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The Random Ora
le Model (ROM) is a setting where all parties, in
luding the adversary,

have bla
k-box a

ess to a \truly random fun
tion" (the random ora
le). In this thesis,

we present two results 
on
erning se
urity in the ROM. First, we show that, for every


anoni
al identi�
ation s
heme, the 
orresponding Fiat-Shamir signature s
heme is se
ure

in the ROM. Previously, only \non-trivial" 
anoni
al identi�
ation s
hemes were known

to yield Fiat-Shamir signature s
hemes whi
h are se
ure in the ROM. Se
ond, we show

how to modify a 
ertain dis
rete logarithm-based publi
-key en
ryption s
heme so that it

be
omes CCA2-se
ure in the ROM. In 
on
lusion, we review several \uninstantiability"

results whi
h demonstrate that se
urity in the ROM does not guarantee \real-world"

se
urity, and brie
y survey a number of signature and publi
-key en
ryption s
hemes

whi
h are se
ure in the \real world".
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Chapter 1

Introdu
tion

Modern 
ryptography has 
omputational 
omplexity at its foundation. In order to

gain 
on�den
e in the se
urity of a 
ryptographi
 
onstru
tion, we show that every

polynomially-bounded adversary whi
h su

eeds in \breaking" it 
an be used to solve

a 
omputational problem widely believed to be \hard on average", say integer fa
tor-

ization ([Len00℄) or the dis
rete logarithm problem ([Odl00℄). This means that no su
h

\breaker" exists, provided the problem in question is indeed \hard".

Cryptographers make two kinds of \hardness" assumptions: ones asserting the diÆ-


ulty of spe
i�
 (usually number-theoreti
) problems, and ones asserting the existen
e of

se
ure 
ryptographi
 primitives su
h as \one-way fun
tions" (see Chapter 2, Se
tion 2)

or \trapdoor permutations" (see Chapter 2, Se
tion 4). Assumptions of the �rst kind

enable us to prove the se
urity of 
onstru
tions whi
h are eÆ
ient enough to be pra
ti
al.

Unfortunately, the parti
ular problem we assume to be \hard" might later turn out to

be \easy", rendering the proto
ol inse
ure. Assumptions of the se
ond kind (often 
alled

\general assumptions") often lead to 
onstru
tions whi
h are too ineÆ
ient to be of pra
-

ti
al interest. Although su
h 
onstru
tions are in a sense mere \proofs of 
on
ept", their

se
urity is guaranteed as long as any se
ure primitives of the relevant kind exist.

Broadly speaking, 
ryptographi
 problems fall into two 
ategories: \publi
-key" and

1
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\private-key". In both 
ases, two or more people wish to se
urely intera
t over an inse
ure


hannel, whi
h is either 
ontrolled or monitored by the adversary.

In the private-key setting, the parti
ipants share a 
ommon se
ret pri, unknown to

the adversary. The intuition is that they are \friends who trust ea
h other". In 
ontrast,

in the publi
-key setting ea
h person has asso
iated with him both private information

pri, known only to himself, and publi
 information pub, known to everyone (in
luding

the adversary). Here the intuition is that the parti
ipants are \mutually mistrustful

strangers". Many important 
ryptographi
 problems, in
luding \signature s
hemes" (see

Chapter 2, Se
tion 5) and \en
ryption s
hemes" (see Chapter 2, Se
tion 7), 
ome in both

publi
-key and private-key 
avours.

Today we have extremely eÆ
ient private-key 
onstru
tions whi
h are se
ure if \blo
k


iphers" su
h as DES ([NIS99℄) and AES ([NIS01℄) are \pseudorandom", as well as

fairly ineÆ
ient private-key 
onstru
tions whi
h are se
ure if \one-way fun
tions" exist

([GGM84a℄, [GGM84b℄, [GGM86℄, [HILL99℄). It 
ould therefore be argued that private-

key 
ryptography is now largely \an engineering problem". Unfortunately, that is not

yet the 
ase for publi
-key 
ryptography.

Beginning in the late eighties, mu
h work was done on formulating the \right" de�-

nitions of publi
-key se
urity and showing that 
onstru
tions whi
h are se
ure a

ording

to these de�nitions 
an be obtained from \trapdoor permutations". Su
h 
onstru
tions

were available by the early nineties ([GMR88℄, [Rom90℄, [NY90℄, [RS92℄), but from a

pra
ti
al standpoint their eÆ
ien
y left a lot to be desired. Numerous attempts were

also made to 
ome up with eÆ
ient 
onstru
tions whi
h are se
ure under some variant

of the popular \RSA" (fa
toring-related) and \DiÆe-Hellman" (dis
rete log-related) as-

sumptions ([Bon99℄,[MW00℄), but they were not su

essful. La
king viable alternatives,

pra
titioners mostly relied on ad ho
 approa
hes of dubious se
urity, many of whi
h were

eventually broken ([Bri85℄, [Ble98℄).

In [BR93℄, Mihir Bellare and Phillip Rogaway introdu
ed the \Random Ora
le Method-
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ology" in an e�ort to bridge the gap between 
ryptographi
 theory and pra
ti
e. In-

formally, the Random Ora
le Model, or ROM for short, is a setting where all parties

(in
luding the adversary) have bla
k-box a

ess to a \truly random fun
tion" (the ran-

dom ora
le). Although it has other appli
ations in 
omplexity theory, notably to Mi
ali's

non-intera
tive \CS proofs" ([Mi
94℄, [Mi
00℄), the ROM is usually en
ountered in the


ontext of publi
-key 
ryptography.

The Random Ora
le Methodology is a two-step pro
edure for obtaining pra
ti
al

publi
-key 
onstru
tions. In the �rst step, one designs an eÆ
ient 
onstru
tion whi
h is

se
ure in the ROM under some standard hardness assumption, say the \Computational

DiÆe-Hellman" assumption. Be
ause of the many ni
e properties enjoyed by random

ora
les, this generally isn't too diÆ
ult. In the se
ond step, one \instantiates" the random

ora
le R using a \
ryptographi
 hash fun
tion" h; a reasonable 
hoi
e for h might be

SHA-256 ([NIS04℄). Thereafter, whenever R is queried on a string s, the answer is h(s).

A heuristi
 justi�
ation for this step is that good 
ryptographi
 hash fun
tions hopefully

behave \a lot like" random ora
les. However, as we will see in Chapter 5,R should stri
tly

speaking be instantiated using an ensemble H = fH

n

g

n2N

of hash fun
tion families (see

Chapter 2, Se
tion 3) rather than a single fun
tion h.

Be
ause in the �rst step we have the powerful random ora
le primitive at our disposal,

it is natural to question the need to make any hardness assumptions at all. However, as

shown in [IR89℄, if a \key ex
hange proto
ol" whi
h is se
ure in the ROM exists then

P 6= NP . Sin
e it is easy to se
urely ex
hange a key using a se
ure publi
-key en
ryption

s
heme, proving that su
h a s
heme is se
ure in the ROM without making any additional

assumptions is therefore prohibitively diÆ
ult. But if we are willing to make additional

assumptions, why not simply make one strong enough to eliminate the need for the

random ora
le altogether? Ronald Cramer and Vi
tor Shoup developed a fairly eÆ
ient

publi
-key en
ryption s
heme ([CS98℄) whi
h is se
ure in the \real world" under just

su
h a \non-standard-yet-plausible" hardness assumption, namely the \De
isional DiÆe-
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Hellman assumption".

On the other hand, no hardness assumptions are ne
essary in order to show that

signature s
hemes whi
h are se
ure in the ROM exist. Sin
e random ora
les are one-way

(see Chapter 2, Se
tion 8), we 
an repla
e the one-way fun
tion evaluations in Rompel's


onstru
tion ([Rom90℄) with R queries. While the resulting 
onstru
tion is admittedly

quite ineÆ
ient (in the sense that it requires many random ora
le queries), it appears

that one 
an't do mu
h better without making hardness assumptions.

As for signature s
hemes whi
h are se
ure in the ROM under standard hardness as-

sumptions su
h as the \RSA assumption", for example the s
hemes presented in [BR93℄

and [BR94℄, their bene�ts are less 
lear today. Although they are 
onsiderably more

eÆ
ient than both 
onstru
tions whi
h are se
ure in the \real world" under standard

assumptions ([DN94℄,[Cr96℄) and 
onstru
tions whi
h are se
ure in the ROM un
ondi-

tionally, we now have 
onstru
tions of 
omparable eÆ
ien
y whi
h are se
ure in the \real

world" under \non-standard-yet-plausible" assumptions like the \Strong RSA assump-

tion" ([CS99℄, [GHR99℄, [Fis03℄).

What sort of se
urity does the Random Ora
le Methodology guarantee? Informally,

hash fun
tions are eÆ
iently evaluable and thus have a short des
ription, whi
h means

that they 
annot be \truly random". It is therefore un
lear why se
urity should be

preserved when the random ora
le is \instantiated" using a hash fun
tion. Nonetheless,

se
urity in the ROM was at �rst believed to provide \strong eviden
e" of real-world se-


urity. However, in [CGH98℄ Canetti, Goldrei
h and Halevi exhibited a signature s
heme

and a publi
-key en
ryption s
heme whi
h are se
ure in the ROM yet inse
ure in the \real

world", no matter what hash fun
tion is used to \instantiate" the random ora
le; su
h

s
hemes are said to be \uninstantiable" (see Chapter 5). From a theoreti
al standpoint,

this result 
on
lusively demonstrated that se
urity in the ROM does not imply real-world

se
urity. However, sin
e Canetti et al.'s 
onstru
tions were rather 
ontrived and quite

ineÆ
ient, pra
titioners remained un
onvin
ed.



Chapter 1. Introdu
tion 5

Several additional uninstantiability results have emerged sin
e, arguably the most

signi�
ant being Goldwasser and Tauman-Kalai's proof ([GTK03℄) that there exist unin-

stantiable \Fiat-Shamir signature s
hemes" (see Chapter 3, Se
tion 1 for an overview of

Fiat-Shamir signature s
hemes). Like Canetti et al.'s, Goldwasser and Tauman-Kalai's


onstru
tions are 
ontrived and ineÆ
ient. Worse still, their a
tual proof has a somewhat

non-
onstru
tive 
avour (see Chapter 5, Se
tion 4). However, sin
e Fiat-Shamir signa-

ture s
hemes are widely used in pra
ti
e, Goldwasser and Tauman-Kalai's result 
an be

viewed as dealing the Random Ora
le Methodology a more severe blow than Cenetti et

al.'s.

Chapter Outline

Chapter 1 is this introdu
tion.

Chapter 2 
ontains de�nitions of the relevant 
ryptographi
 primitives, in
luding one-

way fun
tions, signature s
hemes, identi�
ation s
hemes, trapdoor permutations and

publi
-key en
ryption s
hemes.

Chapter 3 
on
erns the se
urity of Fiat-Shamir signature s
hemes in the ROM. We �rst

present an earlier result ([AABN02℄) demonstrating that every \passively se
ure non-

trivial 
anoni
al identi�
ation s
heme" yields a \Fiat-Shamir signature s
heme" whi
h is

se
ure in the ROM. We then show that, for \a
tively se
ure" s
hemes, the \non-triviality"

assumption is not ne
essary. Namely, we prove that, for every \a
tively se
ure 
anoni-


al identi�
ation s
heme" (non-trivial or not), the 
orresponding Fiat-Shamir signature

s
heme is se
ure in the ROM.

Chapter 4 des
ribes a 
ertain publi
-key en
ryption s
heme whi
h is \CCA2-se
ure" in

the ROM. We �rst present an earlier version of the s
heme, proposed in [BR97℄, whi
h

was initially 
laimed to be CCA2-se
ure in the ROM under the \Computational DiÆe-

Hellman assumption". It was later pointed out in [ABR01a℄ that the original proof
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of se
urity was 
awed. We then show how to modify the s
heme so that it is indeed

CCA2-se
ure in the ROM under the \Computational DiÆe-Hellman" assumption.

Chapter 5 sket
hes Canetti, Goldrei
h and Halevi's seminal result that \uninstantiable"

signature and publi
-key en
ryption s
hemes exist ([CGH98℄) and presents Maurer, Ren-

ner and Holenstein's re
ent simple proof thereof ([MRH04℄). Goldwasser and Tauman-

Kalai's proof that there exist uninstantiable Fiat-Shamir signature s
hemes ([GTK03℄)

is also dis
ussed.

