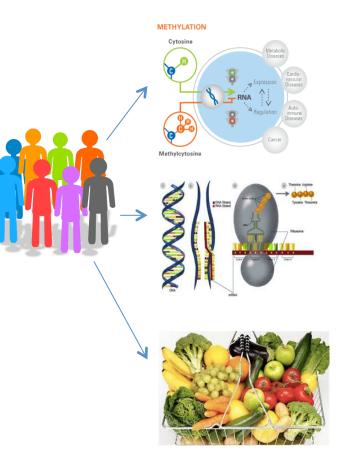


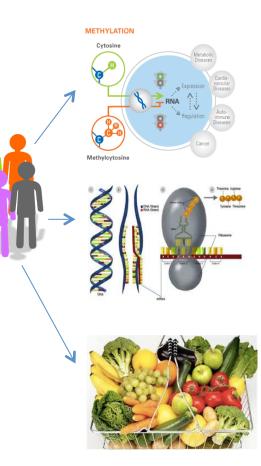
Patient networksAnna Goldenberg
andin cancer:Anna Goldenberg
andandThe Goldenberg Labaplatform for dataThe Goldenberg Labintegration

Outline

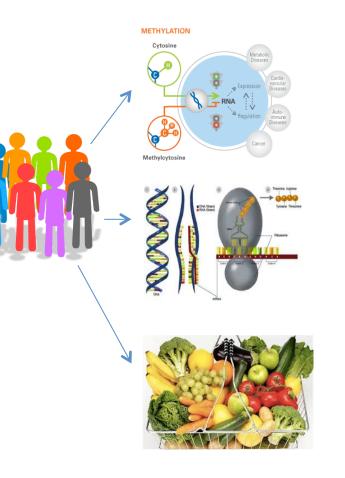
- Data integration problem setup
- Patient network representation why and how
- Similarity Network Fusion novel integration method
- Network driven analysis:
 - Cancer heterogeneity
 - Differential feature selection
- Missing data
 - o Random entries
 - o Patients
- Taking networks further:
 - Survival analysis (novel formulation)
 - Personalized medicine



How to combine?



How to combine?

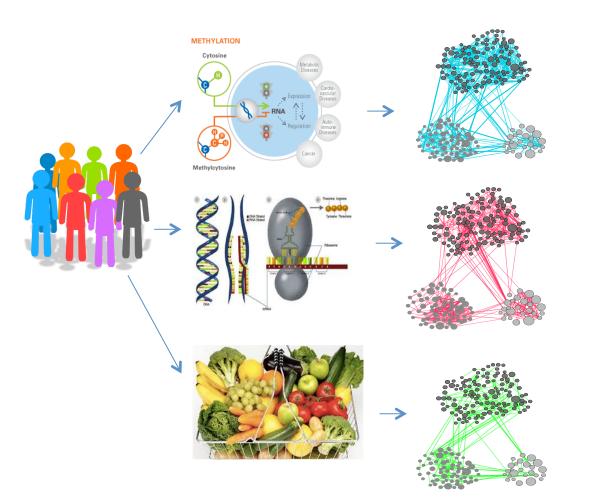


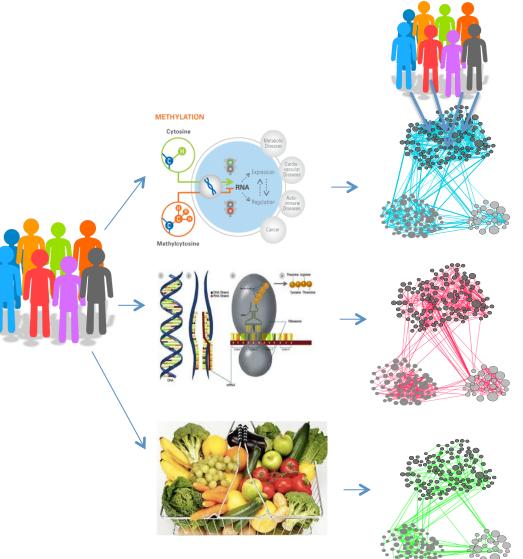
Issues

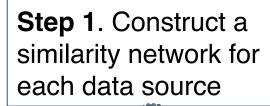
 Large number of measurements, small sample sizes (p>>n)

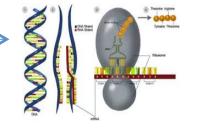
 Need to integrate common and complementary information

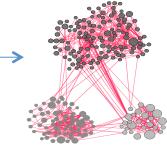
 Not all measurements can be mapped to the same unit (gene)

