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Abstract

Graph Neural Networks (GNNs) are limited in their expressive power, struggle with
long-range interactions and lack a principled way to model higher-order structures.
These problems can be attributed to the strong coupling between the computational
graph and the input graph structure. The recently proposed Message Passing
Simplicial Networks naturally decouple these elements by performing message
passing on the clique complex of the graph. Nevertheless, these models can be
severely constrained by the rigid combinatorial structure of Simplicial Complexes
(SCs). In this work, we extend recent theoretical results on SCs to regular Cell
Complexes, topological objects that flexibly subsume SCs and graphs. We show
that this generalisation provides a powerful set of graph “lifting” transformations,
each leading to a unique hierarchical message passing procedure. The resulting
methods, which we collectively call CW Networks (CWNs), are strictly more
powerful than the WL test and not less powerful than the 3-WL test. In particular,
we demonstrate the effectiveness of one such scheme, based on rings, when applied
to molecular graph problems. The proposed architecture benefits from provably
larger expressivity than commonly used GNNs, principled modelling of higher-
order signals and from compressing the distances between nodes. We demonstrate
that our model achieves state-of-the-art results on a variety of molecular datasets.

1 Introduction

The operations performed by message passing Graph Neural Networks (GNNs) emulate the structure
of the input graph. While this property has clear computational advantages, it brings with it a series of
fundamental limitations. As observed by Xu et al. [74] and Morris et al. [55] the local neighbourhood
aggregations used by GNNs are at most as powerful as the Weisfeiler-Lehman (WL) test [71] in
distinguishing non-isomorphic graphs. Therefore, GNNs fail to detect certain higer-order meso-scale
structures such as cliques or (induced) cycles [2, 15], which are particularly important in applications
dealing with social and biological networks or molecular graphs. At the same time, many such layers
have to be stacked to make long-range interactions in the graph possible. Besides the computational
burden this incurs, deep GNNs typically come with additional problems such as over-smoothing [51]
and over-squashing [1] of the node representations.
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To address these problems, we propose a novel message passing procedure based on (regular)
cell complexes, also known as CW complexes2, topological objects that form the building block
of algebraic topology [38]. When paired with a theoretically-justified “lifting” transformation
augmenting the graph with higher-dimensional constructs called “cells”, our method results in a
multi-dimensional and hierarchical message passing procedure over the input graph. Our approach
generalises and subsumes the recently proposed Message Passing Simplicial Networks (MPSNs) [8],
which operate on simplicial complexes (SCs), topological generalisations of graphs. However, SCs
have a rigid combinatorial structure that significantly limits the range of lifting transformations one
could use to meaningfully modulate the message passing procedure. In contrast, we show that cell
complexes, which in turn generalise simplicial complexes and come with additional flexibility, allow
one to construct new and better ways of decoupling the input and computational graphs.

Main Contributions To summarise, we propose a message passing scheme operating on regular
cell complexes. We call this family of models CW Networks (CWNs) and study their expressive power
using a cellular version of the WL test. We show that for an entire class of “lifting” transformations
CWNs are at least as powerful as the WL test. Furthermore, we prove that for some of the maps in this
class, CWNs can be strictly more powerful than WL, Simplicial WL (SWL) and also not less powerful
than 3-WL. We also express the fundamental symmetries of these models and show how they can be
seen as generalised convolutional operators on cell complexes. Experimentally, we focus our attention
on a particular “lifting” map based on induced cycles. When applied to molecular graphs, it leads to
an intuitive hierarchical message passing procedure involving the atoms, the bonds between them and
the chemical rings of the molecules. We demonstrate that this provably powerful approach obtains
state-of-the-art results on popular large-scale molecular graph datasets and other related tasks. To the
best of our knowledge, this is the first work proposing a cell complex representation for molecules.
Our code is available at https://github.com/twitter-research/cwn.

2 Background

Definition 1 (Hansen and Ghrist [36]). A regular cell complex (Figure 1) is a topological space X
together with a partition {Xσ}σ∈PX of subspaces Xσ of X called cells, and such that

1. For each x ∈ X there exists an open neighbordhood of x that intersects finitely many cells.
2. For all σ, τ we have that Xτ ∩Xσ 6= ∅ iff Xτ ⊆ Xσ , where Xσ is the closure of a cell.
3. Every cell is homeomorphic to Rn for some n.
4. (Regularity) For every σ ∈ PX there is a homeomorphism φ of a closed ball in Rnσ to Xσ such

that the restriction of φ to the interior of the ball is a homeomorphism onto Xσ .

Figure 1: A cell complexX and the
corresponding homeomorphisms to
the closed balls for three cells of dif-
ferent dimensions in the complex.

We note that by condition (2) the indexing set PX has a poset
structure τ ≤ σ ⇔ Xτ ⊆ Xσ, while condition (4) guarantees
that this poset structure encodes all the topological information
about X . Thus, we can identify a regular cell complex X with
this poset, called face poset of X . We also use τ < σ for the
strict version of this partial order.

Intuitively, one constructs a cell complex through a hierarchical
gluing procedure. One starts with a set of vertices (0-cells).
Then edges (1-cells) are attached to these by gluing the end-
points of closed line segments to them. We have now only
described a (multi) graph. However, one can generalise this
even further by taking a two-dimensional closed disk and glue
its boundary (i.e. a circle) to any simple cycle in the (multi)
graph previously built as in Figure 2. While we are generally
not concerned with dimensions above two, this can be further
generalised by gluing the boundary of n-dimensional balls to certain (n− 1)−cells in the complex.

Consider the examples in Figure 3. The shown sphere is a cell complex obtained from two 0-cells
(i.e. vertices), to which two 1-cells (i.e. edges), which form the equator, were attached. The boundary

2We use these terms interchangeably. For the latter, the C stands for “closure-finite”, and the W for “weak”
topology. The term was coined by Whitehead [72].
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Figure 2: Closed two-dimensional disks are glued to the bound-
ary of the rings present in the graph (left). The result is a 2D
regular cell complex (right).

Figure 3: A sphere and an empty
tetrahedron. The latter is also a
simplicial complex.

of two 2-dimensional disks (i.e. the two hemispheres) were glued to the equator to form a sphere.
The second example is a tetrahedron with empty interior. It is a particular type of cell complex
called a simplicial complex (SC). The only 2-cells it allows are triangle-shaped. More generally, the
n-dimensional cells of SCs are n-simplices, which makes them slightly more rigid structures.

Definition 2. The k-skeleton of a cell complex X , denoted X(k), is the subcomplex of X consisting
of cells of dimension at most k.

This definition is useful for referring for certain parts of the complex. For instance, X(0) contains the
vertices in the complex, while X(1) contains the vertices and the edges (i.e. the underlying graph).

The combinatorial structure of the complex can be more compactly described by an incidence relation
we call the boundary relation, whose reflexive and transitive closure gives the partial order defined
above. The boundary relation describes what cells are on the boundary of other cells. For instance,
the edges of the sphere in Figure 3 are on the boundary of the 2-cells forming the two hemispheres.

Definition 3. We have the boundary relation σ ≺ τ iff σ < τ and there is no cell δ such that
σ < δ < τ .

We can use this to define the four types of (local) adjacencies present in cell complexes. These
adjacencies will be the fundamental building block of our message passing procedure. To explain
these in more familiar terms, for each adjacency, we exemplify how it shows up in graphs.

Definition 4 (Cell complex adjacencies). For a cell complex X and a cell σ ∈ PX , we define:

1. The boundary adjacent cells B(σ) = {τ | τ ≺ σ}. These are the lower-dimensional cells on the
boundary of σ. For instance, the boundary cells of an edge are its vertices.

2. The co-boundary adjacent cell C(σ) = {τ | σ ≺ τ}. These are the higher-dimensional cells with
σ on their boundary. For instance, the co-boundary cells of a vertex are the edges it is part of.

3. The lower adjacent cells N↓(σ) = {τ | ∃δ such that δ ≺ σ and δ ≺ τ}. These are the cells of
the same dimension as σ that share a lower dimensional cell on their boundary. The line graph
adjacencies between the edges are a classic example of this.

4. The upper adjacent cells N↑(σ) = {τ | ∃δ such that σ ≺ δ and τ ≺ δ}. These are the cells of
the same dimension as σ that are on the boundary of the same higher-dimensional cell as σ. The
typical graph adjacencies between vertices are the canonical example here.

3 Cellular Weisfeiler Lehman

Overview The results in this section show how one can transform graphs into higher-dimensional
cell complexes in such a way that performing colour refinement on the resulting cell complexes makes
it easier to test their isomorphism. The message passing model from Section 4 will take advantage of
these theoretical results. All proofs can be found in Appendix A.

Definition 5. Let c be a colouring of the cells in a complex X with cσ denoting the colour assigned
to cell σ ∈ PX . Define B(σ, τ) := B(σ)∩B(τ) and C(σ, τ) := C(σ)∩C(τ). We define the following
multi-sets of colours:

1. The colours of the boundary cells of σ: cB(σ) = {{cτ | τ ∈ B(σ)}}.
2. The colours of the co-boundary cells of σ: cC(σ) = {{cτ | τ ∈ C(σ)}}.
3. The lower adjacent colours of σ: c↓(σ) = {{(cτ , cδ) | τ ∈ N↓(σ) and δ ∈ B(σ, τ)}}.
4. The upper adjacent colours of σ: c↑(σ) = {{(cτ , cδ) | τ ∈ N↑(σ) and δ ∈ C(σ, τ)}}.

3



Figure 4: The CWL colouring procedure for the yellow edge of the cell complex. All cells have
been assigned unique colours to aid the visualisation of the adjacencies. Note that the yellow edge
aggregates long-range information from the light green edge.

Note that unlike in graphs and simplicial complexes, the sets B(σ, τ) and C(σ, τ) can have more
than one element. For instance, two (closed) 2-cells might intersect in more than one edge (e.g. the
two hemispheres in Figure 3), and conversely, two edges might be on the boundary of the same two
2-cells. This illustrates the more flexible combinatorial structure of cell complexes.

Cellular WL (CWL) We consider CWL, a colour refinement scheme for cell complexes that
generalises the Simplicial WL [8] and WL [71] tests. We use ctσ to refer to the colour assigned by
CWL to cell σ at iteration t of the algorithm. When the input is a simplicial complex, this recovers
the SWL algorithm. A step of the algorithm is graphically depicted in Figure 4 for a single cell.

1. Given a regular cell complex X , all the cells σ are initialised with the same colour.
2. Given the colour ctσ of cell σ at iteration t, we compute the colour of cell σ at the next iteration
ct+1
σ by injectively mapping the multi-sets of colours belonging to the adjacent cells of σ using a

perfect HASH function: ct+1
σ = HASH

(
ctσ, c

t
B(σ), ctC(σ), ct↓(σ), ct↑(σ)

)
.

3. The algorithm stops when a stable colouring is reached. Two cell complexes are considered
non-isomorphic if their colour histograms are different. Otherwise, the test is inconclusive.

First, we state the following theorem from Bodnar et al. [8] involving SWL and simplicial complexes.
This theorem shows that on simplicial complexes, certain adjacencies can be pruned without affecting
the non-isomorphic SCs that can be distinguished. This has important computational implications.
Theorem 6. SWL without coboundary and lower-adjacencies has the same expressive power in
distinguishing non-isomorphic simplicial complexes as SWL with the complete set of adjacencies.