Chapter 6 brie
y surveys a number of pra
ti
al signature and publi
-key en
ryption

s
hemes whi
h are se
ure in the \real world" under either standard or non-standard-yet-

quite-plausible hardness assumptions.



Chapter 2

Preliminaries

1 Negligible and non-negligible fun
tions

A fun
tion � : N ! R is negligible (in n) if it goes to zero faster than any inverse

polynomial

1

p(n)

in n. In other words, for every 
 2 N there exists an n

0

2 N su
h that

�(n) <

1

n




for all n � n

0

. If � is not negligible it is said to be non-negligible (in n). In

that 
ase there exists a d 2 N su
h that �(n) >

1

n

d

for in�nitely many n (not ne
essarily


ontiguous).

If de�nitional robustness is desired, negligible and non-negligible fun
tions are a nat-

ural 
hoi
e for formalizing the intuitive notions of \insigni�
ant" and \signi�
ant" prob-

abilities when dealing with polynomial-time adversaries.

2 One-way fun
tions

One-way fun
tions are a 
ryptographi
 primitive of fundamental importan
e. Informally,

a fun
tion mapping strings to strings is one-way if it is \easy to evaluate" but \hard

to invert on average". Formally, a fun
tion f : f0; 1g

�

! f0; 1g

�

is one-way if it is


omputable in deterministi
 polynomial time and, for every probabilisti
 polynomial-

time \inverter" INV , p

INV

(n) is negligible. Here p

INV

(n) is the probability that, given

7



Chapter 2. Preliminaries 8

1

n

and y = f(x) for a random x 2 f0; 1g

n

, INV outputs an x

0

2 f0; 1g

n

su
h that

f(x

0

) = y; p

INV

(n) is taken over the 
hoi
e of x 2 f0; 1g

n

and the random bits of INV .

Observe that if P = NP then every fun
tion f 
omputable in deterministi
 polyno-

mial time 
an be easily inverted by non-deterministi
ally guessing an x

0

2 f0; 1g

n

su
h

that f(x

0

) = y. Proving the existen
e of one-way fun
tions is therefore no easier than

proving P 6= NP .

3 Hash fun
tion ensembles

A hash fun
tion h is simply an eÆ
iently-evaluable fun
tion mapping f0; 1g

�

to f0; 1g

n

,

where n is some se
urity parameter. \Cryptographi
" hash fun
tions su
h as SHA-256

([NIS04℄) are informally believed to \hide all information about their input". More

rigorously, hash fun
tions are often assumed to be \
ollision resistant" or \
ollision in-

tra
table", meaning that it's infeasible to �nd two domain elements whi
h have the same

image under h. Formally, however, it doesn't make sense to assert that 
ollisions in SHA-

256 or any other �xed hash fun
tion are hard to �nd, sin
e they 
an always be built into

the 
ode of the �nder ma
hine. Instead, we prefer to talk about hash fun
tion ensembles.

A hash fun
tion ensembleH = fH

n

g

n2N

is a 
olle
tion of hash fun
tion familiesH

n

=

fh

s

: f0; 1g

�

! f0; 1g

n

g

s2f0;1g

n

1

. H is eÆ
iently evaluable in the sense that there exists a

(deterministi
) polynomial-time Turing ma
hine M

H

su
h that M

H

(s; x) = h

s

(x) for all

s 2 f0; 1g

n

and x 2 f0; 1g

�

. We say that H is 
ollision resistant if, for every probabilisti


polynomial time \
ollision �nder" F who is given a randomly 
hosen s 2 f0; 1g

n

, the

probability p

F

(n) that F outputs x

1

; x

2

2 f0; 1g

�

, x

1

6= x

2

su
h that h

s

(x

1

) = h

s

(x

2

) is

negligible; here p

F

(n) is taken over the 
hoi
e of s and the random bits of F .

It is worth pointing out that 
ollision-resistan
e implies a kind of one-wayness (see

Se
tion 2). Suppose that we have a probabilisti
 polynomial-time inverter INV who,

1

In general, h

s

maps f0; 1g

�

to f0; 1g

`(n)

, where `(n) � n




for some 
. However, we will usually

assume that `(n) � n to simplify the presentation.
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given a randomly 
hosen s 2 f0; 1g

n

and y = h

s

(x) 2 f0; 1g

n

for a randomly 
hosen

x 2 f0; 1g

n+1

, outputs with non-negligible (in n) probability an x

0

2 f0; 1g

n+1

su
h

that h

s

(x

0

) = y; here the probability is taken over the 
hoi
e of s and x, as well as the

random bits of INV . Noti
e that, provided x

0

6= x, (x; x

0

) is a 
ollision in h

s

. Also,

sin
e

jf0;1g

n+1

j

jf0;1g

n

j

= 2, h

s

maps two domain elements to ea
h 
odomain element on average.

We 
an use INV to 
onstru
t a 
ollision �nder F as follows. Given a randomly 
hosen

s 2 f0; 1g

n

, F randomly 
hooses (say without repla
ement) x

1

; : : : ; x

n




2 f0; 1g

n+1

and

simulates INV to obtain x

0

i

= INV (s; x

i

), 1 � i � n




. It 
an be shown that, if 
 is \large

enough", the probability that there exists an 1 � i � n




su
h that h

s

(x

0

i

) = h

s

(x

i

) and

x

0

i

6= x

i

is non-negligible (in n).

4 Trapdoor permutations

Impagliazzo and Rudi
h show in [IR89℄ that proving se
ure publi
-key en
ryption s
hemes

(see Se
tion 7) exist assuming only that one-way fun
tions exist is no easier than proving

P 6= NP . On the other hand, if trapdoor permutations exist then so do se
ure publi
-key

en
ryption s
hemes ([RS92℄).

Informally, a bije
tion mapping n-bit strings to n-bit strings is a trapdoor permutation

if it is \easy to evaluate" and \hard to invert on average", yet \easy to invert" given

some additional information.

Formally, a trapdoor permutation F 
onsists of three polynomial-time algorithms: a

key generator G and two fun
tion evaluators, f and f

0

. G is probabilisti
, whereas f

and f

0

are both deterministi
. Given 1

n

and some random bits, G outputs a pair of

keys (k; k

0

). Asso
iated with every pair of keys (k; k

0

) is a pair of fun
tions (f

k

; f

0

k

0

),

ea
h mapping n-bit strings to n-bit strings; f

k

and f

0

k

0

are both inje
tive (and therefore

surje
tive), and f

0

k

0

= f

�1

k

.

For every pair of keys (k; k

0

) generated by running G on 1

n

(together with some
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random bits) and every x 2 f0; 1g

n

, f(k; x) = f

k

(x) and f

0

(k

0

; x) = f

0

k

0

(x). Moreover,

f

k

is a one-way fun
tion in the following sense. For every probabilisti
 polynomial-time

\inverter" INV , p

INV

(n) is negligible in n. Here p

INV

(n) is the probability that, given

a key k (generated by running G on 1

n

and some random bits) and y = f

k

(x) 2 f0; 1g

n

for a random x 2 f0; 1g

n

, INV outputs x = f

0

k

0

(y); p

INV

(n) is taken over the 
hoi
e of

s 2 f0; 1g

n

, as well as the random bits of INV and G (that is, the 
hoi
e of k).

5 Signature s
hemes and message authenti�
ation


odes (MACs)

A signature s
heme SIG 
onsists of three polynomial-time algorithms: a key generator

GEN , a signer SIGN and a veri�er V ER. Although in general all three may be proba-

bilisti
, we will assume for 
onvenien
e that GEN and SIGN are probabilisti
, whereas

V ER is deterministi
 (this is nearly always the 
ase in pra
ti
e).

GEN , SIGN and V ER work as follows.

� Given 1

n

and some random bits, GEN outputs a pair of keys (pub; pri), where pub

is the publi
 key and pri is the private key. Although in general jprij � n




for some


, we will usually assume that jprij = n to simplify the presentation.

� Given 1

n

, pri, a message m 2 f0; 1g

�

and some random bits, SIGN outputs a

signature �

m

2 f0; 1g

p(n)

of m, where p(�) is some polynomial.

� Given 1

n

, pub, a message m and a supposed signature � 2 f0; 1g

p(n)

or m, V ER

outputs either 1, indi
ating he thinks � is a valid signature of m, or 0, indi
ating

he thinks it is not.

Denote the output of SIGN given 1

n

, pri, a message m and some random bits by

SIGN

pri

(m), and the output of V ER given 1

n

, pub, m and a supposed signature � of
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m by V ER

pub

(m;�). We require that V ER a

ept all signatures output by SIGN , so

that for all n, all key pairs (pub; pri) generated by running GEN on 1

n

and some random

bits, all messages m and all signatures �

m

= SIGN

pri

(m), V ER

pub

(m; �

m

) = 1.

Informally, SIG is se
ure if no probabilisti
 polynomial-time \forger" F who knows

pub has a signi�
ant probability of 
oming up with a valid signature �

�

of a new message

m

�

2 f0; 1g

�

, even after being shown the signatures of polynomially many messages of his


hoi
e. Sin
e F adaptively 
hooses the messages whose signatures he is shown and wins

if he su

essfully signs any new message (even a \silly" one su
h as the empty string �),

this sort of se
urity for signature s
hemes is sometimes 
alled \se
urity against existential

forgery under adaptive 
hosen-message atta
k".

Formally, F is equipped with a \signature ora
le" S; given a message m 2 f0; 1g

�

,

S outputs a signature �

m

= SIGN

pri

(m) of m. SIG is se
ure if, for every probabilisti


polynomial-time forger F

S

, p

F

(n) is negligible in n. Here p

F

(n) is the probability that,

given 1

n

and a publi
 key pub (generated by running GEN on 1

n

and some random bits),

F

S

outputs a pair (m

�

; �

�

) su
h that S has not been queried on m

�

and V ER

pub

(m

�

; �

�

) =

1; p

F

(n) is taken over the random bits of GEN (that is, the 
hoi
e of (pub; pri)), F

S

pub

and V ER

pub

, as well as the randomness of S (that is, the random bits of SIGN).

Building on the results of [GMR88℄, [BM88℄ and [NY89℄, Rompel showed in [Rom90℄

that if one-way fun
tions exist, then so do se
ure signature s
hemes. It's not hard to

show that the 
onverse also holds, namely that if se
ure signature s
hemes exist, then

so do one-way fun
tions. Noti
e that if SIG is a se
ure signature s
heme, then the

fun
tion f

GEN

mapping the random bits r of GEN to the publi
 key pub is one-way.

Sin
e GEN runs in polynomial time, f

GEN

is eÆ
iently evaluable. If f

GEN

were easy

to invert on average, then a forger F who is given pub 
ould 
ompute pri with high

probability, thereby 
ompletely breaking the se
urity of SIG. Thus f

GEN

is a one-way

fun
tion. Noti
e that this means that if one-way fun
tions do not exist, then neither do

se
ure signatures s
hemes.
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Message authenti�
ation 
odes or MACs, as they are 
ommonly referred to, are es-

sentially private-key signature s
hemes. This time there is only one (private) key, k,

whi
h is 
hosen randomly and given to both the signer and the veri�er. As with signa-

ture s
hemes, the standard notion of se
urity for MACs is \se
urity against existential

forgery under adaptive 
hosen-message atta
k". Although the forger still has a

ess to a

signature ora
le S, this time he is obviously not given the private key k (whi
h is built

into S); the forger's su

ess probability is taken over his random bits and the 
hoi
e of

k.

6 Identi�
ation s
hemes

An identi�
ation s
heme ID 
onsists of three probabilisti
 polynomial-time algorithms: a

key generator G, a prover P and a veri�er V . P and V are \linked intera
tive ma
hines",

meaning that they 
an \intera
t" by sending messages ba
k and forth between ea
h other.

Informally, P 's goal is to 
onvin
e V that he knows some se
ret, for example the private

key generated by G. Although identi�
ation s
hemes are interesting in their own right,

our interest in them stems from the fa
t that they are a sour
e of signature s
hemes

se
ure in the ROM ([AABN02℄).