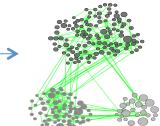


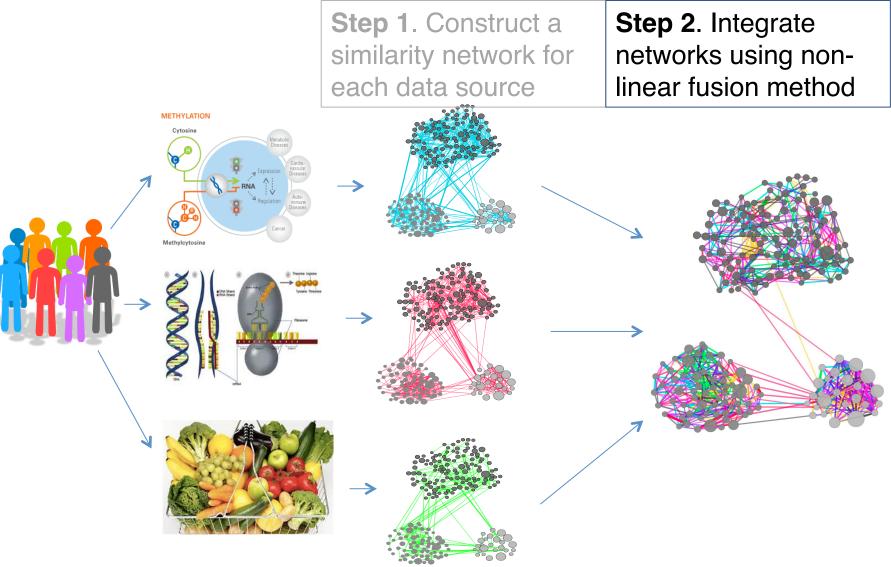


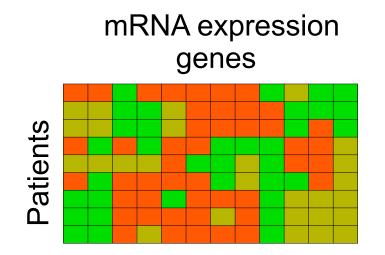








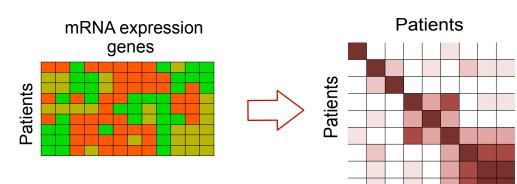




Patient similarity:
$$W(i,j) = exp(\frac{\rho(x_i,x_j)^2}{\eta\xi_{ij}^2})$$

Adjacency matrix:

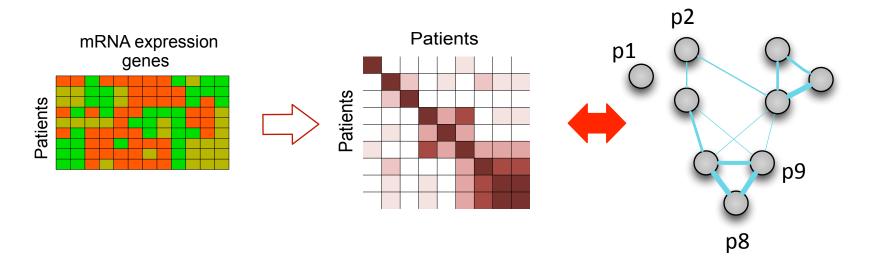
$$P(i,j) = \frac{W(i,j)}{\sum_{k \in V} W(i,k)}$$

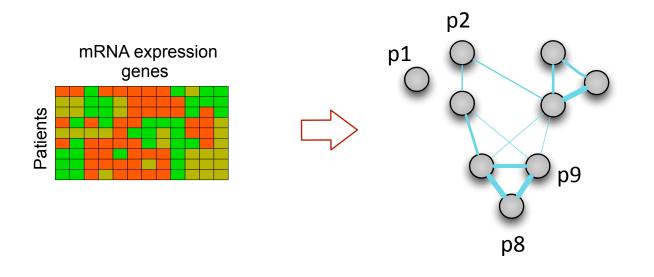


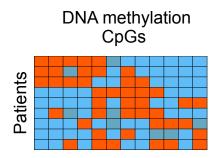
1)
$$\mathcal{W}(i,j) = \begin{cases} W(i,j) \text{ if } x_j \in KNN(x_i) \\ 0 \text{ otherwise} \end{cases}$$

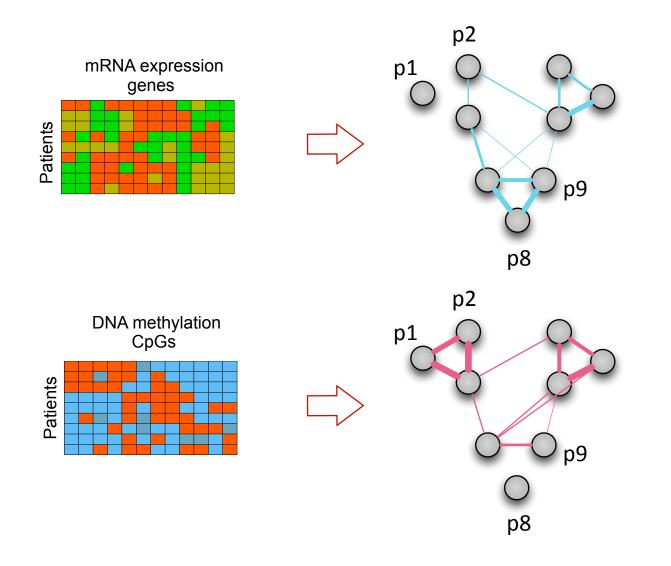
Sparsification

2)
$$\mathcal{P}(i,j) = \frac{\mathcal{W}(i,j)}{\sum_{x_k \in KNN(x_i)} \mathcal{W}(i,k)}$$

