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What kind of data integration is there? 

�  SNPs and gene expression 
� Networks and gene expression (and 

mutations) 
� ENCODE data. Combining different 

epigenetic signals and binding info 
� Ontologies and genome annotations  

� Now: integrating patient data 



Data is available 
E.g. The Cancer Genome Atlas (TCGA) 

Total of 33 cancers. 
9 cancers have over 500+ samples 
All publicly available!  



Why integrate patient data 



Why integrate patient data 

� To identify more homogeneous subsets of 
patients (that might respond similarly to a 
given drug) 

� To help better predict response to drugs 



mRNA CNV mutations clinical 

more  
genes 

p-value = {0.2,0.6,0.5} 

(Verhaak et al, Cancer Cell, 2010) 

more  
genes 



mRNA CNV mutations clinical 

more  
genes 

p-value = {0.2,0.6,0.5} 

(Verhaak et al, Cancer Cell, 2010) 

more  
genes 

What about methylation data? 



More recent GBM study (Sturm et al, 2012)  



Methods used in Verhaak 2010 
�  Factor analysis – a dimensionality reduction method – 

used to integrate mRNA data from 3 platforms 

�  Consensus clustering (consensus average linkage 
clustering) (Monti et al, 2003) 

�  SigClust – cluster significance (Liu et al, 2008) 

�  Silhouette to identify core of clusters (Rousseeuw,1987) 

�  ClaNC – nearest centroid-based classifier to identify 
gene signatures (Dabney, 2006) 



More recent GBM study (Sturm, 
2012) 
� Missing values – imputed using k-NN 

(Troyanskaya, 2001) 
� Unsupevised consensus clustering  (R: 

clusterCons) (Monti, 2003, Wilkerson and 
Hayes, 2010) 

� Consensus matrix was calculated using 
the k-means algorithm 

� Number of clusters is decided by visual 
assessment 



Breast Cancer Analysis (TCGA,2012) 

�  Integrated pathway analysis using PARADIGM 
�  Significantly mutated genes were identified using MuSiC 

package 
�  NMF for unsupervised clustering of somatic and CNV 

data, protein expression 
�  RPMM – recursively partitioned mixture model (RPMM 

Bioconductor package) 
�  ConsensusClusterPlus (R-package) to combine 

clustering based on single data type 
�  MEMo (Mutual Exclusivity Modules) – identifies mutually 

exclusive alterations targeting frequently altered genes 
that are likely to belong to the same pathway 



PARADIGM 
�  Infers Integrated Pathway Levels (IPLs) for genes, complexes, 

and processes using pathway interactions and genomic and 
functional genomic data from a single patient sample. 

�  Data:  
◦  mRNA relative to normal samples 

◦  CNVs mapped to genes 

◦  Networks: Biocarta (Biocarta, NCIPID, Reactome) – 
Superimposed into SuperPathway 

�  Approach: belief propagation to maximize likelihood 
(hear more next class!) 

Vaske, C. J. et al. Inference of patient-specific pathway activities from multi-
dimensional cancer genomics data using PARADIGM. (2010) Bioinformatics 26 
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Silhouette statistic 
a.  Three clusters in 2 dimensions 
b.  Three clusters in 10 dimensions, each cluster has 50 observations 
c.  4 clusters in 10 dimensions with randomly chosen centers 
d.  Six clusters in 2 dimensions   

(a) (d) 



Silhouette statistic 
a.  Three clusters in 2 dimensions 
b.  Three clusters in 10 dimensions, each cluster has 50 observations 
c.  4 clusters in 10 dimensions with randomly chosen centers 
d.  Six clusters in 2 dimensions   

Hossein Parsaei. Finding a number of clusters 



NMF – non-negative matrix 
factorization 

�  Matrix factorization: NMF(V) = WxH 

�  W and H are non-negative 

�  Current methods (many – gradient descent, 
alternating non-negative least squares, etc) 

�  Arora et al (2012) – exact NMF method runs in 
polynomial time under separability condition of 
W 



�  Resampling based method for class discovery and 
visualization of gene expression microarray data 

�  Goal: assessing stability 
�  Method:  
◦  For a 1000 iterations 

1.  Resample data 
2.  Cluster with fav. clust. method (hier, k-means) 

◦  Compute consensus matrix 
◦  Partition D based on Consensus Matrix 
 

Consensus Clustering 

Monti, S., Tamayo, P., Mesirov, J., Golub, T. (2003) Consensus Clustering: A Resampling-
Based Method for Class Discovery and Visualization of Gene Expression Microarray 
Data. Machine Learning, 52, 91-118. 