Ea
h message ex
hanged between P and V is 
alled a round. If V 's messages 
onsist

solely of random bits, then ID is said to be publi
-
oin. Three-round, publi
-
oin identi-

�
ation s
hemes are 
alled 
anoni
al. This thesis only deals with 
anoni
al identi�
ation

s
hemes, so let ID be 
anoni
al. Observe that the prover always goes last, be
ause oth-

erwise he wouldn't be able to respond to the veri�er's last 
hallenge. Sin
e the prover

and the veri�er alternate rounds, this means that P �rst sends a message to V , then V


hallenges P , and �nally P responds to V 's 
hallenge.

Formally, ID works as follows. First, G is run on 1

n

and some random bits to obtain

a pair of keys (PK; SK), where PK is the publi
 key and SK is the private key. Let P

SK
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denote the behaviour of P when given 1

n

, SK and some random bits, and V

PK

denote

the behaviour of V when given 1

n

and PK. P

SK

�rst sends a 
ommitment Cmt to V

PK

,

to whi
h V

PK

replies with a 
hallenge Ch 
onsisting of the entire 
ontents of his random

tape. P

SK

then sends a response Rsp to V

PK

, at whi
h point V

PK

makes a deterministi


de
ision to either a

ept or reje
t (see Figure 2.1). For reasons whi
h will be
ome 
lear

later, it is 
onvenient to assume that all of P

SK

's 
ommitments are of length `(n), where

` is some polytime-
omputable fun
tion of the se
urity parameter n. This is always the


ase in pra
ti
e.

(1^n, SK) (1^n, PK)

PSfrag repla
ements

P V

Cmt

Ch

Rsp

Figure 2.1: The intera
tion between P and V

Sin
e the behaviour of V

PK

is 
ompletely determined on
e his random tapeCh is �xed,

we may think of V

PK

as a deterministi
 fun
tion a

epting or reje
ting \trans
ripts" of

the form (m

1

;Ch; m

2

), where m

1

and m

2

are the �rst and se
ond messages re
eived by

V

PK

, respe
tively; V

PK

may intera
t with an adversary who is not P

SK

, so these need

not equal Cmt and Rsp. We require that P

SK

always 
onvin
e V

PK

to a

ept, so that

V

PK

(Cmt;Ch;Rsp) = 1 for all Cmt and Rsp produ
ed by P

SK

.

We are interested in two notions of se
urity for identi�
ation s
hemes: passive se
urity

and a
tive se
urity.

Informally, ID is passively se
ure if no probabilisti
 polynomial-time \impersonator"

I who knows PK (but not SK) has a signi�
ant probability of 
onvin
ing V

PK

to a
-


ept when intera
ting with him in the role of P

SK

, even after seeing polynomially many

trans
ripts of 
onversations between P

SK

and V

PK

. This weak type of se
urity for iden-

ti�
ation s
hemes is 
alled \passive" be
ause I

PK

passively monitors the 
onversation

between P

SK

and V

PK

without interfering with it.
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Formally, I is equipped with a \trans
ript ora
le" T . Every time T is queried, it

generates a trans
ript (Cmt;Ch;Rsp) by running P

SK

and V

PK

on some random bits.

I

T

PK

is given 1

n

and a publi
 key PK (generated by running G on 1

n

and some random

bits), together with some random bits. I

T

PK

�rst obtains polynomially many trans
ripts

by repeatedly querying T . Next, I

T

PK

sends a 
ommitment Cmt

0

to V

PK

, re
eiving a


hallenge Ch in reply. I

T

PK

then responds to the 
hallenge by sending Rsp

0

to V

PK

. ID

is passively se
ure if, for every passive probabilisti
 polynomial-time impersonator I

T

PK

,

the probability p

I

(n) that V

PK

(Cmt

0

;Ch;Rsp

0

) = 1 is negligible in n; p

I

(n) is taken over

the random bits of G (that is, the 
hoi
e of (PK; SK)), I

T

PK

and V

PK

(that is, the 
hoi
e

of Ch), as well as the randomness of T (that is, the random bits of P

SK

and V

PK

).

Informally, ID is a
tively se
ure, or simply se
ure, if no probabilisti
 polynomial-

time \impersonator" I who knows PK (but not SK) has a signi�
ant probability of


onvin
ing V

PK

to a

ept when intera
ting with him in the role of P

SK

, even after

arbitrarily intera
ting with P

SK

in the role of V

PK

polynomially many times. This

strong type of se
urity for identi�
ation s
hemes is 
alled \a
tive" be
ause I

PK

a
tively

intera
ts with P

SK

rather than merely monitoring P

SK

's 
onversation with V

PK

.

Formally, we think of I

PK

, who is given 1

n

and a publi
 key PK (generated by running

G on 1

n

and some random bits), together with some random bits, as operating in two

\phases". In the �rst phase, I

PK

intera
ts with P

SK

(in the role of V

PK

) by sending

him polynomially many adaptively 
hosen 
hallenges; note that I

PK

is not 
onstrained

to 
hoose his 
hallenges randomly. In the se
ond phase, I

PK

intera
ts with V

PK

(in

the role of P

SK

) as follows. I

PK

�rst sends a 
ommitment Cmt

00

to V

PK

, re
eiving a

random 
hallenge Ch in reply. I

PK

then responds to the 
hallenge by sending Rsp

00

to

V

PK

. ID is se
ure if, for every a
tive probabilisti
 polynomial-time impersonator I

PK

,

the probability p

I

(n) that V

PK

(Cmt

00

;Ch;Rsp

00

) = 1 is negligible in n; p

I

(n) is taken

over the random bits of G (that is, the 
hoi
e of (PK; SK)), I

PK

, V

PK

(that is, the 
hoi
e

of Ch) and P

SK

.
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Note that if V

PK

's 
hallenge Ch is too short, jChj = log

2

(n) say, then the size of the


hallenge spa
e is only 2

jChj

= n. An impersonator I

PK

in possession of even a single valid

trans
ript (Cmt;Ch;Rsp), obtained through either intera
ting with P

SK

or querying T ,


an in this 
ase break the se
urity of ID as follows. I

PK

sends Cmt to V

PK

, re
eives a


hallenge Ch

0

from V

PK

and sends Rsp to V

PK

in response. Sin
e V

PK

a

epts whenever

Ch

0

= Ch, whi
h happens with probability

1

n

(and possibly even if Ch

0

6= Ch), I

PK

's

su

ess probability is non-negligible. In order for ID to hope to satisfy either of the above

two de�nitions of se
urity, the 
hallenge spa
e must therefore be of size super-polynomial

in n, meaning that jChj = !(logn).

Observe that passive se
urity is stri
tly weaker than a
tive se
urity, sin
e every a
-

tively se
ure ID is also passively se
ure, but not vi
e versa. A
tive se
urity implies

passive se
urity be
ause, for every (passive) impersonator I

T

PK

who breaks the passive

se
urity of ID, there is a 
orresponding (a
tive) impersonator I

PK

who breaks the a
tive

se
urity of ID: I

PK

simply simulates I

T

PK

, taking 
are to a

umulate enough valid tran-

s
ripts during the �rst phase (by 
hoosing the 
hallenges he sends to P

SK

randomly) to

answer all of I

T

PK

's T queries; I

PK

's su

ess probability is identi
al to that of I

T

PK

.

To see that passive se
urity does not imply a
tive se
urity, 
onsider the following (ad-

mittedly rather 
ontrived) modi�
ation ID

0

of an arbitrary passively se
ure identi�
ation

s
heme ID (su
h identi�
ation s
hemes exist if one-way fun
tions do, as we'll see below);

we may assume without loss of generality that jChj = n. ID

0

is identi
al to ID, ex
ept

that whenever the new prover P

0

SK

re
eives the 
hallenge

�

0 = 0

n

, he responds by reveal-

ing the private key SK. ID

0

remains passively se
ure, sin
e a passive impersonator I

T

PK

whose running time is bounded above by some polynomial p(�) in the se
urity parameter

n will see a trans
ript 
ontaining SK with probability at most

p(n)

2

n

, whi
h is negligible.

However, it is 
ompletely trivial for an a
tive impersonator I

PK

to break the (a
tive)

se
urity of ID

0

: I

PK

sends

�

0 to P

0

SK

to obtain the se
ret key SK in the �rst phase, then

simulates P

0

SK

in order to 
orre
tly respond to V

0

PK

's 
hallenge in the se
ond phase.
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Finally, observe that se
ure identi�
ation s
hemes exist if and only if one-way fun
-

tions do. To see that if se
ure identi�
ation s
hemes exist then so do one-way fun
tions,

let ID = (G;P; V ) be an arbitrary se
ure 
anoni
al identi�
ation s
heme. The fun
tion

f

G

mapping the random bits r of G to the publi
 key PK must be one-way, sin
e oth-

erwise an impersonator 
ould 
ompletely break the se
urity of ID (see Se
tion 5). To

see that se
ure 
anoni
al identi�
ation s
hemes exist if one-way fun
tions do, we need

only show how to 
onvert an arbitrary se
ure signature s
heme into a se
ure 
anoni
al

identi�
ation s
heme (re
all that se
ure signature s
hemes exist if one-way fun
tions do).

We 
an easily obtain a 
anoni
al identi�
ation s
heme ID = (G;P; V ) from any

signature s
heme SIG = (GEN; SIGN; V ER); V simply 
hallenges P to sign a random

n-bit message Ch and a

epts only if Rsp is a valid signature of Ch. Spe
i�
ally, G is

the same as GEN (so that (pub; pri) = (PK; SK)), Cmt = �, Rsp = SIGN

SK

(Ch)

and V

PK

(�;Ch;Rsp) = V ER

PK

(Ch;Rsp).

It's not too hard to see that if SIG is se
ure (as a signature s
heme) then ID is

se
ure (as an identi�
ation s
heme). An a
tive impersonator I whi
h su

essfully breaks

the se
urity of ID �rst gets to see the signatures of polynomially many messages of his


hoi
e and then su

essfully signs a random message Ch, whose signature he almost


ertainly hasn't already seen (be
ause the 
hallenge spa
e is of super-polynomial size);

a polynomial-time forger F

S

with a

ess to a signature ora
le S 
an easily simulate I,

thereby breaking the se
urity of SIG.

7 Publi
-key en
ryption s
hemes

A publi
-key en
ryption s
heme PKE 
onsists of three polynomial-time algorithms: a

key generator GEN , an en
ryptor ENC and a de
ryptor DEC. GEN and ENC are

probabilisti
 (our de�nition of se
urity will 
ru
ially depend on the fa
t that ENC is

probabilisti
), whereas DEC is deterministi
.
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Informally, the setup is that a person A wants to se
urely 
ommuni
ate with some

stranger B he knows nothing about, ex
ept for his name and address. To this end,

A generates a pair of keys (pub; pri) using GEN , sends the publi
 key pub to B and

keeps the private key pri for himself. To 
ommuni
ate a message m to A, B obtains an

en
ryption e

m

of m using ENC and sends e

m

to A; A then de
rypts e

m

using DEC.

For reasons of modularity and eÆ
ien
y, publi
-key en
ryption s
hemes are in pra
ti
e

almost always used solely to se
urely ex
hange a \short" private key k, whose length we'll

assume to be equal to the se
urity parameter n for 
onvenien
e. On
e both A and B

are in possession of k, they 
an se
urely 
ommuni
ate using highly eÆ
ient \private-key

en
ryption". Thus, unlike in the 
ase of signature s
hemes, where we insisted that SIGN

be able to sign messages of arbitrary length, here we will only require ENC to be able

to en
rypt n-bit messages.

Formally, GEN , ENC and DEC work as follows.

� Given 1

n

and some random bits, GEN outputs a pair of keys (pub; pri), where pub

is the publi
 key and pri is the private key.

� Given 1

n

, pub, a message m 2 f0; 1g

n

and some random bits, ENC outputs an

en
ryption e

m

2 f0; 1g

p(n)

of m, where p(�) is some polynomial.

� Given 1

n

, pri and a supposed en
ryption �, DEC either outputs a message m 2

f0; 1g

n

or a spe
ial symbol ? indi
ating a failure to de
rypt.

