Machine Learning in Computational Biology CSC 2431

Lecture 9: Combining biological datasets

Instructor: Anna Goldenberg

What kind of data integration is there?

What kind of data integration is there?

- SNPs and gene expression
- Networks and gene expression (and mutations)
- ENCODE data. Combining different epigenetic signals and binding info
- Ontologies and genome annotations
- Now: integrating patient data

Data is available E.g. The Cancer Genome Atlas (TCGA)

Breast invasive carcinoma [BRCA]	Total	Exome ¹	SNP	Methylation	mRNA	miRNA	Clinical
Cases	1098	1077	1095	1080	1094	1077	1078

Ovarian serous cystadenocarcinoma [OV]	Total	Exome ¹	SNP	Methylation	mRNA	miRNA	Clinical
Cases	586	536	579	584	583	582	585

Glioblastoma multiforme [GBM]	Total	Exome ¹	SNP	Methylation	mRNA	miRNA	Clinical
Cases	528	512	523	524	508	496	520

Total of 33 cancers. 9 cancers have over 500+ samples All publicly available!

Why integrate patient data

Why integrate patient data

- To identify more homogeneous subsets of patients (that might respond similarly to a given drug)
- To help better predict response to drugs

Single data type driven integration

(Verhaak et al, Cancer Cell, 2010)

Single data type driven integration

What about methylation data?

(Verhaak et al, Cancer Cell, 2010)

More recent GBM study (Sturm et al, 2012)

Methods used in Verhaak 2010

- Factor analysis a dimensionality reduction method used to integrate mRNA data from 3 platforms
- Consensus clustering (consensus average linkage clustering) (Monti et al, 2003)
- SigClust cluster significance (Liu et al, 2008)
- Silhouette to identify core of clusters (Rousseeuw, 1987)
- ClaNC nearest centroid-based classifier to identify gene signatures (Dabney, 2006)

More recent GBM study (Sturm, 2012)

- Missing values imputed using k-NN (Troyanskaya, 2001)
- Unsupevised consensus clustering (R: clusterCons) (Monti, 2003, Wilkerson and Hayes, 2010)
- Consensus matrix was calculated using the k-means algorithm
- Number of clusters is decided by visual assessment

Breast Cancer Analysis (TCGA,2012)

- Integrated pathway analysis using PARADIGM
- Significantly mutated genes were identified using MuSiC package
- NMF for unsupervised clustering of somatic and CNV data, protein expression
- RPMM recursively partitioned mixture model (RPMM Bioconductor package)
- ConsensusClusterPlus (R-package) to combine clustering based on single data type
- MEMo (Mutual Exclusivity Modules) identifies mutually exclusive alterations targeting frequently altered genes that are likely to belong to the same pathway

PARADIGM

- Infers Integrated Pathway Levels (IPLs) for genes, complexes, and processes using pathway interactions and genomic and functional genomic data from a single patient sample.
- Data:
 - mRNA relative to normal samples
 - CNVs mapped to genes
 - Networks: Biocarta (Biocarta, NCIPID, Reactome) –
 Superimposed into SuperPathway
- Approach: belief propagation to maximize likelihood (hear more next class!)

Vaske, C. J. et al. Inference of patient-specific pathway activities from multidimensional cancer genomics data using PARADIGM. (2010) Bioinformatics 26

Silhouette statistic

- First presented by Rousseeuw (1987) to show graphically how well each pattern is classified to a cluster.
- For each pattern i in class Cr

 $Sil_i = \frac{b(i) - a(i)}{\max \left\{ b(i), a(i) \right\}}$

a(i)= average distance to all other patterns in Cr.b(i)= average distance to all other patterns in other clusters.

- $-1 \leq Sil_i \leq 1$
- Sil=1 : good assignment
- Sil=-1: wrong (bad) assignment
- Sil=0 : don't know ; pattern could be belong to either its current cluster or its nearest cluster.

Silhouette statistic

- a. Three clusters in 2 dimensions
- b. Three clusters in 10 dimensions, each cluster has 50 observations
- c. 4 clusters in 10 dimensions with randomly chosen centers
- d. Six clusters in 2 dimensions

Silhouette statistic

- a. Three clusters in 2 dimensions
- b. Three clusters in 10 dimensions, each cluster has 50 obser
- c. 4 clusters in 10 dimensions with randomly chosen centers
- d. Six clusters in 2 dimensions

Hossein Parsaei. Finding a number of clusters

NMF – non-negative matrix factorization

- Matrix factorization: NMF(V) = WxH
- W and H are *non-negative*
- Current methods (many gradient descent, alternating non-negative least squares, etc)
- Arora et al (2012) exact NMF method runs in polynomial time under separability condition of W

Consensus Clustering

- Resampling based method for class discovery and visualization of gene expression microarray data
- Goal: assessing stability
- Method:
 - For a 1000 iterations
 - . Resample data
 - 2. Cluster with fav. clust. method (hier, k-means)
 - Compute consensus matrix $\mathcal{M}(i,j) = \frac{\sum_h M^{(h)}(i,j)}{\sum_h I^{(h)}(i,j)}$
 - Partition D based on Consensus Matrix

Monti, S., Tamayo, P., Mesirov, J., Golub, T. (2003) Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Machine Learning, 52, 91-118.