SigClust 
�  Goal: assess statistical signficance of clustering 
�  H0: data comes from a single Gaussian 
�  H1: not from a single Gaussian 
�  Statistic: Cluster Index (CI) - sum of within-class 

sums of squares about the mean of the cluster 
divided by the total sum of squares about the  
overall mean (mean-shift and scale invariant) 

Liu, Yufeng, Hayes, David Neil, Nobel, Andrew and Marron, J. S, 2008, Statistical 
Significance of Clustering for High-Dimension, Low-Sample Size Data, Journal of the 
American Statistical Association 103(483) 1281–1293 



Patient Specific Data Fusion (Yuan 
et al, 2011) 
� Nonparametric Bayesian model (gene 

expression and CNV) 
◦  Feature selection (each feature is drawn from 

a multinomial distribution with unknown class 
proabilities 
◦ MCMC inference   



Multiple Kernel Learning 

� Mostly used in supervised cases, but 
exists in unsupervised scenario (Chuang, 
CVPR, 2012) 

� Linear combination of kernels 

10 Alternative approaches

In this paper, we consider four alternative approaches. All four of these approaches satisfied the
following two criteria: 1) code availability or ease of implementation, making sure that the code
runs within a reasonable amount of time; and 2) the approach does not require excessive manual
tuning. iCluster [11] and concatenation are the two most commonly used methods to integrate
biological data in application to disease subtyping. Patient Specific Data Fusion (PSDF) [1] and
Multiple Kernel Learning (MKL) [29] are promising machine learning methods that however have
limitations. For example, PSDF can only integrate two types of data and is very computationally
intensive, though appears to perform similarly to iCluster in our simulations (Figures S1 and S4).
MKL, developed for the task of linear kernel combination, is not ideally suited for this task and
has performed significantly worse in application to the first simulation (Figure S1).

10.1 Concatenation

Concatenation is a simple approach for combining data types. Briefly, we normalized the data per
data type and then concatenated all the measurements for each patient into one long vector. The
combined high-dimensional patient-by-feature matrix was then used as input into a hierarchical
clustering algorithm available as part of matlab distribution that yielded a set of clusters. We
chose correlation as the distance metric and ‘average’ as the linkage function. The number of
clusters was chosen to be the same as the result of clustering of the SNF fused matrix.

10.2 iCluster

iCluster is a Gaussian latent variable model with sparsity regularization in Lasso-type optimization
framework. Briefly, the main assumption behind this approach is that the sets of m genomic data
domains {xk}mk=1 shared a common set of latent variables zi using the following linear model:

xik = Wkzi + ✏ik, i = 1, . . . , n, k = 1, . . . ,m

where Wk denotes the loading matrix associated with the k-th genomic data and n is the number
of patients.

The common variables zi represent the underlying driving factors on patient i that can be inter-
preted as disease subtype assignment. iCluster uses the Expectation-Maximization (EM) algorithm
to estimate parameteres due to the assumption that the error in the model follows a Gaussian dis-
tribution. Sparsity in the estimated Wk is enforced by adding an `1 norm regularization, where
� = 0.2 as is suggested in the method’s manual.