Denote the output of ENC given 1

n

, pub, m 2 f0; 1g

n

and some random bits by

ENC

pub

(m), and the output of DEC given 1

n

, pri and � 2 f0; 1g

p(n)

by DEC

pri

(�).

We require that DEC 
orre
tly de
rypt all en
ryptions produ
ed by ENC, so that for

all n, all key pairs (pub; pri) generated by running GEN on 1

n

and some random bits,

all messages m 2 f0; 1g

n

and all en
ryptions e

m

= ENC

pub

(m), DEC

pri

(e

m

) = m.

We are interested in two notions of se
urity for publi
-key en
ryption s
hemes: se-

manti
 se
urity and 
hosen-
iphertext se
urity.
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Informally, PKE is semanti
ally se
ure ([GM84℄) if no probabilisti
 polynomial-time

\eavesdropper" E who knows pub (but not pri) and passively monitors the 
hannel

between A and B 
an \learn" even a single bit of information about a message m through

seeing its en
ryption e

m

.

Formally, E is given 1

n

and a publi
 key pub (generated by running GEN on 1

n

and

some random bits) and 
hooses two distin
t n-bit messages, m

0

and m

1

. A bit b is then


hosen randomly (but not shown to E), and E is given an en
ryption e

b

= ENC

pub

(m

b

)

of m

b

. E next 
omputes for a while, �nally outputting a bit b

0

. Let p

E

(n) be the

probability that b

0

= b, meaning that E 
orre
tly determined b; p

E

(n) is taken over the

random bits of E and GEN (that is, the 
hoi
e of (pub; pri)), as well as the 
hoi
e of b.

PKE is semanti
ally se
ure if, for every probabilisti
 polynomial-time eavesdropper E,

j

1

2

� p

E

(n)j is negligible in n (in other words, p

E

(n) doesn't signi�
antly di�er from

1

2

,

the probability of randomly guessing b).

Note that PKE 
annot be semanti
ally se
ure if ENC is deterministi
. In order

to break the semanti
 se
urity of PKE, an eavesdropper E (who knows pub) simply


omputes �

0

= ENC

pub

(

�

0) and �

1

= ENC

pub

(

�

1), where

�

0 = 0

n

and

�

1 = 0

n�1

1, then

sets m

0

=

�

0 and m

1

=

�

1. On
e E re
eives e

b

, he outputs 0 if e

b

= �

0

and 1 if e

b

= �

1

(these are the only two possibilities be
ause ENC is deterministi
). Sin
e E always

outputs b 
orre
tly (so that b

0

= b with probability 1), j

1

2

�p

E

(n)j =

1

2

, whi
h is 
ertainly

non-negligible.

Informally, PKE is se
ure against (adaptive) 
hosen-
iphertext atta
k or CCA2-se
ure

([RS92℄) if no probabilisti
 polynomial-time adversary ADV who knows pub (but not pri)

and has 
omplete 
ontrol over the 
hannel between A and B 
an \learn" even a single bit

of information about a message m through seeing its en
ryption e

m

. What does it mean

for ADV to have \
omplete 
ontrol" over the 
hannel between A and B? Intuitively,

ADV inter
epts all en
ryptions or \
iphertexts" sent by A to B and sends B whatever

he likes instead.
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Formally, ADV is given 1

n

and a publi
 key pub (generated by running GEN on

1

n

and some random bits) and equipped with a \de
ryption ora
le" D, whi
h outputs

DEC

pri

(�) when queried on a 
iphertext � 2 f0; 1g

p(n)

. D is meant to 
apture the

intuition that ADV 
an e�e
tively for
e B to de
rypt any 
iphertext of his 
hoosing (of


ourse the answer may well be ?; we think of \
iphertexts" that de
rypt to ? as being

malformed).

ADV

D

queries D on �

0

and re
eives DEC

pri

(�

0

), queries D on �

1

and re
eives

DEC

pri

(�

1

), and so on. Sin
e ADV

D

may in general 
hoose his queries based on D's

previous answers, this is an adaptive atta
k. Eventually, ADV

D


hooses two distin
t

n-bit messages, m

0

and m

1

. A bit b is then 
hosen randomly (but not shown to ADV

D

),

and ADV

D

is given an en
ryption e

b

= ENC

pub

(m

b

) of m

b

.

ADV

D

now gets to query D on some additional 
iphertexts, whose 
hoi
e may in

general depend on e

b

. Naturally, we don't allow ADV

D

to query D on e

b

itself, sin
e

DEC

pri

(e

b

) uniquely determines b (be
ause m

0

6= m

1

). Alternatively, on
e ADV

D

re-


eives e

b

we 
ould forbid him from querying D altogether; se
urity against this type of

\lun
htime atta
k" is 
alled CCA1 se
urity ([NY90℄). However, that would arguably be

too restri
tive, sin
e in pra
ti
e CCA2 se
urity is almost always broken by querying D

on 
iphertexts \related to" (though not the same as) e

b

.

ADV

D

next 
omputes for a while, �nally outputting a bit b

0

. Let p

ADV

(n) be the

probability that b

0

= b, meaning that ADV

D


orre
tly determined b; p

ADV

(n) is taken

over the random bits of ADV

D

and GEN (that is, the 
hoi
e of (pub; pri)), as well as

the 
hoi
e of b (the de
ryption ora
le D is deterministi
). PKE is CCA2 se
ure if, for

every probabilisti
 polynomial-time adversary ADV

D

, j

1

2

� p

ADV

(n)j is negligible in n

(in other words, p

ADV

(n) doesn't signi�
antly di�er from

1

2

, the probability of randomly

guessing b).

Observe that semanti
 se
urity is stri
tly weaker than CCA2 se
urity, sin
e every

CCA2-se
ure PKE is also semanti
ally se
ure, but not vi
e versa. CCA2 se
urity implies
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semanti
 se
urity be
ause, for every eavesdropper E who breaks the semanti
 se
urity

of PKE, there is a 
orresponding adversary ADV

D

who breaks the CCA2 se
urity of

PKE: ADV

D

simply simulates E, ignoring the de
ryption ora
le D; ADV

D

's su

ess

probability is identi
al to that of E. This implies that PKE 
annot be CCA2-se
ure if

ENC is deterministi
 | we already know that su
h a PKE is not semanti
ally se
ure,

and we just showed every CCA2-se
ure publi
-key en
ryption s
heme is.

To see that semanti
 se
urity does not imply CCA2 se
urity, 
onsider the following

(admittedly rather 
ontrived) modi�
ation PKE

0

of an arbitrary semanti
ally se
ure

publi
-key en
ryption s
heme PKE. PKE

0

is identi
al to PKE, ex
ept that the new

en
ryptor ENC

0

appends an additional bit, say 0 for 
on
reteness, to every en
ryption;

this bit is ignored by the new de
ryptor DEC

0

. PKE

0

remains semanti
ally se
ure,

sin
e, for every eavesdropper E

0

who breaks the semanti
 se
urity of PKE

0

, there is a


orresponding eavesdropper E who breaks the semanti
 se
urity of PKE: E simulates

E

0

to obtain a pair of messages (m

0

; m

1

), re
eives an en
ryption e

b

and gives e

b

0 to E

0

,

a

epting if and only if E

0

a

epts; E's su

ess probability is identi
al to that of E

0

.

However, it is 
ompletely trivial for an adversary ADV

D

to break the CCA2 se
urity

of PKE

0

: ADV

D

sets m

0

=

�

0 and m

1

=

�

1, re
eives e

b

= ENC

0

pub

(m

b

), and queries D on

e

b

1 to obtain a de
ryption m

0

. He then outputs 0 if m

0

=

�

0 and 1 if m

0

=

�

1 (these are the

only two possibilities, sin
e DEC

0

ignores the trailing bit). Sin
e ADV

D

always outputs

b 
orre
tly (so that b

0

= b with probability 1), j1� p

ADV

(n)j =

1

2

, whi
h is 
ertainly non-

negligible. Although our highly arti�
ial modi�
ation of PKE may seem like a 
heat,

in pra
ti
e publi
-key en
ryption s
hemes fail to be CCA2-se
ure for the same reason as

PKE

0

. Namely, they are \malleable", whi
h informally means that an adversary ADV

D


an \malleate" (that is, modify) e

b

into some related en
ryption e

0

b

su
h that b 
an be


omputed from D(e

0

b

) (ADV

D

is allowed to query D on e

0

b

sin
e e

0

b

6= e

b

).
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8 The Random Ora
le Model (ROM)

The Random Ora
le Model, or ROM for short, is a setting where all parties have a

ess to

a \random ora
le" R. The ROM was formally introdu
ed in the 
ontext of 
ryptography

in [BR93℄.

One way to think of R is as a randomly 
hosen fun
tion mapping f0; 1g

�

to f0; 1g

ny

.

However, the set of all su
h fun
tions is (
ountably) in�nite, and we prefer not to talk

about sampling su
h sets. Instead, we view R as 
hoosing his answers \on-line". When

queried on q 2 f0; 1g

�

, R �rst 
he
ks whether q is a \new query", meaning that he hasn't

been queried on q before. If so, he randomly 
hooses a response ans 2 f0; 1g

n

to q,

writes ans down somewhere and then outputs it. Otherwise (namely in the 
ase that R

has been queried on q already), he looks up and outputs his previous response to q; this

ensures that identi
al queries re
eive an identi
al response (whi
h is the 
ase when R is

viewed as a fun
tion).

We next show that, in some appropriate sense at least, random ora
les are one-way

(see Se
tion 2 for a de�nition of one-wayness). Let p

INV

(n) denote the probability that

a probabilisti
 polynomial-time inverter INV

R

who is given y = R(x) 2 f0; 1g

n

for a

randomly 
hosen x 2 f0; 1g

n

outputs an x

0

2 f0; 1g

n

su
h that R(x

0

) = y; p

INV

(n)

is taken over the 
hoi
e of x, the random bits of INV

R

and the randomness of R.

Observe that y yields no information about x, sin
e it is distributed uniformly over

f0; 1g

n

no matter what x is. Denote the strings INV

R

queries R on by x

1

; : : : ; x

q

R

, and

set y

i

= R(x

i

) for 1 � i � q

R

; noti
e that q

R

� n




for some 
, be
ause INV

R

runs in

(stri
t) polynomial time. INV

R

wins if there is an 1 � i � q

R

su
h that either x

i

= x

or x

i

6= x but y

i

= y anyway. Applying the union bound, we see that this happens with

probability at most

2q

R

2

n

�

2n




2

n

, whi
h is negligible.

y

In general, R maps f0; 1g

�

to f0; 1g

`(n)

, where `(n) � n




for some 
. However, we will usually

assume that `(n) � n to simplify the presentation.



Chapter 3

On the se
urity of Fiat-Shamir

signature s
hemes in the ROM

1 Fiat-Shamir signature s
hemes: an overview

In their seminal 1986 paper ([FS87℄), Amos Fiat and Adi Shamir proposed a new, highly

eÆ
ient signature s
heme based on a 
ertain 
anoni
al identi�
ation s
heme 
losely re-

lated to the proto
ols presented in [GMR85℄ and [FMR96℄ (for de�nitions of signature

s
hemes and 
anoni
al identi�
ation s
hemes, see Se
tions 5 and 6 of Chapter 2). Su
h

signature s
hemes are now 
alled \Fiat-Shamir signature s
hemes", whereas Fiat and

Shamir's approa
h itself is referred to as the \Fiat-Shamir paradigm". Essentially, their

idea was as follows. In order to sign a message m, simply simulate the prover, repla
ing

the veri�er's random 
hallenge with h(m), where h is some \
ryptographi
 hash fun
tion"

(a
tually, this isn't quite right, as we'll see below). The resulting trans
ript then serves

as a signature of m.

Fiat and Shamir showed that the signature s
heme in question is se
ure if h is \truly

random", provided that taking square roots modulo N = pq, where p and q are unknown

\large" primes, is hard (a standard hardness assumption). In modern terminology, Fiat

22
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and Shamir e�e
tively showed that the signature s
heme is se
ure in the Random Ora
le

Model, or ROM (see Chapter 2, Se
tion 8 for a dis
ussion of the ROM), under a standard

hardness assumption. Although this may strike one as a rather weak se
urity guarantee,

no pra
ti
al signature s
hemes provably se
ure under standard hardness assumptions

were known at the time. Today, a number of highly eÆ
ient signature s
hemes provably

se
ure under su
h \non-standard-yet-plausible" hardness assumptions as the \strong RSA

assumption" and the \strong Computational DiÆe-Hellman assumption" are available

([GHR99℄, [CS99℄, [Fis03℄, [BB04℄).