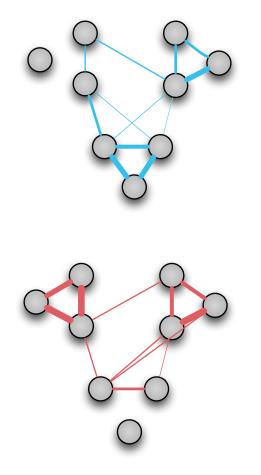








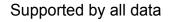
Sample Similarity Networks



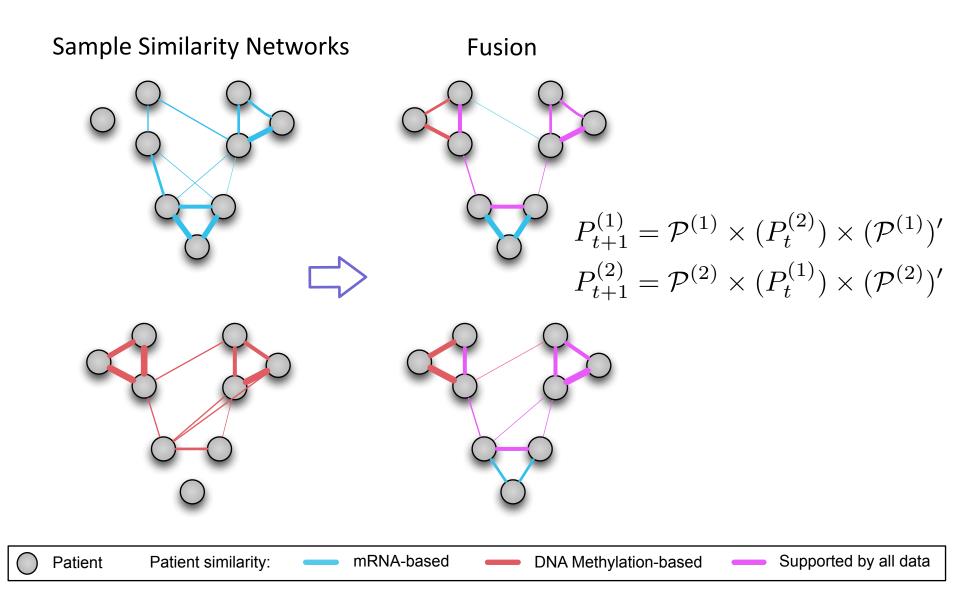
2.

mRNA-based

DNA Methylation-based



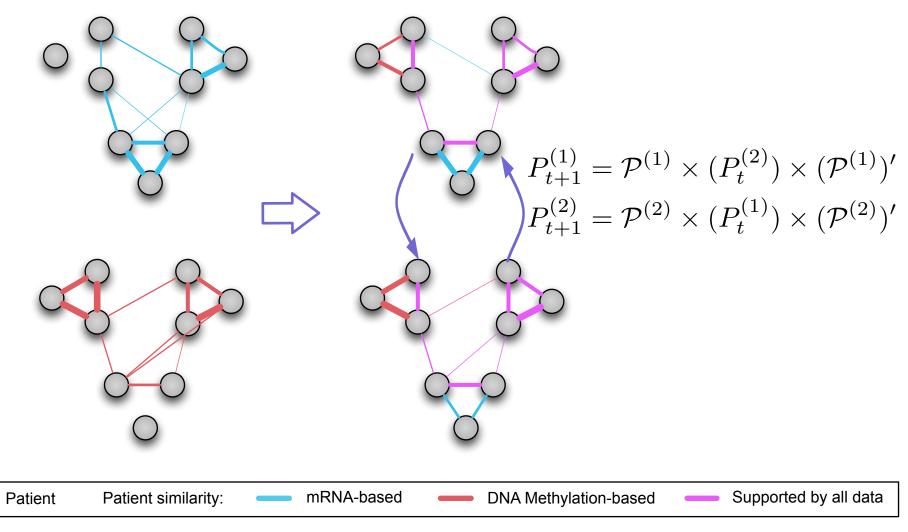
2.



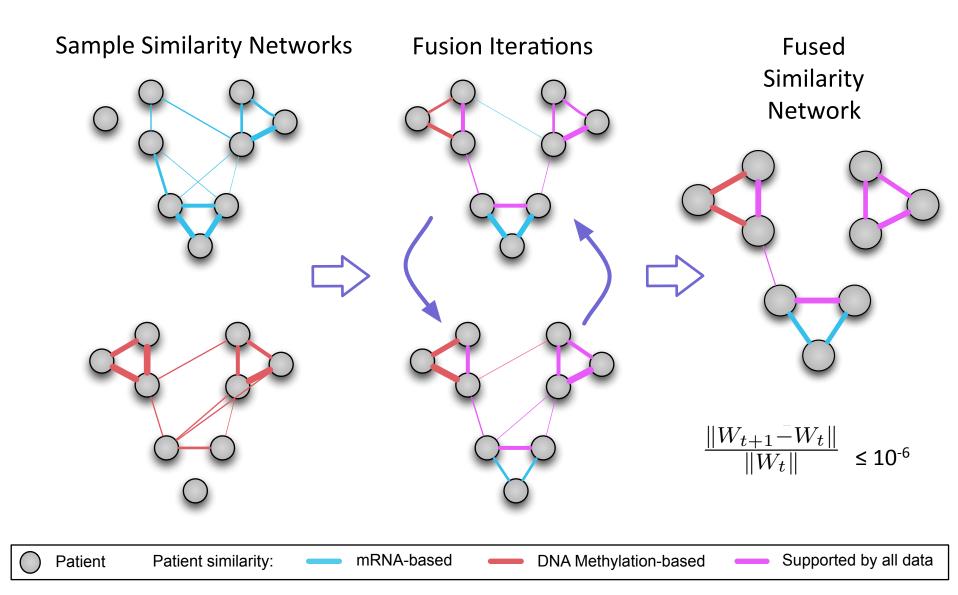
Sample Similarity Networks

2.

Fusion Iterations



2.