It is not immediately clear whether an equivalent theorem would also hold for cell complexes. This
is because cells, unlike simplices, can have widely different shapes and, as described above, the
adjacencies between them take more complicated forms. Nevertheless, we show that a positive result
can be obtained.
Theorem 7. CWL without coboundary and lower-adjacencies has the same expressive power in
distinguishing non-isomorphic cell complexes as CWL with the complete set of adjacencies.

We note this does not mean that the removed adjacencies are completely redundant in practice. Even
if they are not needed from a (theoretical) colour refinment perspective, they might still include
important inductive biases that make them suitable for certain tasks.

We are now interested in examining various procedures for mapping, or “lifting”, graphs into the
space of regular cell complexes. Such a procedure can be used to test the isomorphism of two graphs
by performing colour refinement on the cell complexes they are mapped to. The hope is that CWL
applied to these cell complexes is more powerful than WL applied to the initial graphs. We will later
show that for a wide range of transformations, this is indeed the case. We start by rigorously defining
what we mean by a “lifting”.
Definition 8. A cellular lifting map is a function f : G → X from the space of graphs G to the
space of regular cell complexes X with the property that two graphs G1, G2 are isomorphic iff the
cell complexes f(G1), f(G2) are isomorphic.

This property ensures that testing the isomorphism of the two cell complexes is equivalent to testing
the isomorphism in the input graphs. This would not be the case if two non-isomoprhic graphs were
mapped to the same cell complex.
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Example 9. It can be verified that the function mapping each graph to its clique complex (i.e. every
(k + 1)-clique in the graph becomes a k-simplex) is a cellular lifting map.

The clique complex lifting map from Example 9 has been used by Bodnar et al. [8] to show that SWL
is strictly more powerful than WL. We restate this result:
Theorem 10. SWL with clique complex lifting is strictly more powerful than WL.

A natural question is what other lifting transformations make CWL strictly more powerful than WL?
We first describe a space of lifting transformations that make CWL at least as powerful as WL.
Definition 11. A lifting map is skeleton-preserving if for any graph G, the 1-skeleton of f(G) and
G are isomorphic as (multi) graphs.

Intuitively, skeleton-preserving liftings ensure that the additional structure added by the lifting map
comes from attaching cells of dimension at least two to the graph. These mappings keep the 0-cells
and 1-cells intact and are, therefore, restricted from making modifications to the input graph structure.
An important remark is that for simplicial complexes, attaching simplices based on cliques present
in the graph is the only possible skeleton preserving transformation. Once again, this illustrates the
limitations of simplicial complexes for adding useful higher-dimensional structures to the graph.
Example 12. The function from Example 9 is also skeleton-preserving because the 1-skeleton of the
clique complex of a graph is trivially isomorphic to the graph. A lifting function mapping each graph
to a multi-graph where each edge is doubled by a parallel edge is not skeleton-preserving (Figure 5).

Figure 5: A graph, its clique com-
plex and the graph with duplicated
edges. The first map is skeleton-
preserving, while the second is not.

We now show that all the maps in the skeleton-preserving class
have the following desirable property:
Theorem 13. Let f be a skeleton-preserving lifting map. Then
CWL(f ) (i.e. CWL using lifting f ) is at least as powerful as
WL in distinguishing non-isomorphic graphs.

To prove that some of these make CWL strictly more powerful
than WL, it is sufficient to find a pair of graphs that cannot be
distinguished by WL, but can be distinguished by CWL. The
following result gives examples of such maps.
Definition 14. Let k-CL, k-IC, k-C be the lifting maps attaching cells to all the cliques, induced
cycles and simple cycles, respectively, of size at most k.
Corollary 15. For all k ≥ 3, CWL(k-CL), CWL(k-IC) and CWL(k-C) are strictly more powerful
than WL.

We note that this is not a complete list. For instance, the result can also be extended to combinations
of the above or other transformations. We can also relate CWL to the higher-order 3-WL test.
Theorem 16. There exists a pair of graphs indistinguishable by 3-WL but distinguishable by CWL(k-
CL) with k ≥ 4, CWL(k-IC) with k ≥ 4 and CWL(k-C) with k ≥ 8.

Finally, we conclude this section by showing how CWL can achieve a superior expressive power
compared to SWL. This result is proven by Corollary 31 in the Appendix.
Theorem 17. Let k-CL ∪ k-IC and k-CL ∪ k-C denote combined liftings attaching cells to the
union of the specified substructures. CWL(k1-CL ∪ k2-IC) and CWL(k1-CL ∪ k2-C) are strictly
more powerful than SWL(k1-CL) for all k2 ≥ 5.

4 Molecular Message Passing with CW Networks

We now describe CW Networks with an applied focus on molecular graphs to ground the discussion.
Therefore, from now on we assume the use of the skeleton-preserving lifting transformation that
attaches 2-cells to all the induced cycles (i.e. chordless cycles) in the graph as in Figure 2. This
leads to a message passing procedure involving atoms (vertices / 0-cells), the bonds between atoms
(edges / 1-cells) and chemical rings (induced cycles / 2-cells). Additionally, in virtue of Theorem
7, we consider only the boundary and upper adjacencies between these cells without sacrificing the
expressive power. The equations for the other adjacencies, which we do not use, can be found in
Appendix A. We note however, that the theoretical results in this section are general and not particular
to these specific choices of adjacencies and lifting transformation.
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Molecular Message Passing The cells in our CW Network receive two types of messages:

mt+1
B (σ) = AGGτ∈B(σ)

(
MB
(
htσ, h

t
τ

))
mt+1
↑ (σ) = AGGτ∈N↑(σ),δ∈C(σ,τ)

(
M↑
(
htσ, h

t
τ , h

t
δ

))
.

The first specifies messages from atoms to bonds and from bonds to rings. The second type of
message, specifies messages between atoms connected by a bond and messages between bonds
that are part of the same ring (Figure 6). Note that for the second type of adjacency, when two
atoms communicate, we include the features of the bond between them. Similarly, when two bonds
communicate, we include the features of the ring they communicate through. The update operation
takes into account these two types of incoming messages and updates the features of the cells:

ht+1
σ = U

(
htσ,m

t
B(σ),mt+1

↑ (σ)
)
. (1)

To obtain a global embedding for a cell complex X from a model with L layers, the readout function
takes as input the separate multi-sets of features corresponding to the atoms, bonds and the rings:

hX = READOUT({{hLσ}}dim(σ)=0, {{hLσ}}dim(σ)=1, {{hLσ}}dim(σ)=2). (2)

Figure 6: Hierarchi-
cal depiction of the
message passing pro-
cedure. Orange ar-
rows indicate bound-
ary messages received
by cells σ and τ , while
blue ones show upper
messages received by
cells τ and δ.

Expressivity Naturally, the ability of CWNs to distinguish non-isomorphic
regular cell complexes is bounded by CWL. Similarly to GNNs and WL,
CWNs can also be shown to be as powerful as CWL as long as they are
equipped with a sufficient number of layers and the parametric local aggre-
gators they use can learn to be injective. Multiple such multi-set aggregators
[20, 74] are known to exist and can be directly employed in our model.
Theorem 18. CW Networks are at most as powerful as CWL. Additionally,
when using injective neighbourhood aggregators and a sufficient number of
layers, CWNs are as powerful as CWL.

Corollary 15 states that CWL is strictly more powerful than the standard
WL when the lifting procedure attaches 2-cells to induced cycles of size
k ≥ 3. As a consequence of Theorem 18, this result also holds for molecular
message passing CWNs equipped with injective aggregators. In practice, k
is to be considered as a standard hyperparameter, and its choice can either be
driven by validation set performance, or by domain knowledge (if available).

Symmetries Given a graph G with adjacency matrix A and feature ma-
trix X , a function f is (node) permutation equivariant if P f(A,X) =
f(PAP T ,PX), for any permutation matrix P . GNN layers respect this
equation, which ensures they compute the same functions up to a permutation
(i.e. relabeling) of the nodes. Similarly, it can be shown that CW Networks
are equivariant with respect to permutations of the cells and corresponding
permutations of the boundary relations σ ≺ τ between cells. We define this
notion of equivariance more formally in Appendix C.
Theorem 19. CW Network layers are cell permutation equivariant.

Long-Range Interactions Several graph-related tasks require the ability to capture long-range
interactions between nodes. For instance, certain molecular properties depend on atoms placed on the
opposite sides of a ring [31, 60]. As a consequence of the coupling between the input and computa-
tional graphs, L message passing operations are necessary in GNNs to let a node receive information
from an L-hops distant node. In contrast, our hierarchical message passing scheme requires at most
L layers since 2-cells create shortcuts. For example, a constant number of CWN layers (3) is enough
to capture dependencies between atoms on the opposite sides of a ring, independently of the ring size.
In Section 5.1 we verify this in a controlled scenario. Additional experiments on real world graphs in
Section 5.2 confirm that it can achieve state-of-the-art performance with a limited number of layers.

Anisotropic Filters Due to the lack of a canonical ordering between neighbours, many common
GNNs use symmetric convolutional kernels, resulting in isotropic filters treating neighbours equally.
Recent works have proposed to address this limitation by employing additional structural informa-
tion [6, 10]. CWNs also implicitly achieve this form of anisotropy by integrating information from
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for large rings despite using only three layers.
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better (mean and std-error over 5 runs). In parantheses, for
each model, the maximum size k of rings lifted to 2-cells.

Figure 7: Results on the RingTransfer and SR synthetic benchmarks.

the higher-order cells and their associated substructures into the message passing procedure. For
instance, bond features can learn to encode their membership to a ring and also communicate directly
with other bonds present in the ring. Consequently, the messages between atoms connected through
these bonds are modulated by the presence of the ring as well as by the presence of other nodes and
bonds part of that ring.

CWNs as Generalised Convolutions Our message passing scheme can be seen a (non-linear)
generalisation of linear diffusion operators on cell complexes. Recent works [13, 25] have introduced
convolutional operators on SCs by employing the Hodge Laplacian [63], a generalisation of the graph
Laplacian. By leveraging on the cellular Sheaf Laplacian [36], a similar construction can be extended
to cell complexes to define cellular convolutional operators. In Appendix D we discuss this approach
and show that our cellular message passing scheme subsumes it. This represents a promising avenue
for studying CWNs from a spectral perspective, an endeavour we leave for future work.

Computational Complexity When considering cells of a constant maximum dimension and bound-
ary size, the computational complexity of the message passing scheme is linear in the size of the
input complex. For the molecular applications we are interested in, the average number of rings per
molecule is upper bounded by a small constant (e.g. three for MOLHIV), so the size of the complex
is approximately the same as the size of the graph. Therefore, in this setting, the computational
complexity of the model is similar to that of message passing GNNs. Separately of this, the one-time
preprocessing step of computing the lifting of the graphs should also be considered. The C induced
cycles in a graph can be listed in O

(
(|E| + |V |C) polylog |V |

)
time [26]. Again, given that C is

upper bounded by a small constant for the molecular datasets of interest in this work, the complexity
of the lifting procedure is also almost linear in the size of the graph. A more detailed analysis backed
up by wall-clock time experiments is given in Appendix B.