Various other Fiat-Shamir signature s
hemes whi
h are provably se
ure in the ROM

under standard hardness assumptions have been des
ribed over the years ([MS90℄, [Oka93℄,

[Sho96℄, [GaJ03℄), but until fairly re
ently it was not known whether every (a
tively) se-


ure 
anoni
al identi�
ation s
heme yields a Fiat-Shamir signature s
heme se
ure in the

ROM. While Abdalla et al. showed in [AABN02℄ that se
ure \non-trivial" 
anoni
al iden-

ti�
ation s
hemes yield Fiat-Shamir signature s
hemes se
ure in the ROM (informally, a


anoni
al identi�
ation s
heme is \non-trivial" if the prover's 
ommitment distribution

has \high entropy"), they left open the question of whether se
ure \trivial" 
anoni
al

identi�
ation s
hemes do. In Se
tion 5, we prove that every se
ure 
anoni
al identi�
a-

tion s
heme, trivial or not, does indeed yield a Fiat-Shamir signature s
heme se
ure in

the ROM.

However, as we will see in Chapter 5, se
urity in the ROM is no guarantee of real-

world se
urity. In [GTK03℄, Goldwasser and Tauman show that there exist Fiat-Shamir

signature s
hemes whi
h, although se
ure in the ROM, are \uninstantiable" (see Chap-

ter 5, Se
tion 4). Su
h s
hemes are not se
ure in the \real world", no matter what hash

fun
tion ensemble is used to \instantiate" the random ora
le.
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2 The Fiat-Shamir transform

Let ID = (G;P; V ) be a 
anoni
al identi�
ation s
heme and h be a \
ryptographi
 hash

fun
tion". The fun
tion mapping ID and h to the 
orresponding Fiat-Shamir signature

s
heme SIG

h

(ID) is sometimes 
alled the \Fiat-Shamir transform". Sin
e this thesis

is primarily 
on
erned with se
urity in the ROM, we will only present the transform's

ROM version, whi
h maps ID to SIG(ID) = (G; SIGN

R

; V ER

R

).

Given 1

n

, a private key SK (generated by running G on 1

n

together with some

random bits), a message m 2 f0; 1g

�

and some random bits, the signer SIGN

R

pro
eeds

as follows. He �rst simulates P

SK

to obtain a 
ommitmentCmt and 
omputes a 
hallenge

Ch

m

= R(Cmt; m) by querying R; note that the 
hallenge depends on the message to

be signed. SIGN

R

then simulates P

SK

on Ch

m

to obtain a response Rsp and outputs

�

m

= (Cmt;Rsp) as the signature of m. (Re
all that P

SK

denotes the behaviour of P

when given 1

n

, SK and some random bits r. Spe
i�
ally, P 
omputes a 
ommitment

Cmt as a fun
tion of 1

n

, SK and r, re
eives a 
hallenge Ch, and then 
omputes a

response Rsp as a fun
tion of 1

n

, SK, r and Ch).

Given 1

n

, a publi
 key PK (generated by running G on 1

n

together with some random

bits), a message m 2 f0; 1g

�

and a supposed signature (�; 
) of m, the veri�er V ER

R

simply 
omputes � = R(�;m) by querying R and outputs V

PK

(�; �; 
) (Re
all that V

PK

is a deterministi
 fun
tion of (�; �; 
)).

Our goal is to show that if ID is se
ure then SIG(ID) is se
ure in the ROM. By

se
urity in this setting we mean the ordinary se
urity for signature s
hemes (that is,

se
urity against existential forgery under adaptive 
hosen-message atta
k), ex
ept that

the forger F now has a

ess to the random ora
le R in addition to the signature ora
le

S, and his su

ess probability is also taken over the randomness of R.
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3 An earlier result

Abdalla, An, Bellare and Namprempre present several results 
on
erning the Fiat-Shamir

transform in [AABN02℄, in
luding a randomized version of the transform and appli
ations

to \forward-se
ure signature s
hemes". However, we are only interested in the following

result of theirs: for every passively se
ure \non-trivial" 
anoni
al identi�
ation s
heme

ID, the 
orresponding Fiat-Shamir signature s
heme SIG(ID) is se
ure in the ROM.

Sin
e a
tive se
urity implies passive se
urity for identi�
ation s
hemes, this means that

every se
ure \non-trivial" 
anoni
al identi�
ation s
heme yields a Fiat-Shamir signature

s
heme se
ure in the ROM.

Informally, ID is \non-trivial" if the prover's 
ommitment distribution has \high

entropy". Formally, let P

SK

= fp

i

g

k

i=0

denote P

SK

's 
ommitment distribution and de�ne

the min-entropy of P

SK

by H

min

(P

SK

) = � log

2

(p

max

), where p

max

= maxfp

i

g

k

i=0

is the

largest probability mass in P

SK

. ID is non-trivial if minfH

min

(P

SK

) : SK  G(1

n

)g =

!(logn), meaning that the minimum min-entropy of P

SK

, taken over all private keys

SK (generated by running G on 1

n

and some random bits), is super-logarithmi
 in the

se
urity parameter n. It 
an be shown that in this 
ase the probability of seeing the same


ommitment more than on
e in polynomially many trials is negligible, so that, for all

pra
ti
al purposes, P

SK

's 
ommitments don't repeat. Canoni
al identi�
ation s
hemes

whi
h are not non-trivial are said to be trivial.

Let ID be a non-trivial 
anoni
al identi�
ation s
heme. Suppose that F

R;S

is a

polynomial-time forger who breaks the se
urity of SIG(ID) in the ROM, and denote his

(non-negligible) su

ess probability by p

F

(n). F

R;S

PK

is given 1

n

, PK and some random

bits, and his goal is to output a new message m

�

(i.e. one he hasn't queried S on)

together with a valid signature �

�

= (Cmt

�

;Rsp

�

) of m

�

.

We may assume, without loss of generality, that F

R;S

PK

doesn't query R on any string

more than on
e, sin
e that would yield no new information (be
ause R's responses would

all be identi
al). We may additionally assume, again wlog, that F

R;S

PK

doesn't query R on
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strings whose length is less than `(n); re
all that all of P

SK

's 
ommitments are of length

`(n). R queries involving su
h \short strings" 
an safely be answered randomly, sin
e

there is no interplay between them and S queries (more on this interplay later). This

assumption ensures that every s 2 f0; 1g

�

F

R;S

PK

queries R on 
an be parsed as (Cmt; m),

where Cmt 2 f0; 1g

`(n)

and m 2 f0; 1g

�

. Finally, it will be 
onvenient for us to assume

that F

R;S

PK

queries R on (Cmt

�

; m

�

) at some point during his exe
ution; following the

terminology of [AABN02℄, we refer to this spe
ial R query as the \
ru
ial query". There

is no loss of generality in assuming that the forger makes the 
ru
ial query, sin
e every

F

R;S

who doesn't 
an easily be 
onverted into a 
orresponding forger

^

F

R;S

who does:

^

F

R;S

PK

obtains m

�

and �

�

= (Cmt

�

;Rsp

�

) by simulating F

R;S

PK

, queries R on (Cmt

�

; m

�

)

and then outputs (m

�

; �

�

). Sin
e the additional R query doesn't a�e
t the 
hoi
e of m

�

and �

�

,

^

F

R;S

's su

ess probability is identi
al to that of F

R;S

.

We now des
ribe a polynomial-time impersonator I

T

who, given 1

n

, PK and some

random bits, breaks the passive se
urity of ID (in the real world) by simulating F

R;S

PK

. Let

q

R

(n) denote the number of times F

R;S

PK

queries R. Sin
e F

R;S

PK

runs in (stri
t) polynomial

time, q

R

(n) � n




for some 
 (in the worst 
ase, F

R;S

PK

does nothing but query R, ea
h

query taking a single step).

I

T

PK

begins by randomly 
hoosing an index i 2 f1; : : : ; q

R

(n)g; as we'll see later, i

is not revealed to F

R;S

PK

in the 
ourse of the simulation. Sin
e we've assumed both that

F

R;S

PK

makes the 
ru
ial query and that he never queries R on the same string more

than on
e, i is the index of the 
ru
ial query with probability

1

q

R

(n)

�

1

n




. A te
hni
al

but important point is that the distribution of F

R;S

's views (namely what he \sees"

during the simulation, in
luding his random bits and the answers to his ora
le queries)

is independent of the 
hoi
e of i, so that he gets no information about i. If that were

not the 
ase, F

R;S

PK


ould exploit his knowledge of i to ensure that I

T

PK

never guesses the

index of the 
ru
ial query 
orre
tly.

During the simulation, I

T

PK

responds to all of F

R;S

PK

's random ora
le queries but the i

th
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with a randomly 
hosen n-bit string (sin
e F

R;S

PK

never queries R on the same string more

than on
e, there is no risk of giving in
onsistent answers). The i

th

query is handled as

follows. Suppose that, for his i

th

random ora
le query, F

R;S

PK

queriesR on some s 2 f0; 1g

�

(re
all that jsj � `(n), sin
e F

R;S

PK

doesn't query R on \short strings"). I

T

PK

parses s as

(Cmt

�

; m

�

), sends Cmt

�

2 f0; 1g

`(n)

to V

PK

, and re
eives a 
hallenge Ch

�

2 f0; 1g

n

in

reply. He then gives Ch

�

to F

R;S

PK

as the answer to R(s) and 
ontinues his simulation.

This ensures that Rsp

�

is a 
orre
t answer to Ch

�

, so that (Cmt

�

;Ch

�

;Rsp

�

) is a valid

trans
ript.

Whenever F

R;S

PK

asks to see a signature of a message m, I

T

PK

queries T to obtain a

valid trans
ript (Cmt;Ch;Rsp) and gives (Cmt;Rsp) to F

R;S

PK

. To ensure that future

R queries are answered 
onsistently, I

T

then sets R(Cmt; m) to Ch. Observe that if

(Cmt;Rsp) is to be a legitimate signature of m, we must have R(Cmt; m) = Ch, so

that every S query e�e
tively involves an impli
it R query. But what if R has been

queried on (Cmt; m) already? Unless we are very lu
ky and Ch mat
hes the value pre-

viously assigned to R(Cmt; m) (whi
h happens with probability

1

2

n

, sin
e Ch 2 f0; 1g

n

is 
hosen randomly), this prevents R from being well-de�ned. We may thus view a new


ommitment Cmt as being added to the (notional) set of \forbidden 
ommitments" ev-

ery time R is queried on s 2 f0; 1g

�

| simply parse s as (Cmt; m). Noti
e that the size

of this \forbidden 
ommitment set" is polynomial in the se
urity parameter n, be
ause

q

R

(n) � n




. Sin
e ID is non-trivial (whi
h informally means that the number of 
om-

mitments is super-polynomial in n), the probability that a randomly 
hosen 
ommitment

belongs to the \forbidden 
ommitment set" is therefore negligible in n, so this event 
an

be safely ignored for the purposes of our analysis.