Network Fusion

Fusing 2 networks:

$$P_{t+1}^{(1)} = \mathcal{P}^{(1)} \times (P_t^{(2)}) \times (\mathcal{P}^{(1)})'$$
$$P_{t+1}^{(2)} = \mathcal{P}^{(2)} \times (P_t^{(1)}) \times (\mathcal{P}^{(2)})'$$

Fusing m networks:

$$P_{t+1}^{(i)} = \mathcal{P}^{(i)} \times \left(\frac{1}{m-1} \sum_{j \neq i} P_t^{(j)}\right) \times (\mathcal{P}^{(i)})' + \eta I$$

Experiments

Data:

5 TCGA cancers METABRIC (Large Breast Cancer db)

Comparative Methods:

Concatenation iCluster PDSB Multiple kernel learning

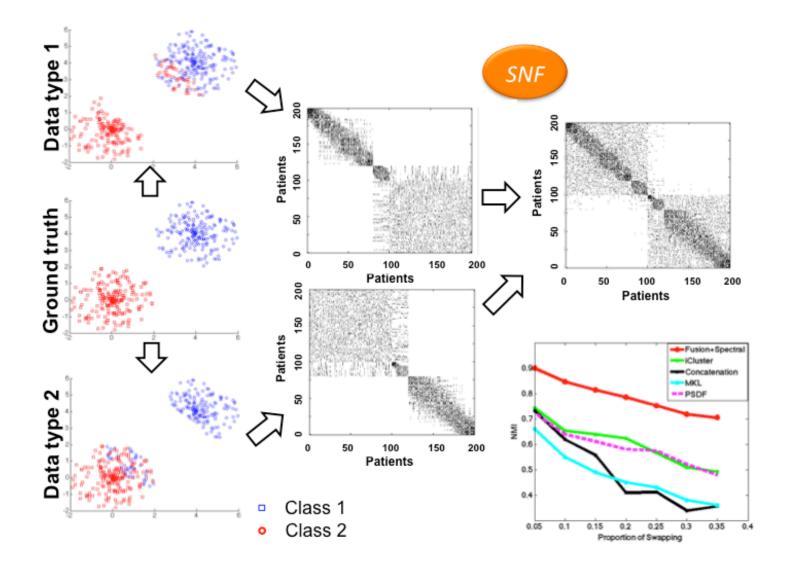
Criteria:

-log₁₀(log rank pvalue)

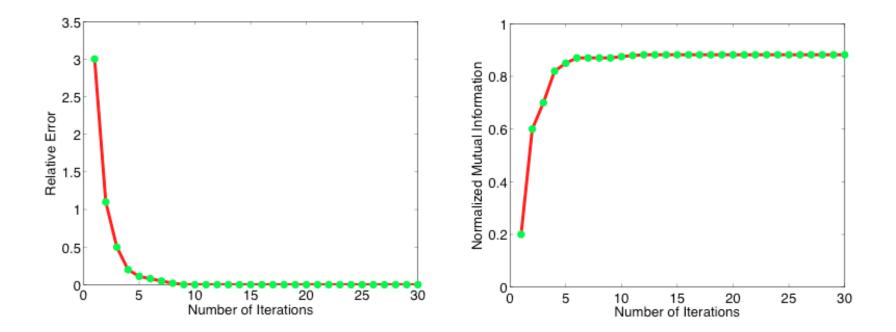
Silhouette score (cluster homogeneity)