5 Experiments

In this section we validate the theoretical and empirical properties of our proposed message passing
scheme in controlled scenarios as well as in real-world graph classification problems, with a focus on
large scale molecular benchmarks. For simplicity, in all experiments we employ a model which stacks
CWN layers with local aggregators as in GIN [74]. We name our architecture “Cell Isomorphism
Network” (CIN). 0-cells are always endowed with the original node features; higher-dimensional cells
are populated in a benchmark specific manner. See Appendix E for details on feature initialisation,
message passing and readout operations, hyperparameters, implementation and benchmark statistics.
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5.1 Synthetic Benchmarks

CSL Circular Skip Link dataset was first introduced in [57] and has been recently adopted as a
reference benchmark to test the expressivity of GNNs [24]. It consists of 150 4-regular graphs from
10 different isomorphism classes, which we need to predict. Unsolvable by the WL test and message
passing approaches [14, 57], we use it to validate the expressive power of CWNs.

Table 1: Classification accuracy on CSL.

Method Mean Min Max

MP-GNNs 10.000±0.000 10.000 10.000
RingGNN 10.000±0.000 10.000 10.000
3WLGNN 97.800±10.916 30.000 100.000

CIN (Ours) 100.000±0.000 100.000 100.000

We follow the same evaluation setting as Dwivedi et al.
[24]: 5-fold cross validation procedure and 20 different
random weight initialisations. For our model, we set
the maximum ring size k = 8. In Table 1 we follow the
common practice on this dataset and report the mean,
minimum and maximum test accuracy obtained by CIN
over the 100 runs, along with the results by the baselines

presented in Dwivedi et al. [24]. MP-GNNs, that is classic message passing GNNs (GAT [69],
MoNet [54], GIN [74], etc.), and RingGNN [14] perform as random guessers. In contrast, our model
is able to identify the isomorphism class of each test graph in every run while featuring only a fraction
of the computational complexity of 3WLGNN, the best performing reference baseline [24, 53].

SR Similarly to Bodnar et al. [8] and [10], we consider Strongly Regular graphs within the same
family as hard examples of non-isomorphic graphs we seek to distinguish. Any pair of graphs within
the same family cannot provably be distinguished by 3-WL test [8, 10]. We reproduce the same
experimental setting of Bodnar et al. [8]. In particular, we consider 9 distinct SR families3 and run
our model untrained on the cell complex lifting of each graph, with k = 4, 5, 6. 0-cells (nodes)
are initialised with a constant unitary signal, while 1- and 2-cells are initialised with the sum of
the contained 0-cells. We additionally run an MLP baseline with sum readout to appreciate the
contribution of message passing. We report the percentage of non-distinguished pairs in Figure 7b.
Contrary to 3-WL, both CIN and the MLP baseline are able to distinguish many pairs across all
families, with better performance attained for larger k. For k = 6, we observed CIN to disambiguate
all pairs in all families (0.0% failure rate). Despite the strong results achieved by the baseline, we
found CIN to always distinguish a larger number of non-isomorphic pairs for the same values of k,
this confirming the importance of cellular message passing.

RingTransfer In order to empirically validate the ability of CIN to capture long-range node
dependencies, we additionally design a third synthetic benchmark dubbed as ‘RingTransfer’. Graphs
in this dataset are chordless cycles (rings) of size k. In each graph we mark two special nodes
as target and source, always placed at distance bk2 c. The task is for target to output the one-hot
encoded label assigned to source. All other nodes in the ring are assigned a unitary constant feature
vector. A model has to learn to transfer the information contained in source to the opposite side
of the ring, where target resides. We initialise 1- and 2-dimensional cells with a null signal. In
Figure 7a we show the performance of a 3-layer CIN as a function of the ring size k, along with that
of GIN [74] baselines equipped with bk2 c stacked layers. We observe that our model learns to solve
the task with only 3 computational steps, independent of k. As for GIN, we observed degradation in
the performance for k ≥ 24, up to complete failure. We hypothesise this to be due to the difficulties
of training such a deep GNN (≥ 12 layers). We further verify the (theoretically expected) failure of
GIN (not included) when endowed with less than bk2 c layers.

5.2 Real-World Graph Benchmarks

TUD We test our model on 8 TUDataset benchmarks [56] with small and medium sizes from
biology (PROTEINS [9, 23]), chemistry (i.e. molecules – MUTAG [45, 61], PTC, NCI1 and
NCI109 [70]) to social networks (IMDB-B, IMDB-M, RDT-B). We consider induced cycle of size
up to k = 6 for our graph lifting procedure. We initialise node (and 0-cell) features as described
in Xu et al. [74], and higher dimensional cells by averaging or summing the features of the included
0-cells. The training setting and evaluation procedure follow those in Xu et al. [74]. We report the
results in Table 2. CIN compares more than favourably with the baselines, displaying strong empirical
performance on all benchmarks. The mean accuracy of CIN ranks top on four out of eight datasets.

3Data available at: http://users.cecs.anu.edu.au/~bdm/data/graphs.html.
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Table 2: TUDatasets. The first section of the table includes the accuracy of graph kernel methods,
while the second includes GNNs. The top three are highlighted by First, Second, Third.

Dataset MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M RDT-B

RWK [29] 79.2±2.1 55.9±0.3 59.6±0.1 >3 days N/A N/A N/A N/A
GK (k = 3) [64] 81.4±1.7 55.7±0.5 71.4±0.3 62.5±0.3 62.4±0.3 N/A N/A N/A
PK [58] 76.0±2.7 59.5±2.4 73.7±0.7 82.5±0.5 N/A N/A N/A N/A
WL kernel [65] 90.4±5.7 59.9±4.3 75.0±3.1 86.0±1.8 N/A 73.8±3.9 50.9±3.8 81.0±3.1

DCNN [3] N/A N/A 61.3±1.6 56.6±1.0 N/A 49.1±1.4 33.5±1.4 N/A
DGCNN [76] 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 N/A 70.0±0.9 47.8±0.9 N/A
IGN [52] 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 72.8±1.5 72.0±5.5 48.7±3.4 N/A
GIN [74] 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 N/A 75.1±5.1 52.3±2.8 92.4±2.5
PPGNs [53] 90.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 82.2±1.4 73.0±5.8 50.5±3.6 N/A
Natural GN [21] 89.4±1.6 66.8±1.7 71.7±1.0 82.4±1.3 N/A 73.5±2.0 51.3±1.5 N/A
GSN [10] 92.2 ± 7.5 68.2 ± 7.2 76.6 ± 5.0 83.5 ± 2.0 N/A 77.8 ± 3.3 54.3 ± 3.3 N/A
SIN [8] N/A N/A 76.4 ± 3.3 82.7 ± 2.1 N/A 75.6 ± 3.2 52.4 ± 2.9 92.2 ± 1.0

CIN (Ours) 92.7 ± 6.1 68.2 ± 5.6 77.0 ± 4.3 83.6 ± 1.4 84.0 ± 1.6 75.6 ± 3.7 52.7 ± 3.1 92.4 ± 2.1

Table 3: ZINC (MAE), ZINC-FULL (MAE) and Mol-HIV (ROC-AUC).

Method ZINC ↓ ZINC-FULL ↓ MOLHIV ↑
No Edge Feat. With Edge Feat. All methods All methods

GCN [47] 0.469±0.002 N/A N/A 76.06±0.97
GAT [69] 0.463±0.002 N/A N/A N/A
GatedGCN [11] 0.422±0.006 0.363±0.009 N/A N/A
GIN [74] 0.408±0.008 0.252±0.014 0.088±0.002 77.07±1.49
PNA [20] 0.320±0.032 0.188±0.004 N/A 79.05±1.32
DGN [6] 0.219±0.010 0.168±0.003 N/A 79.70±0.97
HIMP [27] N/A 0.151±0.006 0.036±0.002 78.80±0.82
GSN [10] 0.139±0.007 0.108±0.018 N/A 77.99±1.00

CIN-small (Ours) 0.139±0.008 0.094±0.004 0.044±0.003 80.55±1.04
CIN (Ours) 0.115±0.003 0.079±0.006 0.022±0.002 80.94±0.57

On the remaining datasets, CIN achieves the second place. We observe that the best results are on
datasets from the biological and chemical domains, where rings play a relevant role.

ZINC We study the effectiveness of cellular message passing on larger scale molecular benchmarks
from the ZINC database [68]. ZINC (12k graphs) and ZINC-FULL (250k graphs) [24, 33, 43, 75]
are two graph regression task datasets for drug constrained solubility prediction. In these experiments,
we consider rings up to size k = 18. We follow the training and evaluation procedures in [24]. Our
experiments encompass different scenarios, examine the impact of ablating edge features and of
constraining the parameter budget of the architecture to 100k. All results are illustrated in Table 3
where we also include the results for ZINC-FULL obtained by the same exact architectures. Our
model exhibits particularly strong performance on these benchmarks: it attains state-of-the-art results
on both the two dataset variants, outperforming other models by a significant margin. CIN attains
strong results even when constrained by the parameter budget. It still achieves state-of-the-art
performance on ZINC and is on-par with the best unconstrained baseline under edge-feature ablation.

Mol-HIV We additionally test our model on the molecular ogbg-molhiv dataset from the Open
Graph Benchmark [40] (41k graphs). The task is to predict the capacity of compounds to inhibit HIV
replication. Rings of size up to k = 6 are considered as 2-cells. We take the architecture in [27] as
reference and replicate the same hyperparameter setting in our model, including the use of only 2
message passing layers. We report the mean of test ROC-AUC metrics at the epoch of best validation
performance for 10 random weight initialisations. Similarly to ZINC, we experiment with a “small”
model whose number of parameters is constrained in the order of 100k. Table 3 displays the results.
CIN significantly outperforms other strong GNN baselines, even when constrained by the parameter
budget. Consistently with [27], we observe that only two layers are sufficient when performing
hierarchical message passing across meso-scale structures such as rings.
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6 Related Work, Discussion and Conclusion

Cell complex models Recent works have proposed the generalisation of GNNs to simplicial
complexes [13, 25, 32, 35]. All these simplicial methods are subsumed by the model in Bodnar
et al. [8], which CWNs in turn subsume. To the best of our knowledge, Hajij et al. [34] is the only
other example of message passing on cell complexes, but this work does not study the expressive
power of the proposed scheme, neither it experimentally validates its performance. In contrast, our
work comprehensively characterises the expressiveness of cellular message passing, and introduces a
theoretically grounded and empirically effective framework to apply it on graph structured data in a
way to address several limitations of standard Graph Neural Networks.

Molecular substructures A few other works have extended GNNs to account for molecular
substructures. Junction Trees (JT), which conveniently represent singletons, bonds and rings as
supernodes in a tree, have been used in molecular graph generation [43, 44]. JTs are also used in the
recent work of Fey et al. [27], who employs them to design a hierarchical message passing scheme
based on the tree structure. However, this hierarchy has a different configuration than the one cell
complexes provide. Information about cycles is also used in GSNs [10] to augment the node features,
but the model retains the usual message passing procedure of GNNs. These last two models are of
particular relevance to the present work, since they utilise information about chemical rings. It is
important to remark that CWNs compare favourably with both of them in all our benchmarks.