10.3 Multiple Kernel Learning

Multiple Kernel Learning (MKL) learns a linear combination of kernels into a unified one that
improves the performance of classifiers. For instance, if we have m di↵erent kernels Kv, v =
1, . . . ,m, the objective function is to learn a vector ↵ = {↵1, . . . ,↵m} that makes the combined
kernel Kcombine =

Pm
v=1 ↵vKv more suitable for either supervised or unsupervised tasks. Usually,

MKL is used in supervised setting because known labels can be used to guide the search of the
optimal ↵. Recently, an unsupervised MKL algorithm [1] was proposed that can be used together
with spectral clustering framework. Eigen-structure is used to help the search of ↵, however the

34



iCluster  (Shen et al, 2009) 

� Gaussian latent variable model 
�  Sparsity regularization (Lasso-type) 
� Latent variables (embedding is shared) 

10 Alternative approaches
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optimal ↵. Recently, an unsupervised MKL algorithm [1] was proposed that can be used together
with spectral clustering framework. Eigen-structure is used to help the search of ↵, however the
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Drawbacks of existing methods 

� A lot of manual processing 
� Many steps in the pipeline 
�  Integration mostly done in the feature 

space – if there is signal in a combination 
of features, it’ll be lost 

�  Focusing on consensus – what if there is 
complementary information? 



Similarity Network Fusion (Wang et al, 2014) 

�  Integrate data in the patient space 
1.  Construct patient similarity matrix 
2.  Fuse multiple matrices 
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   Construct similarity networks 1.  

Supplementary Method

Bo Wang and Anna Goldenberg

SickKids Research Institute, Toronto, Canada
University of Toronto, Toronto, Canada

1 Problem Formulation and Notations

Given n patients and m measurements (e.g. m is a number of genes in a mRNA
expression patient profile), we want to identify C clusters of patients, each of
which corresponds to a (known or novel) disease subtype. We associate each pa-
tient x

i

with a label indicator vector y
i

2 {0, 1}C such that y
i

(k) = 1 if patient
x

i

belongs to the k-th cluster (subtype), otherwise y
i

(k) = 0. So a Partition Ma-

trix Y = [yT

1 ;y
T

2 ; . . . ;y
T

n

]T 2 {0, 1}n⇥C is used to represent a clustering scheme.
A patient similarity network is represented as a graph G = (V, E). The vertices
V correspond to the patients {x1, x2, . . . , xn

}, and the edges E are weighted as is
represented by an n⇥ n similarity matrix W with W

ij

indicating the similarity
between patients x

i

and x

j

. The graph is constructed according to a chosen dis-
tance metric (see below). N

i

represents a set of x
i

’s neighbours in graph G, not
including x

i

. In this paper, we use K Nearest Neighbors (KNN), i.e., |N
i

| = K.

2 Constructing Patient Network

Traditionally in computational biology networks and network approaches are
used in conjunction with gene-gene interaction information, where very large
networks between genes (tens of thousands) are derived based on relatively small
sets of patients (hundreds to a couple of thousand at best). In our work, we
construct a network between patients. The weight of each edge in this network
is associated with the similarity (e.g. correlation) between patients. The idea is
that patients that have the same disease subtype are more likely to be similar
than patients that have di↵erent subtypes. We denote ⇢(x

i

, x

j

) as the correlation
between patients x

i

and x

j

. We then use a scaled exponential similarity kernel
to determine the weight of the edge e

ij

:

W (i, j) = exp(
⇢(x

i

, x

j

)2

⌘⇠

2
ij

), (1)

where ⌘ is a hyperparameter that can be empirically set and ⇠

ij

is used to
eliminate the scale problem. In our paper, we define

⇠

ij

=
mean(⇢(x

i

,N
i

)) +mean(⇢(x
j

,N
j

))

2
, (2)

Patient similarity: 

2 Bo Wang and Anna Goldenberg

where mean(⇢(x
i

,N
i

)) is the average value of the correlations between x

i

and
each of its neighbours.

The advantage of our construction of the patient network is two-fold: 1) it
augments the correlation between patients which facilitates the clustering task
afterwards; 2) it reduces the e↵ect of scale and noise in the data.