Eventually, F

R;S

PK

outputs a message m

�

together with a purportedly valid signature

�

�

= (Cmt

�

;Rsp

�

) of m

�

. I

T

PK

then sends Rsp

�

to V

PK

as the answer to the 
hallenge

Ch

�

. Sin
e p

F

(n) is non-negligible, there is a d su
h that p

F

(n) >

1

n

d

for in�nitely

many n. What is the probability that I

T

PK

breaks the se
urity of ID, namely that
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V

PK

(Cmt

�

;Ch

�

;Rsp

�

) = 1? If I

T

PK


orre
tly guesses the index of the 
ru
ial query

and there are no \
ommitment 
ollisions" (re
all that these only o

ur with negligible

probability), then his simulation of F

R;S

PK

is perfe
t; in that 
ase his su

ess probability

is just p

F

(n). Sin
e the 
hoi
e of i is independent of the simulation, we get:

Pr[V

PK

(Cmt

�

;Ch

�

;Rsp

�

) = 1℄ �

1

q

R

(n)

� p

F

(n) �

1

n




� p

F

(n)

>

1

n




�

1

n

d

=

1

n


+d

for in�nitely many n:

I

T

PK

therefore breaks the passive se
urity of ID, so that SIG(ID) is se
ure in the ROM

if ID is passively se
ure. �

4 The non-triviality assumption

It's not hard to show that passive se
urity of ID is a ne
essary 
ondition for SID(ID) to

be se
ure in the ROM, meaning that ID is passively se
ure whenever SIG(ID) is se
ure

in the ROM; Abdalla et al. 
laim that non-triviality is also ne
essary. To support this


laim, they show that, subje
t to an assumption, there exists a passively se
ure trivial

identi�
ation s
heme whi
h yields a Fiat-Shamir signature s
heme that is not se
ure in

the ROM. However, below we show that, subje
t to a di�erent assumption, there exists a

passively se
ure trivial 
anoni
al identi�
ation s
heme ID

0

su
h that SIG(ID

0

) is se
ure

in the ROM. Thus, in some sense at least, the non-triviality assumption is not ne
essary.

Let F = (G; f; f

0

) be a trapdoor permutation (see Chapter 2, Se
tion 4 for the

relevant de�nitions), and 
onsider the following identi�
ation s
heme ID

0

= (G;P

0

; V

0

).

ID

0

's key generator G is identi
al to that of F , so PK = k and SK = k

0

. Informally, we

think of ID

0

as a two-round s
heme: the veri�er V

0


hallenges the prover P

0

to invert f

k

on a random string Ch, a

epting if and only if P

0

does so su

essfully. Formally, ID

0

is a 
anoni
al (three-round) s
heme where P

0

's 
ommitment Cmt is �xed, say Cmt = �

for 
on
reteness. The veri�er V

0

, who knows k, a

epts a trans
ript (Ch;Rsp) if and
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only if f

k

(Rsp) = Ch (sin
e the 
ommitment � is �xed, it may be omitted from the

trans
ript). We refer to su
h s
hemes as \hyper-trivial", sin
e not only is the entropy of

their 
ommitment distribution \low", it's a
tually zero.

First, we show that ID

0

is passively se
ure. Observe that, although for 
omplete-

ness we establish it dire
tly, the passive se
urity of ID

0

also follows from the fa
t that

SIG(ID

0

) is se
ure in the ROM (as shown below). Suppose that I

T

is a polynomial-time

passive impersonator who breaks the se
urity of ID

0

, and denote his (non-negligible)

su

ess probability by p

I

(n). We use I

T

to 
onstru
t a polynomial-time inverter INV

who breaks the one-wayness of f

k

.

Re
all that INV is given 1

n

, k, y 2 f0; 1g

n

and some random bits, and his goal is

to output an x 2 f0; 1g

n

su
h that f

k

(x) = y. INV

k

simulates I

T

k

as follows. Whenever

I

T

k

queries the trans
ript ora
le T , INV

k

randomly 
hooses x

0

2 f0; 1g

n

, 
omputes y

0

=

f

k

(x

0

) 2 f0; 1g

n

and gives (y

0

; x

0

) to I

T

k

. Sin
e f

k

is a bije
tion, setting y

0

to f

k

(x

0

) for

a random x

0

is equivalent to setting x

0

to f

0

k

0

(y

0

) for a random y

0

, so (y

0

; x

0

) has exa
tly

the right distribution. On
e I

T

k

outputs � to signal he is ready to be 
hallenged, INV

k

gives him y, re
eiving Rsp

0

in reply. INV

k

then outputs Rsp

0

as his guess at f

0

k

0

(y).

Sin
e INV

k

's simulation of I

T

k

is perfe
t, f

k

(Rsp

0

) = y with probability p

I

(n), whi
h is

non-negligible. INV

k

therefore breaks the one-wayness of f

k

, so that ID

0

is passively

se
ure.

Next, we show that SIG(ID

0

) is se
ure in the ROM. Suppose that F

R;S

is a polynomial-

time forger who breaks the se
urity of SIG(ID

0

) in the ROM, and denote his (non-

negligible) su

ess probability by p

F

(n). We use F

R;S

to 
onstru
t a polynomial-time

inverter INV who breaks the one-wayness of f

k

.

Re
all that F

R;S

is given 1

n

, k and some random bits, and his goal is to output a new

message m

�

together with a signature Rsp

�

su
h that f

k

(Rsp

�

) = R(m

�

). Whenever

F

R;S

k

queries S on a message m 2 f0; 1g

�

, he is given f

0

k

0

(R(m)). As in Se
tion 3, we

assume, without loss of generality, that F

R;S

k

doesn't query R on \short strings" (i.e.



Chapter 3. On the se
urity of Fiat-Shamir signature s
hemes in the ROM30

strings whose length is less than `(n)), doesn't query R on the same string more than

on
e, and makes the \
ru
ial query" R(m

�

). We additionally assume that F

R;S

k

doesn't

query S on the same message more than on
e. There is no loss of generality in making

this assumption, be
ause signing in SIG(ID

0

) is deterministi
 (sin
e P

0

is deterministi
).

Let q

R

(n) and q

S

(n) denote the number of times F

R;S

k

queries R and S, respe
tively,

and suppose that the running time of F

R;S

k

is bounded above by n




; su
h a 
 must exist

be
ause F

R;S

k

runs in stri
t polynomial time. Observe that q

R

(n) + q

S

(n) � n




, sin
e in

the worst 
ase F

R;S

k

queries an ora
le at every step of his exe
ution.

Re
all that INV is given 1

n

, k, y 2 f0; 1g

n

and some random bits, and his goal is to

output an x 2 f0; 1g

n

su
h that f

k

(x) = y. As in Se
tion 3, INV

k

�rst randomly 
hooses

an index i 2 f1; : : : ; q

R

(n)g; i represents INV

k

's guess at the index of the 
ru
ial query,

and won't be revealed to F

R;S

k

in the 
ourse of the simulation. Sin
e F

R;S

k

gets no infor-

mation about i, INV

k

guesses the index of the 
ru
ial query 
orre
tly with probability

1

q

R

(n)

�

1

n




.

Before beginning the simulation proper, INV

k

generates n




\trans
ripts" (y

1

; x

1

); : : : ;

(y

n




; x

n




) by randomly 
hoosing x

j

2 f0; 1g

n

and setting y

j

= f

k

(x

j

) for 1 � j � n




; sin
e

f

k

is a bije
tion, this is equivalent to randomly 
hoosing y

j

and setting x

j

to f

0

k

0

(y

j

).

The idea of generating trans
ripts ahead of time is key, sin
e it later enables INV

k

to 
onsistently answer F

R;S

k

's ora
le queries; re
all from Se
tion 3 that every S query

e�e
tively involves an impli
it R query, and this time we 
an't rely on the non-triviality

assumption to bail us out. A similar te
hnique is used to prove our main result in

Se
tion 5.

INV

k

now begins his simulation of F

R;S

k

. As in Se
tion 3, the i

th

random ora
le query

is treated spe
ially. Sin
e in this 
ase the 
ommitment � is �xed, INV

k

simply answers

the query with y (the string he is trying to invert f

k

on). The rest of F

R;S

k

's ora
le queries

are handled as follows. Ea
h time F

R;S

k

queries an ora
le on a new message m 2 f0; 1g

�

,

INV

k

asso
iates an unused trans
ript (y

j

; x

j

) with m; all ora
le queries regarding m are
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answered using (y

j

; x

j

). Spe
i�
ally, INV

k

sets R(m) to y

j

and S(m) to x

j

. Note that

INV

k

won't run out of trans
ripts, be
ause F

R;S

k

queries his ora
les on at most n




distin
t

messages.

F

R;S

k

eventually outputs Rsp

�

(purportedly a signature of m

�

), whi
h INV

k

then

outputs as his guess at f

0

k

0

(y). Sin
e INV

k

's simulation of F

R;S

k

is perfe
t and the 
hoi
e

of i is independent of it, INV

k

su

eeds with probability at least

1

n




� p

F

(n), whi
h is

non-negligible. INV

k

therefore breaks the one-wayness of f

k

, so that SIG(ID

0

) is se
ure

in the ROM.

Here we have only shown that ID

0

, whi
h is hyper-trivial, yields a Fiat-Shamir sig-

nature s
heme that is se
ure in the ROM. However, a similar argument demonstrates

that every passively se
ure 
anoni
al identi�
ation s
heme whose prover is deterministi


(trivial or not) does.

5 Our result

In this se
tion, we prove the following theorem.

Theorem. For every (a
tively) se
ure 
anoni
al identi�
ation s
heme ID = (G;P; V ),

the 
orresponding Fiat-Shamir signature s
heme, SIG(ID) = (G; SIGN

R

; V ER

R

), is

se
ure in the ROM.

Proof. Suppose that F

R;S

is a polynomial-time forger who breaks the se
urity of SIG(ID)

in the ROM, and denote his (non-negligible) su

ess probability by p

F

(n). We use F

R;S

to 
onstru
t an a
tive impersonator I who breaks the se
urity of ID.

Re
all that F

R;S

is given 1

n

, PK and some random bits, and his goal is to output

a new message m

�

together with a valid signature (Cmt

�

;Rsp

�

) of m

�

. As in previous

se
tions, we make a number of \regularity assumptions" about F

R;S

PK

, without loss of

generality: F

R;S

PK

doesn't query R on \short strings" (i.e. strings whose length is less

than `(n)), doesn't query R on the same string more than on
e, and makes the \
ru
ial
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query" R(Cmt

�

; m

�

) at some point during his exe
ution. Note, however, that F

R;S

PK

may

query S on the same message more than on
e. Sin
e signing in SIG(ID) is probabilisti
,

this makes perfe
t sense and 
ould yield useful information.

Re
all that I is given 1

n

, PK and some random bits. As per the de�nition of a
tive

se
urity (see Chapter 2, Se
tion 6), I

PK

�rst gets to intera
t with P

SK

polynomially

many times in the role of V

PK

. Ea
h time, I

PK

re
eives a 
ommitment Cmt 2 f0; 1g

`(n)

from P

SK

, sends a (not ne
essarily random) 
hallenge Ch 2 f0; 1g

n

to P

SK

, and then

re
eives a response Rsp from P

SK

. Next, I

PK

sends a 
ommitment Cmt

0

to V

PK

| this

marks the end of his \intera
tive" phase | re
eiving a random 
hallenge Ch

0

in reply.

His goal is to output a response Rsp

0

su
h that V

PK

(Cmt

0

;Ch

0

;Rsp

0

) = 1.

Let q

R

(n) and q

S

(n) denote the number of times F

R;S

PK

queries R and S, respe
tively,

and set q(n) = q

R

(n) + q

S

(n). Also, suppose that the running time of F

R;S

PK

is bounded

above by n




; su
h a 
 must exist sin
e F

R;S

PK

runs in stri
t polynomial time. Observe that

q(n) � n




, sin
e in the worst 
ase F

R;S

PK

queries an ora
le at every step of his exe
ution.

Before beginning his simulation of F

R;S

PK

, our impersonator I

PK

obtains q(n) \tran-

s
ript blo
ks" B

1

; : : : ;B

q(n)

, ea
h 
onsisting of q

S

(n) trans
ripts, by intera
ting with P

SK

.

A new trans
ript is added to a given blo
k B

k

as follows. I

PK

�rst re
eives a 
ommit-

ment Cmt 2 f0; 1g

`(n)

from P

SK

(it's 
hosen a

ording to P

SK

's 
ommitment distribu-

tion, P

SK

). I

PK

next needs to de
ide what 
hallenge Ch 2 f0; 1g

`(n)

to send to P

SK

.

If Cmt does not appear in any of the trans
ripts already 
ontained in B

k

, I

PK


hooses

Ch randomly. Otherwise, he sets Ch to the 
hallenge asso
iated with Cmt (sin
e Ch

repeats whenever Cmt does, every 
ommitment in B

k

is asso
iated with some parti
u-

lar 
hallenge). After sending Ch to P

SK

, I

PK

re
eives a response Rsp; the trans
ript

(Cmt;Ch;Rsp) is then added to B

k

. On
e the trans
ript blo
ks have been generated,

I

PK

randomly 
hooses an index i 2 f1; : : : ; q

R

(n)g; i represents I

PK

's guess at the index

of the 
ru
ial query, and won't be revealed to F

R;S

PK

in the 
ourse of the simulation.