Higher-order GNNs A related line of work has studied lifting graphs into k-dimensional tensor
representations that can be processed by provably expressive k-GNNs [4, 52, 53]. With higher values
of k, these models achieve higher-expressivity, but due to the computational complexity this incurs,
values of k ≥ 3 are of little use in practice. Therefore, unlike CWNs, these models cannot explicitly
represent in practice chemical rings of common sizes (e.g. five or six). Furthermore, by being
upper-bounded by 3-WL, the 2-GNN models cannot count the number of induced cycles of size
greater than four (see Appendix A for details). In contrast, CWNs can easily count these important
chemical substructures through the readout operation it performs on the 2-cells.

Limitations The main limitations of the model are of computational nature. While the compu-
tational complexity of the message passing procedure and its preprocessing step is suitable for
molecular and geometric graphs, the number of rings (and more generally simple cycles) in general
graphs can be exponential in the number of nodes. In that case, one has to resort to smaller 2-cells like
triangles, which can be found efficiently in general graphs. Moreover, one has to typically use weights
specific for each dimension of the cell complex, increasing the number of parameters compared to
GNNs. However, we have shown that our model can compensate this increase with a reduced number
of layers and still achieve state-of-the-art results on some of the molecular benchmarks.

From a theoretical point of view, this work is concerned only with regular cell complexes. Adopting
this restriction is useful from multiple perspectives: regular cell complexes are easier to analyse, their
combinatorial structure completely describes their topology and convolutions can be defined on them
through the Sheaf Laplacian (see Appendix D). Nonetheless, some of our theoretical results could be
extended to non-regular complexes, which could be obtained by lifting transformations not studied in
this work, such as attaching 2-cells to paths in the graph. We leave addressing non-regular complexes
and their trade-offs to future developments of this work.

Societal Impacts Most of our paper is theoretical in nature and we do not see immediate direct
negative societal impacts. Within the scope of social network applications, we do not yet have
sufficient evidence of performance improvement on related benchmarks to justify obvious adoption in
such a domain. In contrast, the empirical performance on molecular benchmarks suggests it may have
a positive impact on applications of immediate interest in pharmaceutics, such as drug discovery [30].

Conclusion We have proposed a provably powerful message passing procedure on cell complexes
motivated by a novel colour refinement algorithm to test their isomorphism. This allows us to consider
flexible lifting operations on graphs to implement more expressive architectures which benefit from
decoupling the computational and input graphs. Our methods show excellent performance on diverse
synthetic and real-world molecular benchmarks.
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A Proofs

A.1 Cellular WL Results

In this section, we assume basic familiarity with the WL test and its higher-order variants. For an
introduction to these topics, we refer the reader to the survey of Sato [62]. We begin by introducing a
few useful concepts.
Definition 20. A cellular colouring is a map c that maps a cell complex X and one of its cells σ to
a colour from a fixed colour palette. We denote this colour by cXσ .
Definition 21. Let X,Y be two regular cell complexes and c a cellular colouring. We say that X,Y
are c-similar, denoted by cX = cY , if the number of cells in X coloured with a given colour equals
the number of cells in Y with the same colour. Otherwise, we have cX 6= cY .

We emphasise that in this paper we are interested only in colourings c with the property that any two
isomorphic cell complexes are c-similar.
Definition 22. A cellular colouring c refines a cellular colouring d, denoted by c v d, if for all cell
complexes X and Y and all σ ∈ PX and τ ∈ PY , cXσ = cYτ implies dXσ = dYτ . Additionally, if d v c,
we say the two colourings are equivalent and we represent it by c ≡ d.

We state the following result from Bodnar et al. [8] about simplicial colourings, which we translate
here directly to cell complexes. The proof is however, identical, and we refer the reader to their work
for that.
Proposition 23. Let X,Y be any regular cellular complexes with A ⊆ PX and B ⊆ PY . Consider
two cellular colourings c, d such that c v d. If {{dXσ | σ ∈ A}} 6= {{dYτ | τ ∈ B}}, then
{{cXσ | σ ∈ A}} 6= {{cYτ | τ ∈ B}}.
Corollary 24. Consider two cellular colourings c, d such that c v d. For all cell complexes X and
Y , if dX 6= dY , then cX 6= cY .

This last result implies that if c refines d, then c can distinguish all the non-isomorphic cell complexes
that d can distinguish. We say that the colouring c is at least as powerful as the colouring d.

In contrast to simplicial complexes, cell complexes have a more flexible structure. The main
complication compared to the proofs in Bodnar et al. [8] is that cells can have a variable number of
lower-dimensional cells on their boundary. It is therefore useful in many proofs, to separate the cells
into buckets containing cells with the same boundary size. The following result helps us do that.
Proposition 25. Let ct be the CWL colouring at iteration t. For all cells σ, τ in any cell complexes
X and Y , if |B(σ)| 6= |B(τ)|, then for any t > 0 we have ctσ 6= ctτ .

Proof. If σ and τ have boundaries of different sizes, then c1B(σ) 6= c1B(τ), which immediately implies
ctσ 6= ctτ for all t > 0.

Next, we show that one can drop the co-boundary adjacencies without sacrificing expressive power.
Lemma 26. CWL with HASH

(
ctσ, c

t
B(σ), ct↓(σ), ct↑(σ)

)
is as powerful as CWL with the generalised

update rule HASH
(
ctσ, c

t
B(σ), ctC(σ), ct↓(σ), ct↑(σ)

)
.

Proof. Let at denote the colouring produced by CWL using the general version and bt the colouring
produced using the restricted version at iteration t. It can be verified that at v bt because it considers
the additional ctB(σ) colours in the refinement rule. We now prove bt+1 v at by induction. Note that
to take advantage of Proposition 25, we shift the time-step by one (i.e. we use bt+1 as opposed to bt).

The base case holds since a0 assigns the same colour to all the cells. Suppose bt+2
σ = bt+2

τ
for any two cells σ and τ from any cell complexes X and Y , respectively. Then we know that
bt+1
σ = bt+1

τ , bt+1
B (σ) = bt+1

B (τ), bt+1
↑ (σ) = bt+1

↑ (τ) and bt+1
↓ (σ) = bt+1

↓ (τ). The goal is to show
that this also implies that bt+1

C (σ) = bt+1
C (τ).

Given bt+1
↑ (σ) = bt+1

↑ (τ), by definition

{{bt+1
δσ
| (·, bt+1

δσ
) ∈ bt+1

↑ (σ)}} = {{bt+1
δτ
| (·, bt+1

δτ
) ∈ bt+1

↑ (τ)}}.
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By Proposition 25, cells with different boundary sizes have different colours. Therefore, we can
partition these two multi-sets by the size of the cell boundaries, while preserving the equality between
these sub-multisets. Therefore, for each n ∈ N:

{{bt+1
δσ
| (·, bt+1

δσ
) ∈ bt+1

↑ (σ) and |B(δσ)| = n}} = {{bt+1
δτ
| (·, bt+1

δτ
) ∈ bt+1

↑ (τ) and |B(δτ )| = n}}.

Let γ be an arbitrary cell. Then for each cell δγ ∈ C(γ), γ exchanges messages with all the other
boundary cells of δγ . Therefore, the colour of each δγ with |B(δγ)| = n shows up with a multiplicity
of n− 1 in the tuples of bt+1

↑ (γ). Eliminating n− 2 of these repeated colours for all δσ and δτ :

{{bt+1
δσ
| δσ ∈ C(σ) and |B(δσ)| = n}} = {{bt+1

δτ
| δτ ∈ C(τ) and |B(δτ )| = n}}.

Merging these in a single multi-set gives the colours of the co-boundary cells:

bt+1
C (σ) = {{bt+1

δσ
| δσ ∈ C(σ)}} = {{bt+1

δτ
| δτ ∈ C(τ)}} = bt+1

C (τ).

By the induction hypothesis, atσ = atτ , a
t
B(σ) = atB(τ), atC(σ) = atC(τ), at↑(σ) = at↑(τ) and

at↓(σ) = at↓(τ). This implies at+1
σ = at+1

τ .

The following theorem shows that we can further prune the CWL update rule by removing the colours
associated with the lower adjacencies. The structure of the proof is similar to the one in Bodnar et al.
[8], with the main difference being in the proof of Proposition 27.

Proof of Theorem 7. Let bt denote the colouring of CWL using HASH
(
btσ, b

t
B(σ), bt↑(σ)

)
and at

the colouring of CWL using the rule HASH
(
atσ, a

t
B(σ), at↓(σ), at↑(σ)

)
from Lemma 26. Trivially

at v bt because of the additional argument ct↓(σ) in the update rule. We prove b2t+1 v at by
induction. As before, the addition by one in 2t + 1 is to allow us to apply Proposition 25 in the
induction step. The multiplication by 2 is due to the fact that the information transmitted through the
lower adjacencies in one step is propagated in two steps through the boundary adjacencies.

As before, the base case trivially holds since a0 assigns the same colour to all cells. Suppose b2t+3
σ =

b2t+3
τ . By unrolling the hash function two steps in time, we obtain b2t+1

σ = b2t+1
τ , b2t+1

B (σ) =

b2t+1
B (τ), and b2t+1

↑ (σ) = b2t+1
↑ (τ). We need to prove that b2t+1

↓ (σ) = b2t+1
↓ (τ) also holds. For the

sake of contradiction, assume b2t+1
↓ (σ) 6= b2t+1

↓ (τ). Then there exists a pair of colours (C0,C1) that
shows up (without loss of generality) more times in b2t+1

↓ (σ) than in b2t+1
↓ (τ). For simplicity, we

also assume b2t+1
σ 6= C0 6= b2t+1

τ as this special case can be easily treated separately.

For all cell complexes X and all cells δ in PX , consider the collection of multi-sets AX indexed by δ:

AX(δ) = {{(b2t+1
ψ = C0, b

2t+1
δ = C1) | ψ ∈ C(δ)}}.

We are interested in the size of these multi-sets for some specific cells δ. To that end, for each cell
γ ∈ PX , we define the multi-set:

CX(γ) = {{|AX(δ)| | δ ∈ B(γ)}}.

We know that CX(σ) 6= CY (τ) since the sum of the elements of CX(σ), which gives the number
of tuples (C0,C1) in b2t+1

↓ (σ), is greater than the sum of the elements of CY (τ), which gives the
number of tuples (C0,C1) in b2t+1

↓ (τ). We prove this contradicts our hypothesis that b2t+3
σ = b2t+3

τ .

Proposition 27. For all regular cell complexes X,Y and all σ ∈ PX , τ ∈ PY , if CX(σ) 6= CY (τ),
then b2t+3

σ 6= b2t+3
τ .

Proof. Given a cell complex X and a cell δ ∈ PX , consider the cellular colouring cXδ = |AX(δ)|.
The idea of the proof is to show that b2t+2 v c, which allows us to use Proposition 23 for the
multi-sets CX(σ) and CY (τ).

Let δ1, δ2 be two arbitrary cells from any regular cell complexes X,Y such that cXδ1 6= cYδ2 . Assume
without loss of generality that |AX(δ1)| > |AY (δ2)|. Two cases can be distinguished for this
inequality. In the first case, b2t+1

δ2
6= C1, which implies |AX(δ1)| > |AY (δ2)| = 0 and, therefore,

b2t+1
δ1

= C1. Then b2t+2
δ1

6= b2t+2
δ2

.