A natural kernel acting on functions on V can be defined by normalization
of the weight matrix as follows:

P (i, j) =
W (i, j)P

k2V

W (i, k)
, (3)

so that
P

j2V

P (i, j) = 1.
Given a graph, G, we construct another graph G: the vertices of G are the

same as in G, and the similarities between non-neighboring points (in terms of
the pairwise similarity values) are set to zero. Essentially we make the assump-
tion that local similarities (high values) are more reliable than remote ones;
and we thus assign similarities to non-neighbors through graph di↵usion on the
network. This is a mild assumption widely adopted by other manifold learning
algorithms.

Using K nearest neighbors (KNN) to measure local a�nity, we construct G’s
similarity matrix as:

W(i, j) =

⇢
W (i, j) if x

j

2 KNN(x
i

)
0 otherwise

(4)

Then the corresponding kernel becomes:

P(i, j) =
W(i, j)P

xk2KNN(xi)
W(i, k)

(5)

Note that P carries the full information about the similarity of each data point
to all others whereas P only encodes the similarity to nearby data points. For
clarity, we call P the status matrix and P the kernel matrix. Our algorithm
always starts from P as the initial status using P as the kernel matrix in the
di↵usion process for computational e�ciency.

3 Cross Di↵usion Process (CrDP) with m = 2 Similarity

Matrices (Views)

Givenm views from di↵erent domains, we can construct similarity matricesW (j)

and W(j) using Eq 4 for the j-th view, j = 1, . . . ,m. P (j) and P(j) are obtained
from Eqs 3 and 5 respectively.

Below we introduce our network fusion Cross-Di↵usion Process (CrDP).
First, we calculate the status matrices P (1) and P

(2) as in Eq 3 from two input
similarity matrices; then the kernel matrices P(1) and P(2) are obtained as in

Eq 5. Let P (1)
0 = P

(1) and P

(2)
0 = P

(2). The cross-di↵usion process is defined as:

P

(1)
t+1 = P(1) ⇥ (P (2)

t

)⇥ (P(1))0 (6)

P

(2)
t+1 = P(2) ⇥ (P (1)

t

)⇥ (P(2))0 (7)

Adjacency matrix: 
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where mean(⇢(x
i

,N
i

)) is the average value of the correlations between x

i

and
each of its neighbours.

The advantage of our construction of the patient network is two-fold: 1) it
augments the correlation between patients which facilitates the clustering task
afterwards; 2) it reduces the e↵ect of scale and noise in the data.

A natural kernel acting on functions on V can be defined by normalization
of the weight matrix as follows:

P (i, j) =
W (i, j)P

k2V

W (i, k)
, (3)

so that
P

j2V

P (i, j) = 1.
Given a graph, G, we construct another graph G: the vertices of G are the

same as in G, and the similarities between non-neighboring points (in terms of
the pairwise similarity values) are set to zero. Essentially we make the assump-
tion that local similarities (high values) are more reliable than remote ones;
and we thus assign similarities to non-neighbors through graph di↵usion on the
network. This is a mild assumption widely adopted by other manifold learning
algorithms.

Using K nearest neighbors (KNN) to measure local a�nity, we construct G’s
similarity matrix as:

W(i, j) =

⇢
W (i, j) if x

j

2 KNN(x
i

)
0 otherwise

(4)

Then the corresponding kernel becomes:

P(i, j) =
W(i, j)P

xk2KNN(xi)
W(i, k)

(5)

Note that P carries the full information about the similarity of each data point
to all others whereas P only encodes the similarity to nearby data points. For
clarity, we call P the status matrix and P the kernel matrix. Our algorithm
always starts from P as the initial status using P as the kernel matrix in the
di↵usion process for computational e�ciency.

3 Cross Di↵usion Process (CrDP) with m = 2 Similarity

Matrices (Views)

Givenm views from di↵erent domains, we can construct similarity matricesW (j)

and W(j) using Eq 4 for the j-th view, j = 1, . . . ,m. P (j) and P(j) are obtained
from Eqs 3 and 5 respectively.