Running time

Simulation 1 – complementarity



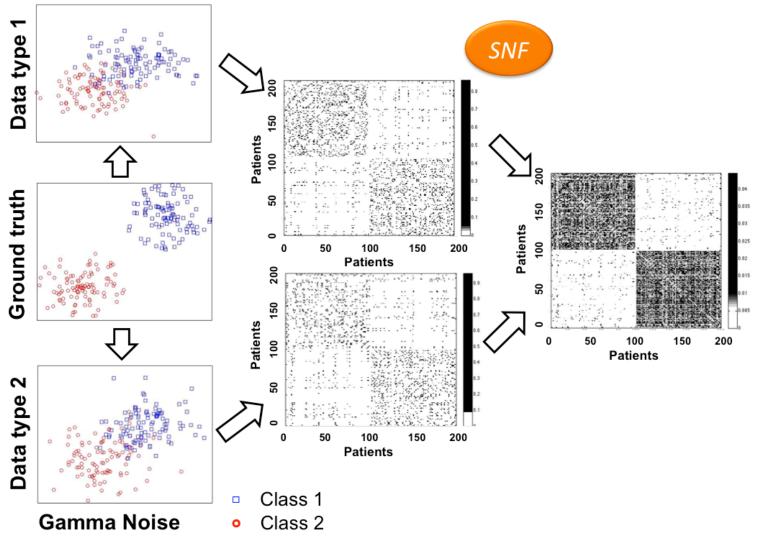
Simulation 1 convergence



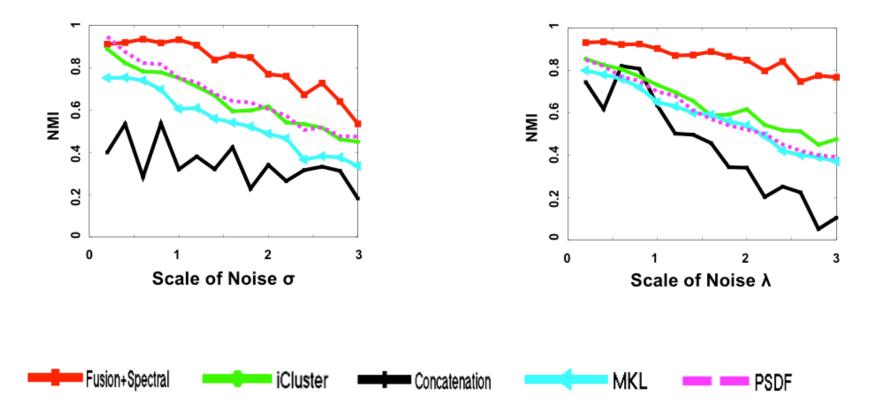
20% of patients are mislabeled

Simulation 2 - removing noise

Gaussian Noise



Simulation 2 - removing noise



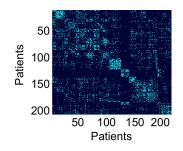
TCGA Data

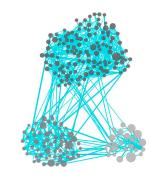
Cancer Type	Patients	mRNA	Methylation	miRNA	Controls	
					<u>mRNA</u>	Methylation
GBM	215	12,042	1,491	534	10	-
BIC	105	17,814	23,094	1,046	63	27
KRCCC	124	20,532	24,976	1,046	68	199
LSCC	105	12,042	27,578	1,046	-	27
COAD	92	17814	27578	705	19	37