17



Figure 8: (Left) A pair of non-isomorphic graphs indistinguishable by WL, but distinguishable by
CWL with a clique complex, ring or cycle-based lifting. (Right) A pair of non-isomorphic molecular
graphs (Decalin and Bicyclopentyl) indistinguishable by WL but distinguishable by CWL with a
ring-based or cycle-based lifting. The node colours show the stable colouring reached by WL.

In the second case, b2t+1
δ2

= C1, which implies |AX(δ1)| > |AY (δ2)| ≥ 0 and b2t+1
δ1

= C1. Then,
the difference in the size of the multi-sets is made by the number of times C0 shows up in AX(δ1)
and AY (δ2), respectively. By Proposition 25, all k-cells γ with k > 0 and b2t+1

γ = C0 must have a
fixed boundary size |B(γ)| = n. Because each cell δ ∈ B(γ) is upper adjacent with every other cell
in B(γ), b2t+1

γ appears n − 1 times in the tuples inside b2t+1
↑ (δ). Additionally, note that since the

cell complex is regular, self-loops are not allowed and, therefore, n > 1.

Applying this to δ1 and δ2, C0 shows up |AX(δ1)|×(n−1) times in b2t+1
↑ (δ1) and |AY (δ2)|×(n−1)

times in b2t+1
↑ (δ2). Therefore, b2t+1

↑ (δ1) 6= b2t+1
↑ (δ2) and, similarly to the first case, b2t+2

δ1
6= b2t+2

δ2
.

The results obtained for the two cases prove b2t+2 v c.
Applying Proposition 23 for the multi-sets CX(σ) and CY (τ), we obtain two non-equal multi-sets:

b2t+2
B (σ) = {{b2t+2

δ1
| δ1 ∈ B(σ)}} 6= {{b2t+2

δ2
| δ2 ∈ B(τ)}} = b2t+2

B (τ)

Since these two multi-sets are used in the colour updating rule, b2t+3
σ 6= b2t+3

τ .

Therefore, b2t+1
↓ (σ) = b2t+1

↓ (τ). Finally, applying the induction hypothesis, we have that atσ =

atτ , a
t
B(σ) = atB(τ), at↑(σ) = at↑(τ) and at↓(σ) = at↓(τ). Then at+1

σ = at+1
τ .

Proof of Theorem 13. Consider the map f : G → X , a skeleton-preserving lifting transformation
from the space of graphs G, to the space of regular cell complexes X . Let gG : VG → Pf(G)(0) be the
graph isomorphism associated to f between the vertices of G and the 0-cells of f(G) for all G ∈ G.
Let cG,t be the WL colouring of graph G at iteration t and af(G),t the colouring of f(G)(1) induced

by the isomorphism gG (i.e af(G)(1),t
g(v) := cG,tv ) at the same time step t.

Because f(G)(1) and G are isomorphic as graphs and WL is invariant under isomorphism,
af(G)(1),t = cG,t. It follows that for all graphs G1, G2 ∈ G, if cG1,t 6= cG2,t then
af(G1)

(1),t 6=f(G2)
(1),t. Let bt be the CWL colouring of the 0-cells at iteration t. The goal is

to show that for all regular cell complexes X,Y ∈ f(G), bt v at. By transitivity and combined with
Corollary 24, it follows that if cG1,t 6= cG2,t, then bf(G1),t 6= bf(G2),t.

The base case trivially holds. Let σ, τ be two 0-cells in X ∈ f(G) and Y ∈ f(G), respectively such
that bt+1(σ) = bt+1(τ). Since 0-cells have only upper adjacencies, the equality implies that btσ = btτ
and bt↑(σ) = bt↑(τ). The latter multi-set equality further implies

{{btδσ | (b
t
δσ , ·) ∈ b↑(σ)}} = {{btδτ | (b

t
δτ , ·) ∈ b↑(τ)}}.

Equivalently, for 0-cells of a cell complex whose 1-skeleton is a graph (i.e. not a multi-graph), this
can be rewritten as

{{btδσ | δσ ∈ N↑(σ)}} = {{btδτ | δτ ∈ N↑(τ)}}.
By the induction hypothesis we have atσ = atτ and

{{atδσ | δσ ∈ N↑(σ)}} = {{atδτ | δτ ∈ N↑(τ)}}.

These equalities imply at+1(σ) = at+1(τ).
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Figure 9: The two SR graphs in family SR(16, 6, 2, 2): Rook’s 4×4 (left) and Shrikhande (right).
The 3-WL test is not able to deem them as non-isomorphic. Contrary to the Shrikhande graph, Rook’s
graph possesses 4-cliques. The Shrikhande graph, however, features 5-rings, not present in Rook’s.
Instances of these substructures are marked in blue. With appropriate lifting procedures, CWL can
distinguish between them.

Proof of Corollary 15. Due to Theorem 13, it is sufficient to find some examples of non-isomorphic
graph pairs that WL cannot distinguish, but CWL can with the given lifting transformations. Figure 8
includes such examples. Based on Proposition 25, CWL can distinguish these graphs since it can
count the number of substructures (e.g. triangles, rings, cycles) that the lifting is based on.

The next proposition shows that CWL can identify cells that are n-simplices.

Proposition 28 (Simplex Identification). Let X,Y be regular cell complexes and σ ∈ PX , τ ∈ PY
two cells. Denote by ct the CWL colouring at iteration t. Suppose σ is an n-simplex and τ is not.
Then ct(σ) 6= ct(τ) for all t ≥ n+ 1.

Proof. The base case holds since c1σ 6= c1τ if σ is a vertex and τ is a cell of another dimension. This
is because σ has no boundary adjacencies, while τ does.

Suppose the statement holds for n-simplices. Then, an (n+ 1)-simplex can be identified by having
n + 2 n-simplices on its boundary. By Proposition 25, the colour of σ encodes the boundary size.
Furthermore, by the induction hypothesis cn+1

B (σ) encodes the fact that the boundary cells are
n-simplices.

Proof of Theorem 16. The sub-results of the theorem can be proven by finding pairs of graphs from
the same family of Strongly Regular Graphs that can be distinguished by CWL with the corresponding
lifting transformations. Graphs in this family are provably indistinguishable by the higher-order
3-WL test [8].

Ring-based lifting We can show that there is a pair of SR graphs in the same family with a different
number of induced cycles of a certain size. We include such an example in Figure 9. The two graphs
differ in the number of 4-, 5-, 6- and 8-rings (see Table 4), which indirectly proves 3-WL cannot
count induced cycles of these sizes. It is also natural to conjecture that 3-WL cannot count induced
cycles of size strictly larger than 3. In contrast, CWL(4-IC) is sufficient to distinguish these two
graphs.

Clique complex lifting We can leverage on the same example: the graph on the right does not
possess 4-cliques, contrary to the graph on the left (one such example is marked in blue). This proves
that 3-WL cannot count cliques of size 4. As shown by Bodnar et al. [8], this result immediately
implies that SWL (and consequently CWL) with a clique complex lifting is not less powerful than
3-WL.

Cycle-based lifting To prove the result for this lifting transformation we leverage on a result by
Arvind et al. [2], who show that 2-Folklore WL (which is equivalent to 3-WL [62]) cannot count
subgraph cycles of size strictly larger than 7. Table 4 illustrates this for the same example as above.
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Table 4: Number of cycles and induced cycles (rings) on the SR graphs in family SR(16, 6, 2, 2).

Graph ↓ / Size→ 3 (Tri.) 4 5 6 7 8

Rook’s 4×4 (cycles) 32 60 288 1,248 4,032 11,952
Shrikhande (cycles) 32 60 288 1,248 4,032 11,688

Rook’s 4×4 (rings) 32 36 0 96 0 72
Shrikhande (rings) 32 12 96 64 0 36

Since CWL can count the number of 8-cycles when the lifting transformation k-C with k ≥ 8 is used
(see Proposition 25), this proves the result.

We note that while the proof above is purely based on substructure counts, the superior expressive
power of CWL is very likely not limited to counting the substructures involved in the lifting trans-
formation. We have seen evidence in favour of this claim in the SR experiment in Section 5, where
message passing layers reduced the failure rate.

Next, we prove a statement comparing Simplicial WL and CWL. This will later be used to show that
CWNs are strictly more powerful than MPSNs when a lifting transformation based on the clique
complex and rings is used.
Definition 29. A subset L of a cell complex X is called a subcomplex if it is a union of cells of X
containing the closures of these cells.
Theorem 30. Let f : G → X be a skeleton-preserving transformation such that for any graph G,
the clique complex of G is a subcomplex of f(G). Then CWL(f ) is at least as powerful as SWL using
the clique complex lifting at distinguishing non-isomorphic graphs.

Proof. Let ct be the simplicial colouring performed by SWL. We can extend it into a cellular
colouring at defined as follows:

aX,tσ :=

{
cL,tσ if Xσ ⊆ L
© otherwise

where L is the maximal simplicial complex that is a subcomplex of X and © is a special colour
assigned to the cells that are not simplices. Let h : G → X be the clique-complex lifting map.
Then, it is easy to see that for all graphs G1, G2 ∈ G, if ch(G1),t 6= ch(G2),t, then af(G1),t 6=
af(G2),t. Let bt be the CWL colouring map at iteration t. We aim to show that bt+n+1 v at by
using Proposition 28. Then, by transitivity and using Corollary 23, if ch(G1),t 6= ch(G2),t, then
bf(G1),t+n+1 6= bf(G2),t+n+1.

Let n be the maximum dimension of the cells used by the lifting transformation f . As usual,
the base case holds at initialisation since a0 assigns the same colour to all the cells. Let σ, τ be
two cells from the regular cell complexes X,Y ∈ f(G). When σ and τ are not simplices, then
atσ = atτ = ©. Suppose σ and τ are both simplices and bt+n+2

σ = bt+n+2
τ . Then we know

that bt+n+1
σ = bt+n+1

τ , bt+n+1
B (σ) = bt+n+1

B (τ) and bt+n+1
↑ (σ) = bt+n+1

↑ (τ). Since σ and τ are
simplices, their boundary cells are also lower-dimensional simplices, so by induction hypothesis,
atB(σ) = atB(τ).

Let us consider the equality between the colours involving the upper adjacent cells. By expanding the
definition we have:

{{(bt+n+1
δ1

, bt+n+1
δ2

) | δ1 ∈ N↑(σ), δ2 ∈ C(σ, δ1)}}
= {{(bt+n+1

δ1
, bt+n+1
δ2

) | δ1 ∈ N↑(τ), δ2 ∈ C(τ, δ1)}}.
Generally, not all of these adjacencies involve simplices. For instance, a 2-simplex could incident to
a general 3-cell. However, by Proposition 28 this equality must still hold if we restrict the multi-sets
to the colour of those cells that are simplices:

{{(bt+n+1
δ1

, bt+n+1
δ2

) | δ1 ∈ N↑(σ), δ2 ∈ C(σ, δ1), and δ1, δ2 are simplices}}
= {{(bt+n+1

δ1
, bt+n+1
δ2

) | δ1 ∈ N↑(τ), δ2 ∈ C(τ, δ1), and δ1, δ2 are simplices}}.
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These multi-sets, give exactly the upper adjacencies used by SWL for computing its colouring map
ct. Therefore, by the induction hypothesis, at↑(σ) = at↑(τ). Finally, this proves at+1

σ = at+1
τ .