Below we introduce our network fusion Cross-Di↵usion Process (CrDP).
First, we calculate the status matrices P (1) and P

(2) as in Eq 3 from two input
similarity matrices; then the kernel matrices P(1) and P(2) are obtained as in

Eq 5. Let P (1)
0 = P

(1) and P

(2)
0 = P

(2). The cross-di↵usion process is defined as:

P

(1)
t+1 = P(1) ⇥ (P (2)

t

)⇥ (P(1))0 (6)

P

(2)
t+1 = P(2) ⇥ (P (1)

t

)⇥ (P(2))0 (7)
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where mean(⇢(x
i

,N
i

)) is the average value of the correlations between x

i

and
each of its neighbours.

The advantage of our construction of the patient network is two-fold: 1) it
augments the correlation between patients which facilitates the clustering task
afterwards; 2) it reduces the e↵ect of scale and noise in the data.

A natural kernel acting on functions on V can be defined by normalization
of the weight matrix as follows:

P (i, j) =
W (i, j)P

k2V

W (i, k)
, (3)

so that
P

j2V

P (i, j) = 1.
Given a graph, G, we construct another graph G: the vertices of G are the

same as in G, and the similarities between non-neighboring points (in terms of
the pairwise similarity values) are set to zero. Essentially we make the assump-
tion that local similarities (high values) are more reliable than remote ones;
and we thus assign similarities to non-neighbors through graph di↵usion on the
network. This is a mild assumption widely adopted by other manifold learning
algorithms.

Using K nearest neighbors (KNN) to measure local a�nity, we construct G’s
similarity matrix as:

W(i, j) =

⇢
W (i, j) if x

j

2 KNN(x
i

)
0 otherwise

(4)

Then the corresponding kernel becomes:

P(i, j) =
W(i, j)P

xk2KNN(xi)
W(i, k)

(5)

Note that P carries the full information about the similarity of each data point
to all others whereas P only encodes the similarity to nearby data points. For
clarity, we call P the status matrix and P the kernel matrix. Our algorithm
always starts from P as the initial status using P as the kernel matrix in the
di↵usion process for computational e�ciency.

3 Cross Di↵usion Process (CrDP) with m = 2 Similarity

Matrices (Views)

Givenm views from di↵erent domains, we can construct similarity matricesW (j)

and W(j) using Eq 4 for the j-th view, j = 1, . . . ,m. P (j) and P(j) are obtained
from Eqs 3 and 5 respectively.

Below we introduce our network fusion Cross-Di↵usion Process (CrDP).
First, we calculate the status matrices P (1) and P

(2) as in Eq 3 from two input
similarity matrices; then the kernel matrices P(1) and P(2) are obtained as in

Eq 5. Let P (1)
0 = P

(1) and P

(2)
0 = P

(2). The cross-di↵usion process is defined as:

P

(1)
t+1 = P(1) ⇥ (P (2)

t

)⇥ (P(1))0 (6)

P
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t+1 = P(2) ⇥ (P (1)

t

)⇥ (P(2))0 (7)
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where mean(⇢(x
i

,N
i

)) is the average value of the correlations between x

i

and
each of its neighbours.

The advantage of our construction of the patient network is two-fold: 1) it
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(i.e. it’s not clear which kernel should be used), making the problem di�cult for MKL where the
structure must be encoded in the choice of the kernel. In general, we actually found that MKL
performs worse than iCluster, for example, presumably due to the lack of adequate accounting for
non-linearity.

5.1.4 Patient Specific Data Fusion

Patient Specific Data Fusion (PSDF) [27] is a nonparametric Bayesian model for discovering cancer
subtypes by combing gene expression and copy number variations. The model is based on an idea
of Hierarchical Dirichlet Processes [15]. Each patient is inferred with a binary state variable that
defines whether their data are concordant across the data sets. In addition, feature selection is
incorporated in the model by assuming each feature is drawn from a multinomial distribution with
unknown class probabilities. Multiple MCMC chains are employed to improve the mixing e↵ect
and infer the statical uncertainties in PSDF. In our experiments we used the authors’ code, setting
100 MCMC iterations in each step and fusion weight to 0.5 as was suggested by the authors.