I

PK

now begins his simulation of F

R;S

PK

. Noti
e that, thanks to our \regularity as-
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sumptions" above, every ora
le query made by F

R;S

PK


an be unambiguously asso
iated

with some message m 2 f0; 1g

�

. Let m

1

; m

2

; m

3

; : : : be the distin
t messages asso
iated

with F

R;S

PK

's ora
le queries (there are at most q(n) su
h messages). I

PK

answers R and

S queries asso
iated with the k

th

distin
t message m

k

using trans
ripts 
ontained in the

k

th

blo
k B

k

. The idea is to ensure that I

PK


an answer as many S(m

k

) queries as ne
-

essary | there will be at most q

S

(n) | in a way that is 
onsistent with his answers to

queries of the form R(Cmt; m

k

), Cmt 2 f0; 1g

`(n)

. Spe
i�
ally, I

PK

answers F

R;S

PK

's j

th

S(m

k

) query with (Cmt;Rsp), where (Cmt;Ch;Rsp) is the j

th

trans
ript 
ontained in

B

k

. His answer to queries of the form R(Cmt; m

k

) depends on whether the 
ommitment

Cmt 2 f0; 1g

`(n)

appears in any of the trans
ripts in B

k

. If so, I

PK

sets R(Cmt; m

k

) to

Ch 2 f0; 1g

n

, the 
hallenge asso
iated with Cmt. Otherwise, he randomly 
hooses an

r 2 f0; 1g

n

and sets R(Cmt; m

k

) to r.

As in previous se
tions, the i

th

random ora
le query is handled spe
ially. Suppose

that, for his i

th

random ora
le query, F

R;S

PK

queries R on some s 2 f0; 1g

�

(re
all that

jsj � `(n), sin
e F

R;S

PK

doesn't query R on \short strings"). I

T

PK

parses s as (Cmt

0

; m

0

),

sends Cmt

0

2 f0; 1g

`(n)

to V

PK

, and re
eives a 
hallenge Ch

0

2 f0; 1g

n

in reply. He then

gives Ch

0

to F

R;S

PK

as the answer to R(s) and 
ontinues his simulation.

Eventually, F

R;S

PK

outputs a message m

�

together with a purported signature (Cmt

�

;

Rsp

�

) of m

�

. I

PK

then sends Rsp

�

to V

PK

as the answer to the 
hallenge Ch

0

. If I

PK

guessed the index of the 
ru
ial query 
orre
tly, then m

�

= m

0

and Cmt

�

= Cmt

0

, so

thatR(Cmt

�

; m

�

) = Ch

0

. In that 
ase, I

PK

's simulation of F

R;S

PK

is perfe
t. Let A denote

the event that V

PK

(Cmt

0

;Ch

0

;Rsp

�

) = 1 and B denote the event that i = i

�

, where i

�

is the true index of the 
ru
ial query. Sin
e p

F

(n) >

1

n

d

for some d and in�nitely many

n (be
ause F

R;S

breaks the se
urity of SIG(ID) in the ROM), we get:

Pr[A℄ � Pr[A;B℄ = Pr[A j B℄ � Pr[B℄

= p

F

(n) �

1

q

R

(n)

�

p

F

(n)

n




>

1

n


+d

for in�nitely many n:
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I

PK

therefore breaks the se
urity of ID, so that SIG(ID) is se
ure in the ROM. �



Chapter 4

A publi
-key en
ryption s
heme

CCA2-se
ure in the ROM

1 Publi
-key en
ryption in the ROM: an overview

In [BR93℄, Bellare and Rogaway proposed the following publi
-key en
ryption s
heme,

whi
h they showed to be CCA2-se
ure in the ROM (see Se
tions 7 and 8 of Chapter 2

for the relevant de�nitions). Let (G; f; f

0

) be a trapdoor permutation (see Se
tion 4

of Chapter 2). The key generator GEN

R

simulates G to obtain a pair of keys (k; k

0

)

and sets pub = k, pri = k

0

. Let n be the se
urity parameter. To en
rypt a message

m 2 f0; 1g

n

, ENC

R

k


hooses r 2 f0; 1g

n

randomly, 
omputes y = f

k

(r) and sets e

m

to

(y;R(r) � m;R(r;m)). Given a purported en
ryption e = (�; �; 
), DEC

R

k

0


omputes

r = f

0

k

0

(�) and sets m = � � R(r). If 
 6= R(r;m), he outputs ?, indi
ating a failure

to de
rypt; otherwise, he outputs m as the de
ryption of e. Intuitively, r is hard to

�nd be
ause f

k

is hard to invert. Together with the randomness of R, this implies

that R(r)�m yields no information about m, whi
h guarantees semanti
 se
urity. The

\authenti�
ation 
ode" R(r;m) ensures that en
ryptions are diÆ
ult to \malleate".

One drawba
k of the above s
heme is that en
ryptions are of length about 3n, or

35
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roughly three times the length of the message being en
rypted. To address this issue,

Bellare and Rogaway introdu
ed the highly in
uential Optimal Asymmetri
 En
ryption

Padding or OAEP s
heme in [BR94℄, a simpli�ed version

1

of whi
h is des
ribed next. Let

F = (G; f; f

0

) be a trapdoor permutation. As before, the key generator GEN

R

simulates

G to obtain a pair of keys (k; k

0

) and sets pub = k, pri = k

0

. Let n be the se
urity

parameter. To simplify the presentation, it will be 
onvenient to assume that f

k

and f

0

k

0

map 2n bits to 2n bits (as opposed to n bits to n bits). To en
rypt a message m 2 f0; 1g

n

,

ENC

R

k


hooses r 2 f0; 1g

n

randomly, 
omputes �(m) = (m � R(r); r � R(m � R(r)))

and sets e

m

= f

k

(�(m)); � is sometimes 
alled the padding fun
tion. Given a purported

en
ryption � 2 f0; 1g

2n

, DEC

R

k

0


omputes (�; 
) = f

0

k

0

(�), where j�j = j
j = n, and sets

r = 
 � R(�). He then outputs m = � � R(r) 2 f0; 1g

n

as the de
ryption of �; noti
e

that every � is a valid en
ryption of some m, so that DEC

R

k

0

never outputs ?. This

s
heme was shown to be \plaintext aware" in [BR94℄, where it was also 
laimed (without

proof) that plaintext awareness implies \se
urity against 
hosen-
iphertext atta
k" (it's

not entirely 
lear whether the authors had CCA1 or CCA2 se
urity in mind).

After Blei
henba
her showed in [Ble98℄ that version 1.5 of RSA Se
urity's PKCS #1

standard ([RSA93℄) is vulnerable to 
hosen-
iphertext atta
k, RSA-OAEP (a 
on
rete

implementation of the OAEP s
heme where the role of F is played by the RSA fun
tion)

served as the basis for version 2.0 of the standard ([RSA98℄). RSA-OAEP was subse-

quently also in
orporated into IEEE's publi
-key 
ryptography standard, IEEE P1363-

2000 ([IEE00℄). However, in [Sho01℄ Shoup pointed out that, although OAEP is indeed

CCA1-se
ure, there is an (additional, not random) ora
le relative to whi
h F remains

one-way but OAEP fails to be CCA2-se
ure. Sin
e standard \bla
k-box" se
urity redu
-

tions relativize | that is, hold relative to every ora
le | any redu
tion from inverting

F to breaking the CCA2 se
urity of OAEP would therefore have to be \non-bla
k-box",

1

The real s
heme makes use of two independent random ora
les, G and H, and has three se
urity

parameters.
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meaning that it would need to somehow depend on the spe
i�
s of F . Shoup also pro-

posed a modi�
ation of OAEP, 
alled OAEP+, whi
h he proved to be CCA2-se
ure in

the ROM. In [FOPS01℄, Fujisaki, Okamoto, Point
heval and Stern proved that OAEP

is CCA2-se
ure under the stronger assumption that F is \partial domain one-way", as

opposed to \full domain one-way" or simply one-way (also see [FOPS04℄ for the journal

version). Sin
e RSA is \random self-redu
ible" | loosely, this means that being able

to invert it on a large fra
tion of the inputs allows one to invert it on every single in-

put | it is \partial domain one-way" if and only if it is one-way. Thus, Shoup's result

notwithstanding, RSA-OAEP is in fa
t CCA2-se
ure under the RSA assumption.

In [Bon01℄, Boneh observed that the OAEP padding fun
tion � may be viewed as

two rounds of a \Feistel network" and proposed two simpler, more elegant single-round

padding fun
tions. When used in 
onjun
tion with either RSA or Rabin's modular

squaring fun
tion, these new paddings yield en
ryption s
hemes whi
h are CCA2-se
ure

in the ROM (under the assumption that RSA is hard to invert and fa
toring is hard,

respe
tively). Interestingly, Boneh re
ommends using the Rabin fun
tion in preferen
e

to RSA where his paddings are 
on
erned, sin
e it has better \redu
tion eÆ
ien
y".

In [CS98℄, Cramer and Shoup des
ribed an eÆ
ient, pra
ti
al publi
-key en
ryp-

tion s
heme (its eÆ
ien
y is 
omparable to that of RSA-OAEP) whi
h is CCA2-se
ure

in the \real world" (and hen
e also in the ROM) under the non-standard-yet-highly-

plausible \De
isional DiÆe-Hellman" assumption. This important result is perhaps the

main reason why there hasn't been a great deal of work done on dis
rete logarithm-based

publi
-key en
ryption s
hemes whi
h are CCA2-se
ure in the ROM.

2 The original s
heme

In [BR97℄, Bellare and Rogaway proposed a dis
rete logarithm-based publi
-key en
ryp-

tion s
heme 
alled the DiÆe-Hellman Integrated En
ryption S
heme or DHIES, whi
h
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they 
laimed is CCA2-se
ure in the ROM under the \Computational DiÆe-Hellman"

assumption (a standard dis
rete log-type hardness assumption). However, in [ABR01b℄

Abdalla, Bellare and Rogaway 
on
eded that DHIES is unlikely to be CCA2-se
ure in the

ROM under the above assumption (see also [ABR01a℄). Instead, they proved that DHIES

is CCA2-se
ure in the \real world" under a strong, non-standard DiÆe-Hellman-type as-

sumption 
alled the \Hash DiÆe-Hellman" assumption; their new fo
us on \real-world"

se
urity (as opposed to se
urity in the ROM) was likely a response to Cramer and Shoup's

1998 dis
overy ([CS98℄) of a pra
ti
al publi
-key en
ryption s
heme whi
h is CCA2-se
ure

in the \real world" under the non-standard-yet-plausible \De
isional DiÆe-Hellman" as-

sumption. Although its se
urity rests on a rather less believable assumption, DHIES is

somewhat more eÆ
ient than Cramer and Shoup's s
heme. We now give an informal

des
ription of the DHIES en
ryption s
heme.

Let G be a 
y
li
 multipli
ative group of order p� 1, where p is some n-bit prime (n

being the se
urity parameter). For 
on
reteness, think of G as Z

�

p

= f1; 2; : : : ; p�1g (here

the group operation is multipli
ation mod p). We will need to assume that membership

in G is eÆ
iently testable, whi
h is the 
ase for Z

�

p

. It will also sometimes be 
onvenient

to treat the elements of G as strings over f0; 1g, say via their binary en
oding.

Fix a generator g 2 G, so that G = fg; g

2

; : : : ; g

p�1

g; g is impli
itly given to all

parti
ipants, as are p and 1

n

. Informally, the Computational DiÆe-Hellman assumption

(often abbreviated as the CDH assumption) with respe
t to G says that g

uv

2 G is hard

to 
ompute from g

u

2 G and g

v

2 G. Formally, the CDH assumption holds for G if,

for every probabilisti
 polynomial-time adversary A who is given g

u

2 G and g

v

2 G for

randomly 
hosen u; v 2 f1; : : : ; p � 1g, the probability p

A

(n) that A outputs g

uv

2 G is

negligible; here p

A

(n) is taken over the random bits of A as well as the 
hoi
e of u and v.