Corollary 31. CWL(k1-CL ∪ k2-IC) and CWL(k1-CL ∪ k2-C) are strictly more powerful than
SWL(k1-CL) for all k2 ≥ 5.

Proof. The second pair of graphs from Figure 8 cannot be distinguished by SWL(k1-CL) because it
has no cliques greater than two, but it can be distinguished by CWL with the liftings above because
of the different number of (induced) cycles.

A.2 CW Network Proof

Proof of Theorem 18. Let ct denote the colouring of CWL at iteration t and ht the colouring (i.e.
features) produced by a CW-Network as described in Section 4. Without loss of generality (Theorem
7), we use only boundary and upper adjacencies for both methods.

To show CWNs are at most as powerful as CWL, we must show ct v ht. Again, we show this by
induction. For a CWN with L layers we assume ht = hL for all t > L. Let σ, τ be two cells with
ct+1
σ = ct+1

τ . Then, ctσ = ctτ , ctB(σ) = ctB(τ) and ct↑(σ) = ct↑(τ). By the induction hypothesis,
htσ = htτ , htB(σ) = htB(τ) and ht↑(σ) = ht↑(τ).

If t+ 1 > L, then ht+1
σ = htσ = htτ = ht+1

τ . Otherwise, ht+1 is given by Equation 1 involving the
update function U , the aggregate function AGG and the message functions MB,M↑. Given that the
inputs passed to these functions are equal for σ and τ , ht+1

σ = ht+1
τ .

We now prove that CWNs can be as powerful as CWL. Suppose the aggregation from Equation 1 is
injective and the model is equipped with a number of layers L sufficient to guarantee the convergence
of the colouring. Then, we show that ht v ct. Let σ, τ be two cells with ht+1

σ = ht+1
τ . Then, since

the local aggregation is injective htσ = htτ , htB(σ) = htB(τ) and ht↑(σ) = ht↑(τ). By the induction
hypothesis, ctσ = ctτ , ctB(σ) = ctB(τ) and ct↑(σ) = ct↑(τ). Finally, ct+1

σ = ct+1
τ .

The consequence of this result is that CWNs inherit all the properties of CWL. We summarise these
in the following Corollary.
Corollary 32. CWNs have the following properties:

1. They are at least as powerful as the WL test when using skeleton-preserving lifting transformations.

2. They are strictly more powerful than the WL test when using the lifting maps from Corollary 15.

3. They are not less powerful than 3-WL when using the lifting transformations from Theorem 16.

4. They are at least as powerful as MPSNs using the clique complex lifting [8] when using a lifting
transformation whose output complexes have the clique complex as a subcomplex.

5. They are strictly more powerful than MPSNs when using a transformation attaching cells to
cliques and rings/cycles. In particular, CWNs using rings are strictly more powerful than MPSNs
using a lifting based on triangles (i.e. 2-simplices), since triangles are rings of size 3.

The latter point regarding triangles is important because Bodnar et al. [8] do not use simplices of
dimension higher than two in practice.

A.3 Equations for Other Adjacencies

For completeness, we include in this section the equations for the co-boundary and lower adjacent
messages.

mt+1
C (σ) = AGGτ∈C(σ)

(
MC
(
htσ, h

t
τ

))
, mt+1

↓ (σ) = AGGτ∈N↓(σ),δ∈B(σ,τ)
(
M↓
(
htσ, h

t
τ , h

t
δ

))
.

Together with the adjacencies described in the main text, the update rule takes the form

ht+1
σ = U

(
htσ,m

t
B(σ),mt

C(σ),mt+1
↓ (σ),mt+1

↑ (σ)
)
.
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As mentioned before, even though these adjacencies are redundant from a colour refinement perspec-
tive when the others are used, they might still be employed in other combinations that preserve the
expressive power of the test. Additionally, for certain applications, they might still encode important
inductive biases.

B Computational Analysis

Let X be a d-dimensional regular cell complex. For an arbitrary p-cell σ with boundary size k,
the number of ↑-messages between the (p − 1)-cells on its boundary is 2 ∗

(
k
2

)
and the number

of B-messages it receives is k. Let Bp be the maximum boundary size of a p-cell in X and Sp
the number of p-cells. The computational complexity of our message passing scheme is thus
O
(∑d

p=1BpSp + 2 ∗
(
Bp
2

)
Sp
)
. For instance, consider the skeleton-preserving lifting based on

induced cycles. There, the dimension of the complex is d = 2 and we have B0 = 0, B1 = 2, and B2

equals the size of the maximum induced cycle considered. For all practical purposes, we can consider
d and Bp as fixed constants. Then the complexity can be rewritten as Θ

(∑d
p=1 Sp

)
. This is optimal

because the complexity is linear in the size of the cell complex and a linear time is required to read
the cell complex.

Table 5: Wall-clock training and evaluation times on ZINC; mean, std over 10 runs (seconds).

Model Training (Epoch) Eval (Train) Eval (Val) Eval (Test)

GIN 4.582 ± 0.012 3.138 ± 0.071 0.310 ± 0.002 0.309 ± 0.001
GIN-small 3.737 ± 0.012 3.070 ± 0.058 0.304 ± 0.002 0.303 ± 0.003

CIN 10.828 ± 0.059 4.679 ± 0.051 0.470 ± 0.002 0.471 ± 0.003
CIN-small 7.082 ± 0.041 3.682 ± 0.056 0.365 ± 0.002 0.373 ± 0.030

Table 6: Wall-clock training and evaluation times on ZINC-FULL; mean, std over 10 runs (seconds).

Model Training (Epoch) Eval (Train) Eval (Val) Eval (Test)

GIN 106.268 ± 1.991 73.051 ± 1.742 7.874 ± 0.174 1.618 ± 0.039
GIN-small 87.581 ± 2.343 71.160 ± 1.865 7.714 ± 0.206 1.583 ± 0.037

CIN 249.334 ± 17.927 107.510 ± 1.637 11.759 ± 0.642 2.398 ± 0.028
CIN-small 163.282 ± 8.016 85.342 ± 2.637 9.251 ± 0.431 1.876 ± 0.044

In practice, we observed the empirical training runtimes to be contained, even on the largest bench-
marks. We performed timing analyses on ZINC and ZINC-FULL, measuring the time required to
complete one training epoch and a full performance evaluation on train, validation and test sets.
We report the runtimes in Tables 5 and 6 the runtimes measured for our best performing CIN and
CIN-small models and by GIN baselines with, approximately, the same number of parameters. We
observe that the evaluation runtimes are relatively comparable to those of GIN models and that
the difference decreases significantly at inference time (i.e. no backprop). The training runtimes
are significantly reduced on CIN-small architectures, which always perform on-par or even better
than state-of-the-art baselines, regardless of the imposed parameter budget (see Table 3). These
experiments where run over an NVIDIA® Tesla V100 GPU device on an Amazon Web Services
(AWS) Elastic Cloud (EC) 2 p3.16xlarge instance.

Other than the computational complexity of message passing we need to consider the (one-off)
complexity pertaining the graph lifting procedures. Lifting procedures that are more likely to find
immediate practical applications involve clique, cycle and induced cycle listing. For cliques, we
refer readers to Bodnar et al. [8], where the authors report theoretical results regarding clique-listing
complexity and the practical impact of employing specialised topological data analysis libraries.

As for cycle-based liftings, specialised cycle-listing algorithms exist. The algorithm in Birmelé et al.
[7] is able to list all simple cycles in a graph in O(m +

∑
c∈C(G) |c|), where m is the number of

edges, C(G) is the set of simple cycles in graph G and |c| is the size of the cycle. As for induced
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cycles, the algorithm presented in Ferreira et al. [26] has a listing time of Õ(m+ nC), with n and
C being the number of nodes and induced cycles, respectively. In certain types of graphs, a better
complexity can be obtained. In the case of planar graphs, Chiba and Nishizeki [16] show linear time
complexity to list triangles and quadratic complexity for 4-rings. This is very important because
almost all molecules are planar in a graph-theoretic sense [66] as a direct consequence of the chemical
implications of Kuratowski’s theorem [49]. However, we are not aware of any improved bounds for
finding general induced cycles in planar graphs. Finally, we remind the reader that molecular rings
can also be listed from the junction tree representation [27, 43], obtained by specialised molecular
libraries such as RDKit [50].

Table 7: Wall-clock lifting times, mean and std over 5 runs (seconds).
Dataset ↓ / Processes→ Seq. 2 4 8 16 32

ZINC (12k) 320.27 ± 0.54 169.95 ± 0.32 84.90 ± 0.21 43.38 ± 0.07 23.17 ± 0.68 18.59 ± 0.68
Mol-HIV (41k) 1178.98 ± 3.90 635.58 ± 0.83 319.01 ± 0.40 164.26 ± 0.52 86.92 ± 0.77 60.62 ± 2.05
ZINC-FULL (250k) 6805.35 ± 16.50 3549.16 ± 7.73 1782.41 ± 3.84 918.38 ± 3.46 492.77 ± 6.13 383.92 ± 3.30

In our experiments, we implemented a lifting procedure based on the generic substructure matching
algorithm exposed by the graph-tool Python library, which internally employs VF2 [19] to perform
subgraph isomorphism. Noticing that the lifting procedure is embarrassingly parallel w.r.t. the
independent graphs in a dataset, we easily parallelised the procedure via Python’s Joblib library.
On molecular benchmarks we observed the effective time required by preprocessing routines to
always be modest compared to the training times. In Table 7 we report the wall clock runtimes,
averaged over 5 runs, to lift all the graphs in the largest datasets amongst our benchmarks: ZINC,
Mol-HIV and ZINC-FULL. The analysis has been conducted considering rings up to size 18 and by
varying the number of parallel processing jobs on a server with an Intel® Xeon E5-2686 v4 processor
with 64 vCPUs. It is possible to observe that the empirical lifting runtime scales linearly with the
number of jobs in the range [1, 16], and that such a simple parallelisation scheme dramatically reduces
the preprocessing time on all datasets. When employing 32 parallel jobs, less than 19 seconds are
required to preproceess the whole ZINC dataset, only 1 minute is required for Mol-HIV, and we
needed slightly more than 6 minutes to lift all the 250k graphs in ZINC-FULL. We remark once more
that these experiments have been conducted with a generic subgraph matching algorithm, and that
even more parsimonious computation would be possible by using optimised ring-listing routines.

C Symmetries

In line with a recent effort in Geometric Deep Learning to understand different models through the
lens of symmetry [12], we aim here to give a description of the underlying equivariance properties of
CW Networks.

First, let us define the following matrix representation of the boundary relation from Definition 3.
Definition 33. Let X be a regular cell complex with Sk denoting the number of cells in dimension k.
The k-th unsigned boundary matrix Bk ∈ RSk−1×Sk of X is given by Bk(i, j) = 1 if σi ≺ σj and 0,
otherwise.

Let X be a regular cell complex of dimension n with boundary matrices B = (B1, . . . ,Bn) and
feature matrices X = (X0,X1, . . . ,Xn) for the cells of different dimensions. Additionally, consider
a sequence of permutation matrices P = (P0, . . . ,Pn). Denote by PX = (P0X0, . . . ,PnXn) and
PBPT = (P0B1P

T
1 , . . . ,Pn−1BnP

T
n ).