While PSDF appears to be a powerful framework for unsupervised multi-view learning, there
are essential disadvantages precluding the use of PSDF to analyze the real cancer data used in
this paper: 1) large number of unknown parameters make the model inference very di�cult and
computationally expensive; 2) it is only suitable for combing two data types. PSDF could poten-
tially be applied to the METABRIC cohort which only contains 2 data types, but unfortunately
the approach is not scalable to the full size of this data.

6 Supplementary Methods

6.1 Stopping Criteria

SNF is proved to converge, and empirically it converges fast. We keep track of the relative change
in consecutive rounds Et = kWt+1�Wtk

kWtk . One simple stopping criteria is that we set a threshold

✏ = 10�6 and if the relative change is lower than the threshold, we stop the iteration. Some
empirical observations about the convergence can be found in Figures 5, 6 and 7. We note that,
when the number of iterations exceeds 20, it is always enough to converge. So we empirically set
the number of iterations in the range of [10, 20].

6.2 Parameter Selection

In our method, there are two free parameters ⌘ and K. Our method is not sensitive to these two
parameters, see Figures 8, 9 and 10. In our method, a reasonable range for ⌘ would be 0.3�1. The
rule of thumb for choosing parameter K is K = N/C where N is the number of patients, and C is
the number of clusters that is believed to be in the data. However, if C is unknown, we usually set
K ⇡ N/10.

6.3 Model Selection

How to identify the number of subtypes is a key problem in disease classification. Spectral Cluster-
ing method provides two main approaches to decide the optimal number of clusters. One is to use
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where mean(⇢(x
i

,N
i

)) is the average value of the correlations between x

i

and
each of its neighbours.

The advantage of our construction of the patient network is two-fold: 1) it
augments the correlation between patients which facilitates the clustering task
afterwards; 2) it reduces the e↵ect of scale and noise in the data.

A natural kernel acting on functions on V can be defined by normalization
of the weight matrix as follows:

P (i, j) =
W (i, j)P

k2V

W (i, k)
, (3)

so that
P

j2V

P (i, j) = 1.
Given a graph, G, we construct another graph G: the vertices of G are the

same as in G, and the similarities between non-neighboring points (in terms of
the pairwise similarity values) are set to zero. Essentially we make the assump-
tion that local similarities (high values) are more reliable than remote ones;
and we thus assign similarities to non-neighbors through graph di↵usion on the
network. This is a mild assumption widely adopted by other manifold learning
algorithms.

Using K nearest neighbors (KNN) to measure local a�nity, we construct G’s
similarity matrix as:

W(i, j) =

⇢
W (i, j) if x

j

2 KNN(x
i

)
0 otherwise

(4)

Then the corresponding kernel becomes:

P(i, j) =
W(i, j)P

xk2KNN(xi)
W(i, k)

(5)

Note that P carries the full information about the similarity of each data point
to all others whereas P only encodes the similarity to nearby data points. For
clarity, we call P the status matrix and P the kernel matrix. Our algorithm
always starts from P as the initial status using P as the kernel matrix in the
di↵usion process for computational e�ciency.

3 Cross Di↵usion Process (CrDP) with m = 2 Similarity

Matrices (Views)

Givenm views from di↵erent domains, we can construct similarity matricesW (j)

and W(j) using Eq 4 for the j-th view, j = 1, . . . ,m. P (j) and P(j) are obtained
from Eqs 3 and 5 respectively.

Below we introduce our network fusion Cross-Di↵usion Process (CrDP).
First, we calculate the status matrices P (1) and P

(2) as in Eq 3 from two input
similarity matrices; then the kernel matrices P(1) and P(2) are obtained as in

Eq 5. Let P (1)
0 = P

(1) and P

(2)
0 = P

(2). The cross-di↵usion process is defined as:

P

(1)
t+1 = P(1) ⇥ (P (2)

t

)⇥ (P(1))0 (6)

P

(2)
t+1 = P(2) ⇥ (P (1)

t

)⇥ (P(2))0 (7)
Fusing 2 networks: 
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where P

(1)
t

is the status matrix after t iterations. This procedure exchanges
the status matrices each time generating two parallel inter-changing di↵usion

processes. After t steps, the overall status matrix is computed as P (c) = 1
2 (P

(1)
t

+

P

(2)
t

). Since P is a KNN graph of P which can reduce some noise between
instances, our cross di↵usion process is robust to the noise in similarity measures.