Case study: Glioblastoma

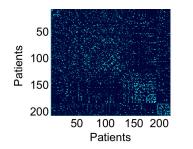
DNA methylation data

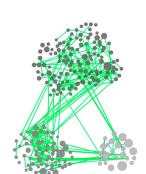
mRNA expression



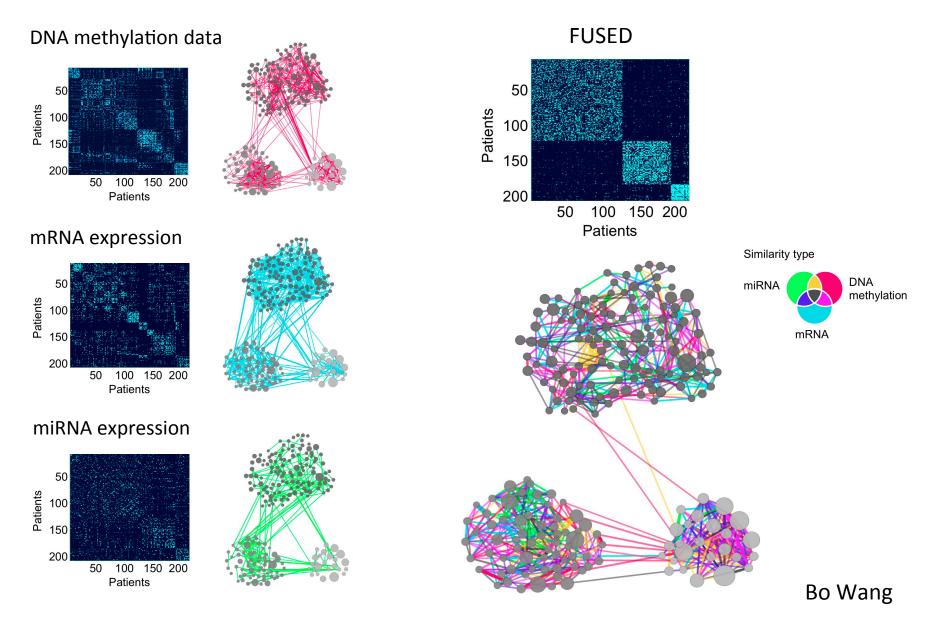


miRNA expression

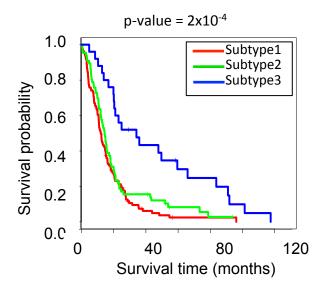


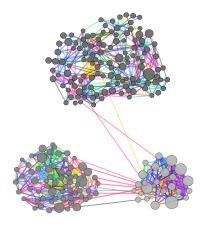


Case study: Glioblastoma

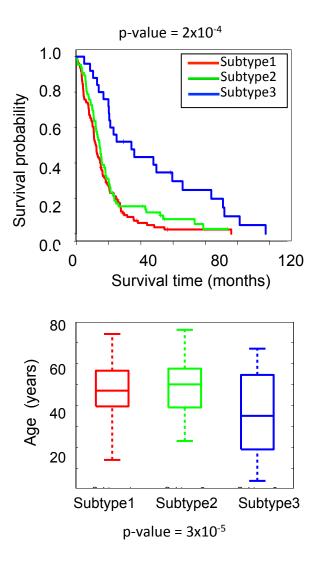


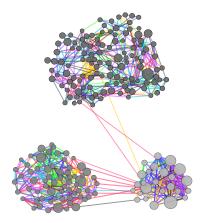
Clinical properties of the subtypes



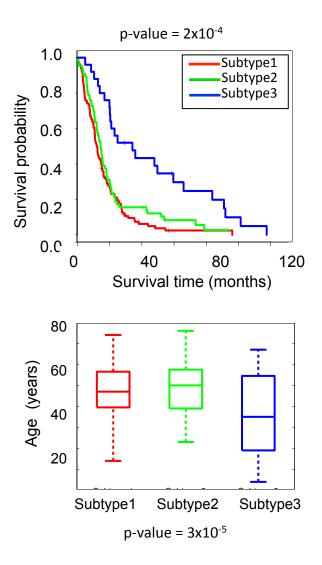


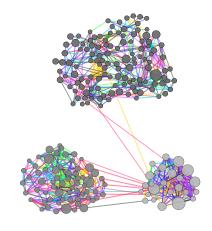
Clinical properties of the subtypes

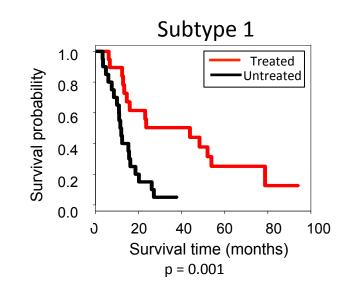




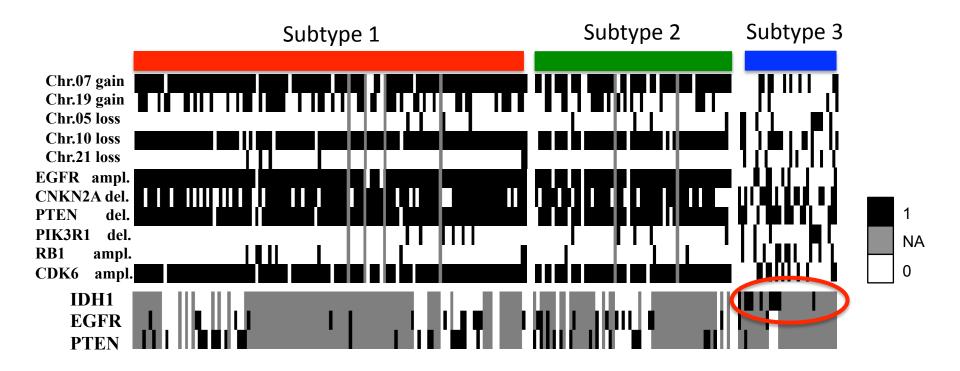
Clinical properties of the subtypes





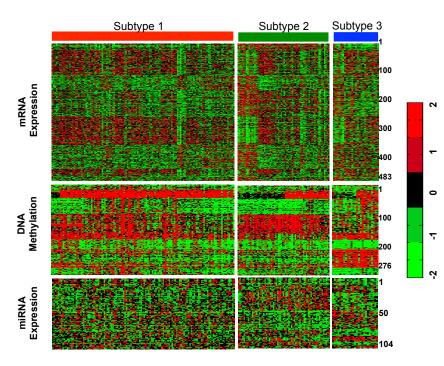


Biological characterization of the subtypes



Feature Selection