Definition 34. A function f mapping (X,B) 7→ X′ = (X ′0, . . . ,X
′
n) with the property that

Pf(X,B) = f(PX,PBPT ) for any P is called cell permutation equivariant.

Proof of Theorem 19. Definition 34 is similar to the (simplex) permutation equivariance definition
from Bodnar et al. [8], with the subtle difference that the boundary matrices now have a more flexible
structure in the case of cell complexes. The high-level idea is to see that all the adjacency matrices
used by CWNs (i.e. Bk,Bk+1,B

>
k Bk,Bk+1B

>
k+1) are permuted accordingly by the permutation

matrices in P. Therefore, CWNs layers computes the same function up to a permutation of the cells.
The proof follows a similar logic to to the one in Bodnar et al. [8] for simplicial networks, and we
refer the reader to their work for a detailed proof.
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It is common in algebraic topology and differential geometry to equip the incidence relation σ ≺ τ
with additional structure that makes it a signed incidence relation.
Definition 35 (Hansen and Ghrist [36]). A signed incidence relation on PX is a map [· : ·] : PX ×
PX → {0,±1} with the properties:

1. If [σ : τ ] 6= 0, then σ ≺ τ .

2. For any σ ≤ τ ,
∑
γ∈Px [σ : γ][γ : τ ] = 0.

This signed incidence relation can be be encoded by the signed incidence (boundary) matrices of X .
We define these below:
Definition 36. Let X be a regular cell complex with a signed incidence relation [· : ·]. Let Sk denote
the number of cells in dimension k. The k-th signed boundary matrix Bk ∈ RSk−1×Sk of X is given
by Bk(i, j) = [σi : σj ].

The difference with respect to the unsigned boundary matrices is that the non-zero values of the
matrix can be ±1, not just 1. This can be used to define a notion of orientation equivariance for CW
Networks. This ensures that when changing the orientation of the cell complex X (i.e. changing
[· : ·]) one computes the same function up to that change in orientation.

Let X be a regular cell complex of dimension n described by the signed boundary matrices B =
(B1, . . . ,Bn) and feature matrices X = (X0,X1, . . . ,Xn) for the cells of different dimensions. Ad-
ditionally, consider a sequence of diagonal matrices T = (T0, . . . ,Tn) with values in ±1. Addition-
ally, let T0 = I . Denote by TX = (T0X0, . . . ,TnXn) and TBT = (T0B1T1, . . . ,Tn−1BnTn).
Definition 37. A function f mapping (X,B) 7→ X′ = (X ′0, . . . ,X

′
n) with the property that

Tf(X,B) = f(TX,TBT) for any T is called orientation equivariant.

Making CWNs orientation equivariant requires imposing additional constraints on the layers of the
model. This proceeds similarly to MPSNs [8]. Since applications involving oriented simplicial
complexes are out of the scope of this work, we refer the reader to Bodnar et al. [8] for an intuition of
how this can be extended to cell complexes.

D Sheaves, Laplacians and Convolutions

It is useful on cell complexes to derive a Laplacian operator based on cellular sheaves [36], since
many interesting Laplacians, such as the (normalised) graph Laplacian [17], the Hodge Laplacian
[63] and the connection Laplacian [67] can be obtained as particular cases. Intuitively, a cellular
sheaf is a construction that assigns a vector space to each cell in the complex and a (linear) map
for each face relation in the complex σ ≤ τ . Additionally, these linear maps must satisfy some
compositionality constraints imposed by the structure of PX .

D.1 Sheaf Laplacian

Definition 38. Let (X,PX) be a regular cell complex, and denote by HilbK the class of Hilbert
spaces over a field K. A weighted cellular sheaf F is given by the assignment

F : PX → HilbK
σ 7→ F(σ)

together with a bounded linear map Fσ≤τ : F(σ)→ F(τ) for any σ ≤ τ .

This data satisfies that Fσ≤σ = id for all σ ∈ PX and Fσ≤ω = Fτ≤ω ◦ Fσ≤τ whenever σ ≤ τ ≤ ω.

Given a weighted cellular sheaf F , we define a chain complex as follows. For each k = 0, 1, . . . we
set

Ck(X;F) =
⊕

dim(σ)=k

F(σ) .

Further, we define coboundary maps δk : Ck(X;F)→ Ck+1(X;F) by

δk(x)τ =
∑

dim(σ)=k

[σ : τ ]Fσ≤τ (xσ),
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where [· : ·] : PX × PX → {0,±1} is a signed incidence relation (see Definition 35).

Given Hilbert spaces V and W and a bounded linear map T : V →W , the adjoint of T is the unique
bounded linear map T ? : W → V satisfying that for all v ∈ V and all w ∈W :

〈w, Tv〉 = 〈T ?w, v〉 .

Definition 39. Let C• = C0 → C1 → . . . be a chain complex of Hilbert spaces. The Hodge
Laplacian is the graded linear map defined in degree k as ∆k : Ck → Ck with ∆k = (δk)?δk +
δk−1(δk−1)?. When C• = C0 → C1 → . . . is the complex of cochains of a weighted cellular sheaf
F , the Hodge Laplacian is called the sheaf Laplacian of X .

In particular, the Hodge Laplacian of a cell complex can be obtained by considering the constant
weighted cellular sheaf with a standard inner product. That is the cellular sheaf where F(σ) = R
and the restriction maps Fσ≤τ = id. A normalised version of it can also be obtained by carefully
adjusting the inner products associated with each F(σ). This normalisation is always possible for
finite cell complexes (see Hansen and Ghrist [36] for details). This is very useful because finding
normalised versions of Hodge Laplacians is not trivial and even on simplicial complexes [63], the
process of constructing one can be quite involved.

D.2 Convolutional Operators

One can use the general sheaf Laplacian to define linear, local diffusion operators which, in the
GNN literature, are broadly addressed as ‘convolutional’. Diffusion operators built from the standard
graph Laplacian have been employed in several graph neural network architectures [22, 47]. Recent
works [13, 25] have introduced convolutional operators on SCs by employing the Hodge Laplacian
[63], interpreted as a generalisation of the graph Laplacian. As for cell complexes, here we focus,
for simplicity, on the case of a constant sheaf with a standard inner product in Rn. Then, the
matrix representations of δk and (δk)∗ are the signed incidence matrices BT

k and Bk, respectively.
Therefore, the Hodge Laplacian can be written in matrix form as

Lk = BT
kBk + Bk+1B

T
k+1.

A convenient way to define a convolutional operator on cochains is by designing a learnable filter
parameterised as a polynomial of the Hodge Laplacian. This approach has been already adopted
on graphs using the standard graph Laplacian [22] or more general sheaf Laplacians [37], and also
on simplicial complexes [25]. The advantage of this approach is that of retaining a connection with
spectral constructions [22, 25] while not requiring any explicit diagonalisation of the operator itself.
A polynomial convolutional filter of this kind, when applied to the p-cells of a d-cell complex, would
take the form

Ht+1 = ψ
( R∑
r=0

LrpH
tW t+1

r

)
= ψ

(
HtW t+1

0 +

R∑
r=1

LrpH
tW t+1

r

)
. (3)

where Ht is a matrix gathering p-cell representations at layer t, W t+1
r are learnable parameters, and

ψ summarises the application of a bias term and a non-linearity.

Proof of Theorem 19. While the structure of the boundary matrices is more flexible in a cell complex
than in a simplicial complex, algebraically, the proof is very similar to the proof showing MPSNs
generalise simplicial convolutions in Bodnar et al. [8]. We offer here a high-level view of the proof
and refer the reader to Appendix C of their paper for a detailed version.

For a generic p-cell σ, and r > 0, the application of the r-power of the Hodge Laplacian effectively
induces an information flow from a generalised notion of r-upper and r-lower adjacent p-cells,
i.e. p-cells τ such that there exists a sequence of upper- (respectively, lower-) adjacent p-cells
[γ0, γ1, . . . , γr] such that γ0 = σ, γr = τ .

Therefore, the convolution described above is easily interpreted in terms of a cellular message passing
scheme which only exchanges ↑- and ↓-messages. Intuitively, the upper- and lower- message functions
would share their parameters W t+1

r and compute messages by linearly projecting the representations
of upper- and lower-adjacent cells (ignoring any information in shared (co)boudaries). Such messages
would then be aggregated by summation into an overall message, taken as input by an update function
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parameterised by ψ and W t+1
0 . A formal derivation of how the equation (3) is rewritten in terms of

cellular message passing would closely follow the one provided in Bodnar et al. [8] for SCs, and we
therefore refer readers to Section C of such work.

Normalised versions of the aforementioned Hodge Laplacian can be used to design a model in the
spirit of the popular Graph Convolutional Network of Kipf and Welling [47]. To this aim, one could
resort to normalised sheaves as suggested in [36]. Additionally, one could explicitly make use of
the (co)boundary operators defined in Section C to let information flow from lower- and higher-
dimensional cells contained in cell (co)boundaries, effectively extending the Simplicial Convolutional
Networks recently introduced in Bunch et al. [13]. We defer these research directions to future
developments of this work.

E Experimental details and additional results

E.1 Used Code Assets

The model has been implemented in PyTorch [59] and by building on top of the PyTorch Geometric
library [28]. Lifting operations use the graph-tool4 Python library and are parallelised via Joblib5.
PyTorch, NumPy, SciPy and Joblib are made available under the BSD license, Matplotlib under the
PSF license, graph-tool under the GNU LGPL v3 license. PyTorch Geometric is made available
under the MIT license.

E.2 Used Computer Resources

All experiments were run on NVIDIA® GPUs. Experiments on SR, Mol-HIV and molecular
TUDatasets were run on Tesla V100 GPUs with 5,120 CUDA cores and 16GB GPU memory on
a p3.16xlarge Amazon Web Services (AWS) Elastic Cloud (EC) 2 instance. Experiments on the
social TUDatasets were run on the same GPU devices but with 32GB HBM2 memory mounted on
an HPC cluster. All remaining experiments, that is CSL, RingTransfer and ZINC, were run on a
machine with TITAN Xp GPUs with 12GB GPU memory and an Intel® Xeon® CPU E5-2630 v4 @
2.20GHz CPU.

E.3 Model

In all cases, we apply our model to the 2-dimensional cell complexes obtained by ring-lifting the
original graphs, i.e. we consider nodes and edges as 0- and 1-cells, and each induced cycle of size up
to k as a 2-cell. 0-cell are always endowed with the original node features or learnt node embeddings,
if the benchmark prescribes so. The way higher dimensional cells are assigned features depend on
the specific benchmark.