Another way to think of P (1)
t+1(i, j) is as

X

l,k2Ni
T

Nj

P

(1)
0 (i, k)(P (2)

t

(k, l))P (1)
0 (j, l)

(the same for P (2)
t+1(i, j)). Ni

represents the neighborhood of x
i

, and P(1) = P

(1)
0 .

We can see that similarity information is only propagated within the common
neighborhood. This renders the cross di↵usion process robust to noise. An impor-
tant observation is that if x

i

and x

j

have common neighbors in both similarity
matrices (views), it is highly possible that they belong to the same class. Another
essential fact our method benefits from is that even if x

i

and x

j

are not very
similar in one metric, their similarity can be expressed in another metric and
this similarity information can be propagated through cross di↵usion process.

We use regularization to increase CrDP’s robustness:

P

(1)
t+1 = P(1) ⇥ (P (2)

t

)⇥ (P(1))0 + ⌘I

P

(2)
t+1 = P(2) ⇥ (P (1)

t

)⇥ (P(2))0 + ⌘I (8)

By adding the regularization term we (1) ensure that throughout the di↵usion
process a patient is always most similar to himself than to other patients; (2)
ensure that our final network is full rank, important for the classification and
clustering applications of the final network. Finally, we have found that the use
of regularization leads to quicker convergence of CrDP.

The input to our algorithm can be feature vectors, pairwise distances, or
pairwise similarities. The learned status matrix P

(c) can then be used for re-
trieval, clustering, and classification; in this paper, we focus on clustering. We
refer readers to [3] for more details.

4 Extension to m > 2

We extend the CrDP above to multiple (m > 2) similarity matrices (views) by
adjusting Eq (6) as follows

P

(i)
t+1 = P(i) ⇥ (

1

m� 1

X

j 6=i

P

(j)
t

)⇥ (P(i))0 + ⌘I

where i = 1, . . . ,m. The corresponding final status matrix is computed as P (c) =
1
m

P
m

i=1 P
(i)
t

.



Experiments 

Data:!
"2 simulations"
"5 TCGA cancers"
"METABRIC (Large "

         Breast Cancer db)"
"
Comparative Methods:!

"Concatenation"
"iCluster"
"PDSB"
"Multiple kernel learning"

"

Criteria: !!
"
"
-log10(log rank pvalue)"
"
Silhouette score  (cluster homogeneity)"
"
Running time"



   Simulation 1 – complementarity 



Simulation 2  - removing noise  



Simulation 2  - removing noise  
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Gene pre-selection across cancers 

Bo Wang 



Clustering of the network 

Bo Wang 



Patient networks:  
advantages and disadvantages 

ü Creates a unified view of patients based on multiple 
heterogeneous sources 

ü  Integrates gene and non-gene based data 
ü No need to do gene pre-selection 
ü  Robust to different types of noise 
ü  Scalable 

Package on CRAN:  SNFtool 

-  Integrative feature selection 
-  Growing the network requires extra work 
-  Unsupervised – hard to turn into a supervised problem 



Data integration - future 



Data integration - future 

�  Simultaneous feature selection and data 
integration 

�  Supervised vs unsupervised approaches – 
do we really need unsupervised methods? 

� Priors on contributions of different types 
of data 

� Automate feature pre-selection if 
necessary 



Next class 

�  iCluster – joint latent variable model (Shen et 
al, 2009)  - Ladislav 

�  PARADIGM – Andrew 

�  Next topic: pharmacogenomics (guest lecture 
by Dr Benjamin Haibe-Kains) 