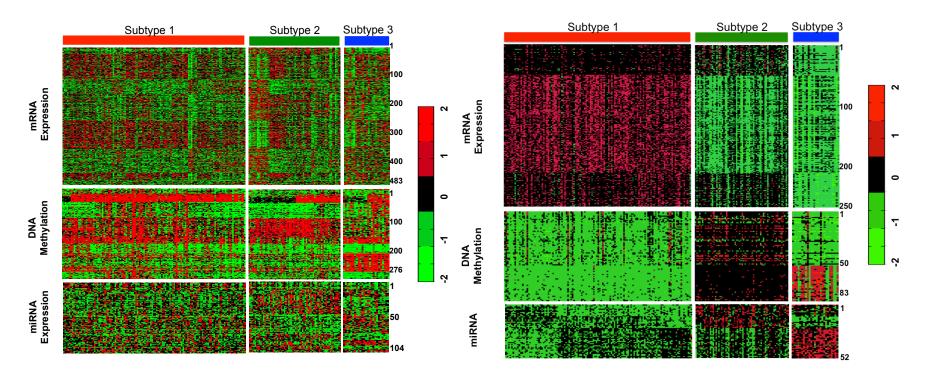
Standard t-test Differential analysis



Feature Selection

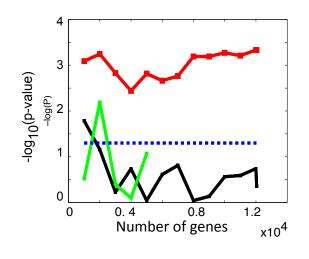
Standard t-test Differential analysis

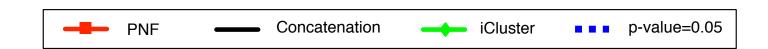
Network-based NMI Differential analysis



Bo Wang

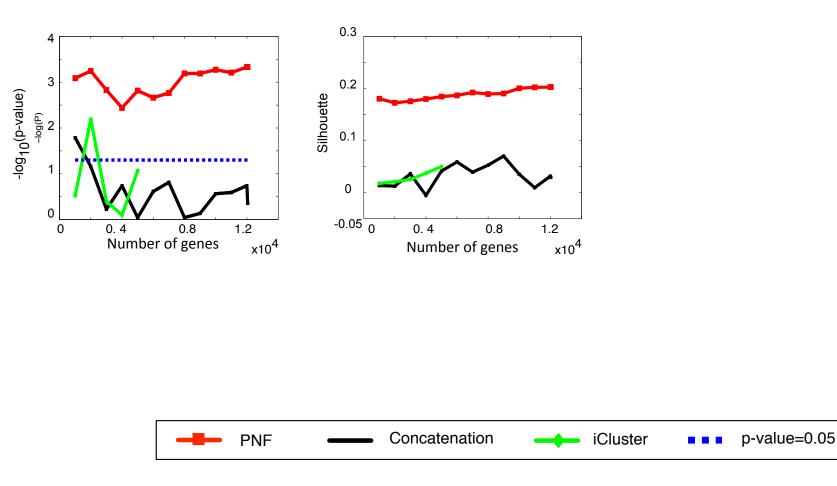
Gene Pre-selection in GBM





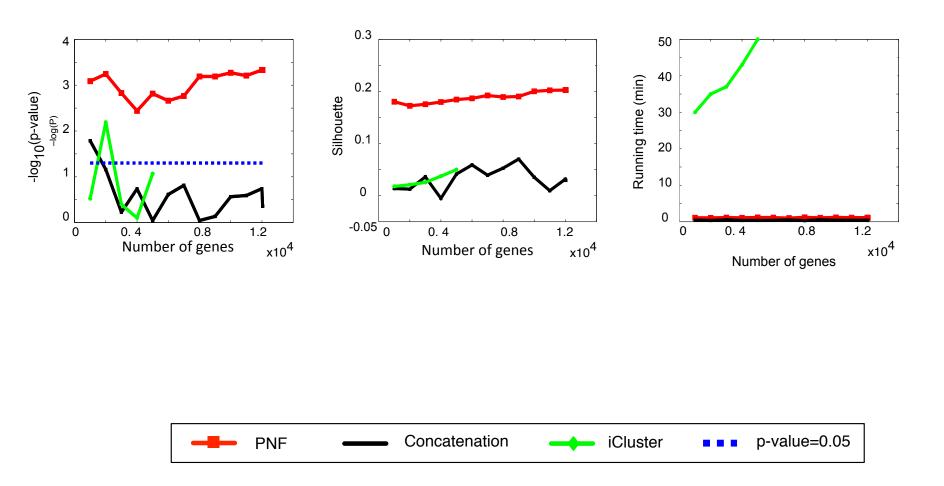
Genes are ordered by significance of the differential values between tumor and normal Bo Wang

Gene Pre-selection in GBM



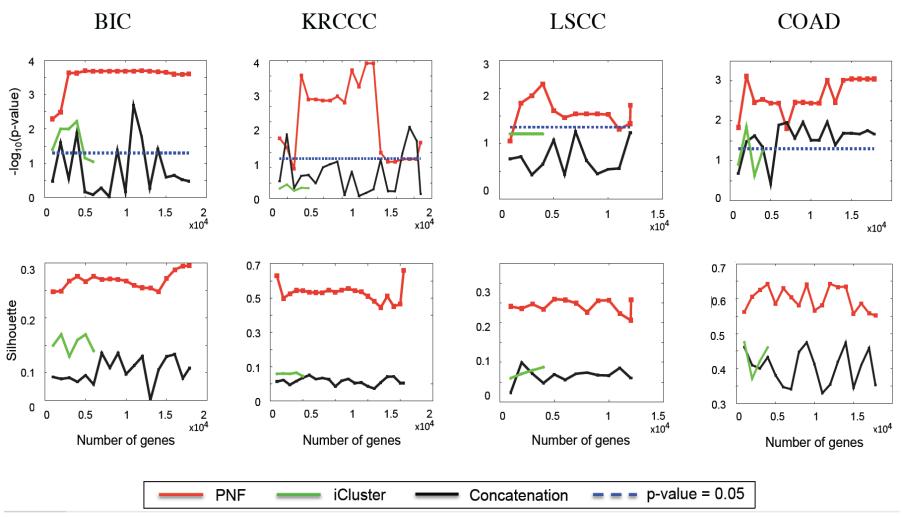
Genes are ordered by significance of the differential values between tumor and normal Bo Wang

Gene Pre-selection in GBM



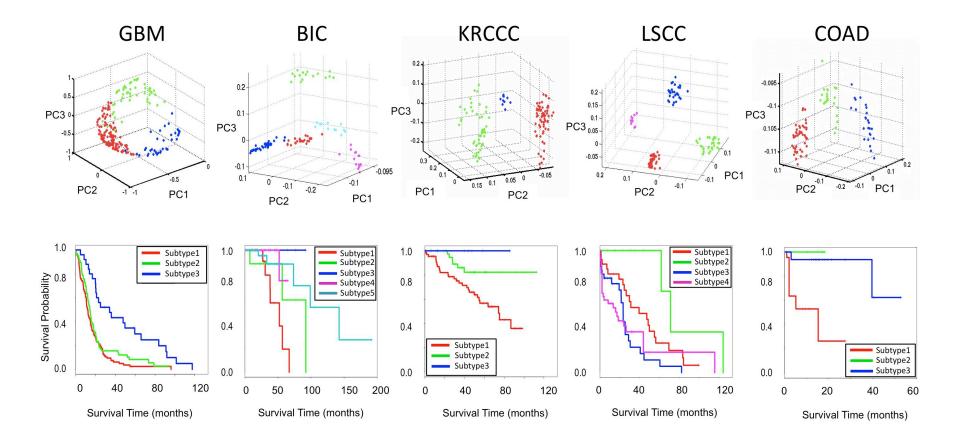
Genes are ordered by significance of the differential values between tumor and normal Bo Wang