Throughout all experiments, we employ cellular message passing layers which update the representa-
tion of p-cell σ as follows:

ht+1
σ = MLPtU,p

(
MLPtB,p

(
(1 + εB)htσ +

∑
τ∈B(σ)

htτ
)
‖

MLPt↑,p
(
(1 + ε↑)h

t
σ +

∑
τ∈N↑(σ),δ∈C(σ,τ)

MLPtM,p

(
htτ ‖ htδ

)))
(4)

Here, ‖ indicates concatenation, MLPtB,p,MLPt↑,p are 2-Layer Perceptrons and MLPtU,p, MLPtM,p
consist of a dense layer followed by a non-linearity. We neglect messages from cofaces and down-
adjacent cells consistently with Theorem 7. We name an architecture which stacks L layers of this
form as ‘Cell Isomorphism Network’ (CIN). Readout operations are performed as follows. First,
for p ∈ 0, 1, 2, we compute the joint representation hp of the cells at dimension p by applying
a mean or sum readout operation. Then, for complex K, we compute an overall representation
hK =

∑
p=0,1,2 MLPR,p

(
hp
)
, where each MLPR,p is parameterised as a single dense layer followed

4https://graph-tool.skewed.de/
5https://joblib.readthedocs.io/en/latest/
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by a non-linearity. Complex-wise predictions are obtained by a final dense layer preceded by dropout.
All MLP layers internally apply Batch Normalization [42] and ReLU activations, unless otherwise
specified. All training procedures are performed with the Adam optimiser [46].

E.4 Additional experimental details

CSL Each of the 150 4-regular graphs in the CSL dataset comprises N = 48 nodes and is
characterized by skip number parameter C ∈ C = {2, 3, 4, 5, 6, 9, 11, 12, 13, 16}. Parameters N and
C determine the isomorphism class GN,C of each graph, which we seek to predict. The number
of possible classes is |C| = 10. We employ the same stratified dataset folds in Dwivedi et al. [24].
Consistently with the adopted reference procedure, 0-cells share the same learnt embedding, while
1- and 2-cells are endowed with the sum of the embeddings of the included 0-cells. As for the
optimisation procedure, we set the batch size to 12 and the initial learning rate of 5e-4. which is
halved whenever the validation performance does not improve after a patience value of 20. The
training is early stopped as soon as it falls below 1e-6, at which step we measure the model test
accuracy. The size of hidden layers in our model is set to 160 and we stack 3 cellular message passing
layers. In this benchmark, we replace Batch Normalisation with Layer Normalization [5], as the
former wsa observed to produce instabilities in the optimisation procedure. At each dimension, cell
embeddings are readout via averaging.

SR These experiments are run in double floating point precision and with untrained models. We
initialise the cell complexes associated with SR graph by populating 0-cells with constant, scalar,
unitary signal, and 1- and 2-dimensional cells with the sum of the contained 0-cells. Complexes are
embedded in a 16-dimensional space and, coherently with Bodnar et al. [8] and Bouritsas et al. [10],
if the L2-distance between the embeddings of two complexes is larger than ε = 0.01, we deem the
corresponding graphs to be non-isomorphic. We confirmed the validity of the chosen threshold ε by
numerically verifying that, under the described experimental setting, each SR graph in our datasets
is deemed isomorphic w.r.t. a counterpart obtained by randomly permuting its nodes. We run a
CIN model with 3 cellular message passing layers, whose hidden layers comprise 16 units. At each
dimension, cell embeddings are readout via summation. As the number of induced cycles of a certain
size may be enough to tell apart non-isomorphic SR graphs (see Table 4), an MLP with sum readouts
represents a strong baseline, which we additionally run. Such a model applies non-linear dense layers
at each cell dimension, and then performs readout operations as in CIN. We set the size of hidden
layers to 256, while the final complex embeddings are embedded in a 16-dimensional space as in our
model. Both approaches are equipped with ELU nonlinearities [18].

RingTransfer This benchmark dataset comprises 5, 000 training graphs. Each graph is randomly
associated with one of the 5 independent labels, which are also assigned as node features to source
nodes. Labels are unifomly represented. On this benchmark we run a CIN model with 3 stacked
message passing layers, independently on the ring size. The hidden size of the layers is set to 64
and we do not apply Batch Normalisation. Differently than in the other benchmarks, we do not need
to perform readout operations to compute complex-wise embeddings; instead, we simply take the
representation of the 0-cell corresponding to node target at the last layer of the architecture and use
it to predict the label of source. GIN models have always bk2 c standard message passing layers with
hidden size 64. The models are trained with an initial learning rate of 10−3, decayed by a factor of
0.5 and a patience of 5 epochs. The training is stopped when the learning rate drops below 10−5.

TUD Amongst the datasets from this benchmarking suite: the task in MUTAG is to recognise
mutagenic molecular compounds for potentially marketable drug [45, 61]; the one in PTC is to
recognise the chemical compounds according to carcinogenicity on rodents [39, 48]; PROTEINS is
about to categorising proteins into enzyme and non-enzyme structures [9, 23]; NCI1 and NCI109
deal with identifying chemical compounds against the activity of non-small lung cancer and ovarian
cancer cells, respectively [70]; REDDIT-BINARY or RDT-B is a social network dataset where the
task is to predict whether a graph belongs to a question-answer-based community or a discussion-
based community. On these datasets, we followed the approach in Xu et al. [74], which prescribes to
run a 10-fold cross-validation procedure and report the maximum of the average validation accuracy
across folds. Consistently with such work, we train our model starting from an initial learning
rate which is decayed after a fixed amount of epochs and we apply cell-readout operations on the
multiscale representations obtained by a Jumping Knowledge scheme [73] by performing averaging
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Table 8: Hyperparameter configurations on TUDatasets.
Hyperparameter MUTAG PTC PROTEINS NCI1 NCI109 IMDB-B IMDB-M RDT-B

Batch Size 32 32 128 32 32 128 128 32
Initial LR 0.01 0.01 0.01 0.001 0.001 0.001 0.0005 0.001
LR Dec. Steps 20 50 20 20 20 50 20 50
LR Dec. Strength 0.5 0.9 0.5 0.5 0.5 0.5 0.5 0.5
Hidden Dim. 64 16 32 16 64 16 64 64
Drop. Rate 0.5 0.0 0.0 0.5 0.0 0.0 0.5 0.0
Drop. Pos. cell read. comp read. comp read. comp read. comp read. comp read. comp read. comp read.
Initialisation sum mean mean mean mean mean mean mean
Cobound. in ↑-msg N N Y Y Y N N N
Num. Layers 4 4 3 4 4 4 4 4

or summation depending on the dataset, still in accordance with Xu et al. [74]. We ran a grid-search
to tune batch size, hidden dimension, dropout rate, initial learning rate along with its decay steps
and strengths, feature initialisation strategy of higher-dimensional cells (mean vs. sum), inclusion
of coboundary features in ↑-messages, number of layers and the dropout position (immediately
after readout on cells (“cell read.”) or the final readout on the complex (“comp read.”)). We report
the hyperparameter configurations in Table 8. We finally report that we did not employ Batch
Normalization layers in RDT-B since they were observed to produce severe instabilities in the
training procedure.

ZINC The ZINC benchmarks dataset have been constructed by the ZINC database provided
by the Irwin and Shoichet Laboratories in the Department of Pharmaceutical Chemistry at the
University of California, San Francisco (UCSF) [68]. Each graph represents a molecule, with node
features indicating the atom type and edge features the type of chemical bond between two atoms.
Graph targets correspond to the penalised water-octanol partition coefficient – logP [33]. In these
experiments, rings up to size k = 18 are mapped to 2-cells, and are assigned feature values as the
sum of the learnable atom embeddings for the included 0-cells (nodes). 1-cells are assigned learnable
bond embeddings if edge-features are considered, otherwise we apply the same policy employed for
2-cells. We employ the same predefined training, validation and test splits as in Dwivedi et al. [24],
and train our model by minimising the the Mean Absolute Error (MAE) loss on the train targets. As
prescribed by the benchmark, the optimisation procedure employs a batch size of 128 and a dynamic
learning rate which starts from 10−3 and is halved whenever the validation loss does not improve
after a patience value we set to 20. The training is early stopped as soon as it falls below 10−5. We
repeat the training with 10 different weight initialisations and report the mean of the test MAEs at
the time of early stopping. In accordance with the best performing baselines, our CIN model does
not use any dropout, and stacks 4 message passing layers with hidden size 128. In order to enforce
the parameter budget we reduce the size of hidden layers to 48 and only perform 2 message passing
layers. At each dimension, cell embeddings are readout via summation.

Mol-HIV This dataset comprises 41127 molecular graphs associated with a binary label represent-
ing their capacity to inhibit HIV replication. The benchmark provides predefined train, validation
and test sets based on the “scaffold splitting” procedure, which separates molecules based on their
two-dimensional structural frameworks [40]. As in ZINC, graphs are attributed at the level of nodes
and edges, and we directly employ the atom and bond embedding layers provided by the benchmark-
ing platform6 to populate 0- and 1-dimensional cells. Rings of size up to k = 6 are considered as
2-cells, and are endowed with feature vectors with the same procedure as in ZINC. The value k = 6
has been chosen from the pool of values {6, 8, 18} as it yielded the highest validation performance.
The architecture hyperparameters are directly replicated from the HIMP model in Fey et al. [27]:
2 message passing layers, dropout rate of 0.5 applied after each layer, 64 as size of hidden layers,
constant learning rate of 10−4, batch size of 128. We train our model for 150 epochs. The small
CIN model is obtained by simply reducing the size of hidden layers to 48. At each dimension, cell
embeddings are readout via averaging.

6https://github.com/snap-stanford/ogb/blob/master/ogb/graphproppred/mol_encoder.
py
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E.5 Ablation study on ZINC

We end this section by reporting the results of an ablation study we conducted on the ZINC dataset
to appreciate the contribution of including rings. In Table 9 we show the average test MAE for two
additional CIN models: “CIN No-Rings small” and “CIN No-Rings”, which differ from their original
counterparts in that they neglect 2-cells when performing message passing. In these experiments we
always make use of edge features and use the same hyperparameters as our original CIN model.

Table 9: ZINC Ablation with edge fea-
tures. The ablation shows the benefits of
integrating rings into the message pass-
ing procedure.

Method MAE

GatedGCN [11] 0.363±0.009
GIN [74] 0.252±0.014
PNA [20] 0.188±0.004
DGN [6] 0.168±0.003
HIMP [27] 0.151±0.006
GSN [10] 0.108±0.018

GIN-E Custom 0.196±0.007
CIN No-Rings small 0.174±0.006
CIN No-Rings 0.159±0.007
CIN-small 0.094±0.004
CIN 0.079±0.006

In line with our expectations, we observe a decrease in
the overall performance of both versions. They are outper-
formed by the GSN [10] and HIMP [27] models, which
either include structural information from cycle isomor-
phism counting (GSN) or additionally perform message
passing on the Junction Tree representation of molecules
(where rings are considered as nodes). At the same time,
we observe “CIN No-Rings” still outperforms all other
ring-agnostic baselines. We attribute such strong perfor-
mance to the more natural and richer modelling of edge
signals (1-cells): this model updates edge representations
at each layer as a function of the present representations
and those of the incident nodes (0-cells). As an additional
confirmation of this hypothesis, we implemented an ar-
chitecture which replicates the same structure as “CIN
No-Rings”, but replaces cellular message passing with
GIN-E layers [41]. These layers extend the message pass-
ing scheme in GIN by accounting for edge features. We
refer to this model as “GIN-E Custom”. Contrary to CIN,

it does not update edge representations and performs readout only at the node level. As expected,
we observed that “GIN-E Custom” is outperformed by all our models, including, in particular, “CIN
No-Rings”.
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