsing to fail

completely

 This is rather likely

 Solution: n-best supertags?

 When n=3, we get up to 96% accuracy…

 Not bad at all for such a simple method

 425 lexical categories (PTB-CFG: ~50)

 12 combinatory rules (PTB-CFG: > 500,000)