SigClust

- Goal: assess statistical signficance of clustering
- H₀: data comes from a single Gaussian
- H_I: not from a single Gaussian
- Statistic: Cluster Index (CI) sum of within-class sums of squares about the mean of the cluster divided by the total sum of squares about the overall mean (mean-shift and scale invariant)

Liu, Yufeng, Hayes, David Neil, Nobel, Andrew and Marron, J. S. 2008, Statistical Significance of Clustering for High-Dimension, Low-Sample Size Data, Journal of the American Statistical Association 103(483) 1281–1293

Patient Specific Data Fusion (Yuan et al, 2011)

- Nonparametric Bayesian model (gene expression and CNV)
 - Feature selection (each feature is drawn from a multinomial distribution with unknown class proabilities
 - MCMC inference

Multiple Kernel Learning

 Mostly used in supervised cases, but exists in unsupervised scenario (Chuang, CVPR, 2012)

• Linear combination of kernels

$$K_{combine} = \sum_{v=1}^{m} \alpha_v K_v$$

iCluster (Shen et al, 2009)

- Gaussian latent variable model
- Sparsity regularization (Lasso-type)
- Latent variables (embedding is shared)

$$\mathbf{x}_{ik} = \mathbf{W}_k \mathbf{z}_i + \epsilon_{ik}, i = 1, \dots, n, k = 1, \dots, m$$

Drawbacks of existing methods

- A lot of manual processing
- Many steps in the pipeline
- Integration mostly done in the feature space – if there is signal in a combination of features, it'll be lost
- Focusing on consensus what if there is complementary information?

Similarity Network Fusion (Wang et al, 2014)

- Integrate data in the patient space
- I. Construct patient similarity matrix
- 2. Fuse multiple matrices

I. Construct similarity networks

Patient similarity:

$$W(i,j) = exp(\frac{\rho(x_i, x_j)^2}{\eta \xi_{ij}^2})$$

Adjacency matrix:

$$P(i,j) = \frac{W(i,j)}{\sum_{k \in V} W(i,k)}$$

Construct similarity networks

I)
$$\mathcal{W}(i,j) = \begin{cases} W(i,j) \text{ if } x_j \in KNN(x_i) \\ 0 \text{ otherwise} \end{cases}$$

Sparsification

1.

2)
$$\mathcal{P}(i,j) = \frac{\mathcal{W}(i,j)}{\sum_{x_k \in KNN(x_i)} \mathcal{W}(i,k)}$$

Combine networks

2.

Similarity Networks **Fusion Iterations** $P_{t+1}^{(1)} = \mathcal{P}^{(1)} \times (P_t^{(2)}) \times (\mathcal{P}^{(1)})'$ $P_{t+1}^{(2)} = \mathcal{P}^{(2)} \times (P_t^{(1)}) \times (\mathcal{P}^{(2)})'$ Patient Patient similarity: mRNA-based **DNA Methylation-based** Supported by all data

Combine networks

2.

Network Fusion

Fusing 2 networks:

$$P_{t+1}^{(1)} = \mathcal{P}^{(1)} \times (P_t^{(2)}) \times (\mathcal{P}^{(1)})'$$
$$P_{t+1}^{(2)} = \mathcal{P}^{(2)} \times (P_t^{(1)}) \times (\mathcal{P}^{(2)})'$$

Fusing m networks:

$$P_{t+1}^{(i)} = \mathcal{P}^{(i)} \times \left(\frac{1}{m-1} \sum_{j \neq i} P_t^{(j)}\right) \times (\mathcal{P}^{(i)})' + \eta I$$

Experiments

Data:

2 simulations 5 TCGA cancers METABRIC (Large Breast Cancer db)

Comparative Methods:

Concatenation iCluster PDSB Multiple kernel learning

Criteria:

-log₁₀(log rank pvalue)

Silhouette score (cluster homogeneity)

Running time

Simulation I – complementarity

Simulation 2 - removing noise

Gaussian Noise

Simulation 2 - removing noise

TCGA Data

Cancer Type	Detionts	mRNA	Methylation	miRNA	Controls		
	ratients				<u>mRNA</u>	Methylation	
GBM	215	12,042	1,491	534	10	-	
BIC	105	17,814	23,094	1,046	63	27	
KRCCC	124	20,532	24,976	1,046	68	199	
LSCC	105	12,042	27,578	1,046	-	27	
COAD	92	17814	27578	705	19	37	

Gene pre-selection across cancers

Bo Wang

Clustering of the network

Patient networks: advantages and disadvantages

- Integrative feature selection
- Growing the network requires extra work
- Unsupervised hard to turn into a supervised problem
- Creates a unified view of patients based on multiple heterogeneous sources
- Integrates gene and non-gene based data
- No need to do gene pre-selection
- Robust to different types of noise
- ✓ Scalable

Data integration - future

Data integration - future

- Simultaneous feature selection and data integration
- Supervised vs unsupervised approaches do we really need unsupervised methods?
- Priors on contributions of different types of data
- Automate feature pre-selection if necessary

Next class

- iCluster joint latent variable model (Shen et al, 2009) Ladislav
- PARADIGM Andrew

 Next topic: pharmacogenomics (guest lecture by Dr Benjamin Haibe-Kains)