Gene pre-selection across cancers



Bo Wang

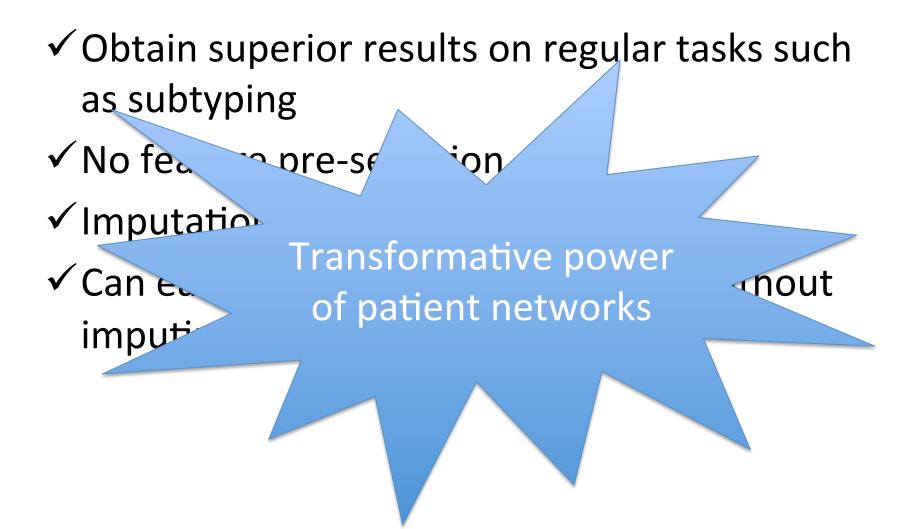
Clustering of the network



Patient networks framework advantages

- Creates a unified view of patients based on multiple heterogeneous sources
- ✓ Integrates gene and non-gene based data
- ✓ No need to do gene pre-selection
- \checkmark Robust to different types of noise
- ✓ Scalable

Patient networks



Breast Cancer (METABRIC example)

CNV and expression data Discovery: 997 patients Validation: 995 patients

Nature,	
2012	
	-

	PAM50 (5 clusters)	iCluster (10 clusters)	SNF (5 clusters)	SNF (10 clusters)
P value discovery cohort	3.0 × 10 ⁻⁹	1.2 × 10 ⁻¹⁴	6.10×10^{-11}	3.31 × 10 ⁻¹²
P value validation cohort	1.7 × 10 ⁻⁹	2.9 × 10 ⁻¹¹	5.12 × 10 ⁻¹³	7.86 × 10 ⁻¹²
CI discovery cohort	0.560	0.621	0.638	0.638
CI validation cohort	0.551	0.605	0.633	0.633
established				

Breast Cancer (METABRIC example)

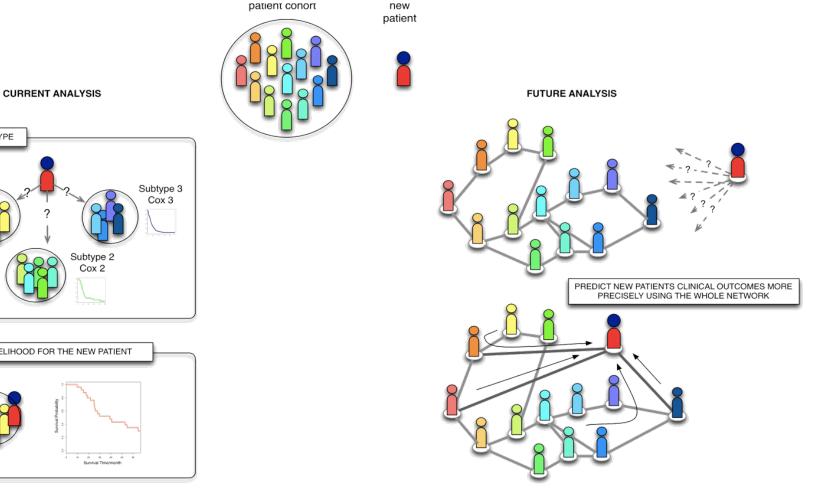
CNV and expression data Discovery: 997 patients Validation: 995 patients

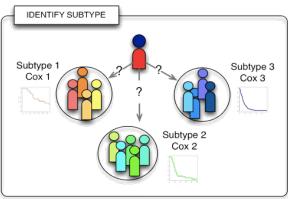
Nature,	
2012	
	_

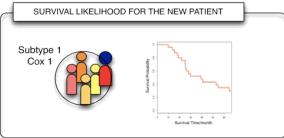
	PAM50 (5 clusters)	iCluster (10 clusters)	SNF (5 clusters)	SNF (10 clusters)	
P value discovery cohort	3.0 × 10 ⁻⁹	1.2 × 10 ⁻¹⁴	6.10×10^{-11}	3.31 × 10 ⁻¹²	
P value validation cohort	1.7 × 10 ⁻⁹	2.9 × 10 ⁻¹¹	5.12 × 10 ⁻¹³	7.86 × 10 ⁻¹²	
CI discovery cohort	0.560	0.621	0.638	0.638	
CI validation cohort	0.551	0.605	0.633	0.633	
established					

So how many subtypes are there really in breast cancer?

Predicting using the network







Predicting using the network

Cox objective
$$lp(z) = \sum_{i=1}^{n} \delta_i \left(\mathbf{X}_i^T z - \log \left(\sum_{j \in \mathbf{R}(t_i)} \exp(\mathbf{X}_j^T z) \right) \right)$$

Predicting using the network

Cox objective
$$lp(z) = \sum_{i=1}^{n} \delta_i \left(\mathbf{X}_i^T z - \log \left(\sum_{j \in \mathbf{R}(t_i)} \exp(\mathbf{X}_j^T z) \right) \right)$$

Our network-regularized objective

$$lp(z) = \sum_{i=1}^{n} \delta_{i} \left(X_{i}^{T} z - \log \left(\sum_{j \in \mathbf{R}(t_{i})} \exp(X_{j}^{T} z) \right) \right) - \lambda \sum_{i} \sum_{j} (X_{i}^{T} z - X_{j}^{T} z)^{2} w_{ij}$$

Predicting using the network Breast Cancer (METABRIC example)