We will need a se
ure MAC M = (SIGN; V ER) (see Se
tion 5 of Chapter 2) and a

se
ure \private-key en
ryption s
heme" E = (ENC;DEC) (the latter haven't a
tually

been formally de�ned in this thesis). M must also be \non-malleable" in the following
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sense: given a signature � of some message m, it is infeasible to �nd another signature

�

0

6= � of m. Both se
ure non-malleable MACs and se
ure \private-key en
ryption

s
hemes" 
an be implemented using \pseudorandom fun
tion generators" ([GGM84b℄),

whi
h exist if one-way fun
tions (see Se
tion 2 of Chapter 2) do ([GGM84a℄, [GGM86℄).

To generate a mat
hing publi
/private key pair, randomly 
hoose a v 2 f1; : : : ; p�1g

and set pub = g

v

2 G, pri = v.

To en
rypt a message m 2 f0; 1g

n

given a publi
 key g

v

, �rst randomly 
hoose

u 2 f1; : : : ; p� 1g and 
ompute g

u

2 G, (g

v

)

u

= g

uv

2 G. Next, query the random ora
le

R on (g

u

; g

uv

) (noti
e that here we are treating elements of G as binary strings) to obtain

two keys k

1

; k

2

2 f0; 1g

n

(here we assume for 
onvenien
e that R : f0; 1g

�

! f0; 1g

2n

).

Finally, 
ompute s = ENC

k

1

(m), t = SIGN

k

2

(s) and output e

m

= (g

u

; s; t) as the

en
ryption of m.

To de
rypt a purported 
iphertext e = (�; �; 
) given a private key v, pro
eed as

follows. If � =2 G, output ?, indi
ating a failure to de
rypt. Otherwise, 
ompute �

v

2 G

and query R on (�; �

v

) to obtain k

1

; k

2

2 f0; 1g

n

. If V ER

k

2

(�; 
) = 0, output ?.

Otherwise, output DEC

k

1

(�) as the de
ryption of e.

Next, we brie
y argue why DHIES is unlikely to be CCA2-se
ure in the ROM (with-

out a
tually proving that it isn't). The standard way to demonstrate that a publi
-key

en
ryption s
heme is CCA2-se
ure is to show that it is both semanti
ally se
ure (see

Chapter 2, Se
tion 7) and \plaintext-aware". Informally, a publi
-key en
ryption s
heme

is plaintext-aware if the de
ryption ora
le D is useless to the CCA2 adversary ADV ,

meaning that ADV is only able to get D to de
rypt 
iphertexts he 
ould have de
rypted

himself. More formally, we say that a publi
-key en
ryption s
heme is plaintext-aware in

the ROM if, for every probabilisti
 polynomial-time adversary ADV

R;D

, there is a 
or-

responding probabilisti
 polynomial-time adversary A

R

su
h that the di�eren
e between

the su

ess probabilities of ADV

R;D

and A

R

is negligible (in n). A

R

essentially simulates

ADV

R;D

, 
omputing D's answers himself based on ADV

R;D

's view. Below, we provide
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eviden
e that DHIES fails to have this property.

Re
all that ADV

R;D

is given g

v

2 G, 
hooses a pair of messages m

0

; m

1

2 f0; 1g

n

and then sees an en
ryption e

b

= (g

u

; s = ENC

k

1

(m

b

); t = SIGN

k

2

(s)), where k

1

k

2

=

R(g

u

; g

uv

) and b 2 f0; 1g, u 2 f1; : : : ; p� 1g are 
hosen randomly. Sin
e ADV

R;D

is not

allowed to query D on e

b

, he must modify at least one of g

u

, s and t.

If ADV

R;D

queries D on e

0

= (g

u

0

; s

0

; t

0

), where either s

0

6= s or t

0

6= t (or both), A

R


an safely respond with ?. This is almost 
ertainly the right answer, be
ause in order for

e

0

to be a valid 
iphertext ADV

R;D

would need to either sign a new message (if s

0

6= s),

or 
ome up with another signature of an old message (if s

0

= s); the former is infeasible

be
ause M is se
ure, whereas the latter is infeasible be
ause M is non-malleable. If, on

the other hand, ADV

R;D

queries D on (g

u

0

; s; t) for some u

0

6= u, the 
orre
t answer is

again almost 
ertainly ?, provided that g

u

0

v

6= g

uv

. Although we haven't done so, we


ould ensure that is the 
ase by stipulating that jGj = q for some prime q.

However, as we shall now see, D allows ADV

R;D

to determine, given any �; � 2 G,

whether �

v

= � (re
all that ADV

R;D

does not know v). First, ADV

R;D


omputes

k

1

k

2

= R(�; �) and 
reates an en
ryption e

0

= (�; s

0

= ENC

k

1

(m); t

0

= SIGN

k

2

(s

0

)) of

some message m 2 f0; 1g

n

, say

�

0 for de�niteness. Next, he queries D on e

0

. It is easy to

show that D(e

0

) = m (as opposed to ?) if and only if �

v

= �. Sin
e it is by no means


lear how A

R

would emulate su
h a fun
tionality, a stronger assumption than CDH is

apparently required to ensure that DHIES is CCA2-se
ure in the ROM.

3 Our modi�
ation

We now des
ribe a modi�ed version of DHIES, 
alled DHIES+, whi
h is provably se
ure

in the ROM under the CDH assumption. Although in what follows we only show how

to en
rypt a single bit in order to simplify the presentation, our s
heme 
an be easily

extended to en
rypt n-bit messages with the aid of a se
ure MAC and a se
ure private-key



Chapter 4. A publi
-key en
ryption s
heme CCA2-se
ure in the ROM 41

en
ryption s
heme.

Let G be a 
y
li
 multipli
ative group of order q, where q is some n-bit prime (n

being the se
urity parameter). For 
on
reteness, think of G as a subgroup of Z

�

p

, where

p > q is some other prime. Noti
e that here, unlike in Se
tion 2, jGj is prime. This will

be important in Se
tion 3.2 below. Fix a generator g 2 G, so that G = fg; g

2

; : : : ; g

q

g; g

is on
e again impli
itly given to all parti
ipants, as are q and 1

n

.

To generate a mat
hing publi
/private key pair, randomly 
hoose a v 2 f1; : : : ; qg

and set pub = g

v

2 G, pri = v.

To en
rypt a bit b given a publi
 key g

v

, �rst randomly 
hoose u 2 f1; : : : ; qg and


ompute g

u

2 G, (g

v

)

u

= g

uv

2 G. Next, query R to obtain s

0

s

1

r = R(g

uv

), where

s

0

; s

1

; r 2 f0; 1g

n

(here we assume for 
onvenien
e that R : f0; 1g

�

! f0; 1g

3n

). Finally,


ompute t = u� r and output e

b

= (g

u

; s

b

; t) as the en
ryption of b.

To de
rypt a purported 
iphertext e = (�; �; 
) given a private key v, pro
eed as

follows:

1. If � =2 G, output ?, indi
ating a failure to de
rypt.

2. Compute �

v

2 G and query R to obtain s

0

s

1

r = R(�

v

).

3. Set u = 
 � r and 
ompute g

u

2 G. If � 6= g

u

, output ?.

4. If � =2 fs

0

; s

1

g, output ?. Otherwise, output a b su
h that � = s

b

as the de
ryption

of e.

Remark. Noti
e that there is a small probability (

1

2

n

, to be exa
t) that s

0

= s

1

, in whi
h


ase we won't be able to de
rypt e 
orre
tly. This unlikely o

urren
e 
an be avoided by

making the s
heme slightly more 
ompli
ated, but we won't go into the details here.

We will prove that DHIES+ is CCA2-se
ure in the ROM in two stages. First, we'll show

that it is semanti
ally se
ure in the ROM under the CDH assumption. Next, we'll show

that it is plaintext-aware in the ROM.
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3.1 Semanti
 se
urity

Intuitively, DHIES+ is semanti
ally se
ure in the ROM under the CDH assumption

be
ause s

b

provides the adversary with no information about b unless he 
an 
ompute

g

uv

2 G, whi
h is infeasible if the DiÆe-Hellman problem is hard for G. More formally,

suppose that ADV

R

is a probabilisti
 polynomial-time adversary who breaks the seman-

ti
 se
urity (see Chapter 2, Se
tion 7) of DHIES+ in the ROM. Sin
e in this 
ase there

are only two possible plaintexts (namely 0 and 1), there is no need to let ADV

R


hoose

m

0

and m

1

. Instead, he simply gets a publi
 key g

v

2 G and an en
ryption e

b

= (g

u

; s

b

; t)

of a randomly 
hosen bit b, where s

0

s

1

r = R(g

uv

) and t = u�r. Denote ADV

R

's su

ess

probability by p

ADV

(n) and the total number of times he queries R during his exe
ution

by 
(n); p

ADV

(n) is taken over ADV

R

's random bits, as well as the randomness of R

and the 
hoi
e of b, u and v. Sin
e ADV

R

runs in stri
t polynomial time, 
(n) � n




for

some 
. We may assume without loss of generality that ADV

R

never queries R on the

same string more than on
e, sin
e R's response would be identi
al.

We use ADV

R

to 
onstru
t a probabilisti
 polynomial-time solver S who, given g

u

2

G and g

v

2 G for randomly 
hosen u; v 2 f1; : : : ; qg, outputs g

uv

2 G with non-negligible

probability. S �rst randomly 
hooses i 2 f1; : : : ; 
(n)g and s; t 2 f0; 1g

n

. He then

simulates ADV

R

on (g

v

; (g

u

; s; t)), answering all of ADV

R

's R queries randomly. As

soon as ADV

R

asks his i

th

random ora
le query, R(m), S ends the simulation and

outputs m as the value of g

uv

(if ADV

R

terminates before asking the i

th

query or m =2 G,

S outputs some dummy value su
h as g

u

).

Let A be the event that ADV

R

su

eeds and B be the event that ADV

R

queries R

on g

uv

2 G at some point. Observe that

p

ADV

(n) = Pr[A℄ = Pr[A;B℄ + Pr[A;B℄

= Pr[A;B℄ + Pr[A j B℄ � Pr[B℄

� Pr[A;B℄ + Pr[A j B℄;
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and note that Pr[A j B℄ =

1

2

, be
ause in that 
ase s

b

yields no information about b. Sin
e

ADV

R

breaks the semanti
 se
urity of DHIES+ in the ROM, p

ADV

(n) >

1

2

+

1

n

d

for some

d and in�nitely many n. We therefore have:

Pr[A;B℄ � p

ADV

(n)� Pr[A j B℄ = p

ADV

(n)�

1

2

>

1

2

+

1

n

d

�

1

2

=

1

n

d

for in�nitely many n:

Now denote the su

ess probability of S (taken over his random bits, as well as the 
hoi
e

of u and v) by p

S

(n), and let C be the event that ADV

R

's i

th

random ora
le query is

R(g

uv

). Sin
e i 2 f1; : : : ; 
(n)g is 
hosen uniformly (and independently of the simulation

of A

R

), where 
(n) � n




, we get:

p

S

(n) = Pr[A;B;C℄ = Pr[C j A;B℄ � Pr[A;B℄ =

1


(n)

� Pr[A;B℄

>

1


(n)

�

1

n

d

�

1

n




�

1

n

d

=

1

n


+d

for in�nitely many n:

This shows that p

S

(n) is non-negligible, so that DHIES+ is semanti
ally se
ure in the

ROM under the CDH assumption. �

3.2 Plaintext awareness

Informally, DHIES+ is plaintext-aware in the ROM be
ause the fa
t that u (and not

merely g

u

) is in
orporated into the 
iphertext e enables the simulator to not only deter-

mine if the adversary knows the de
ryption of e, but to a
tually de
rypt it himself (albeit

with negligible error).

More formally, let ADV

R;D

be a probabilisti
 polynomial-time adversary who is given

a publi
 key g

v

2 G and attempts to break the CCA2 se
urity (see Chapter 2, Se
tion 7)

of DHIES+ in the ROM. Suppose for simpli
ity that there is no \lun
htime atta
k"

phase, so that ADV

R;D

gets an en
ryption e

b

= (g

u

; s

b

; u� r) of a random bit b (where

s

0

s

1

r = R(g

uv

)), queries the de
ryption ora
le D on a bun
h of strings a

0

; a

1

; a

2

; : : :, and

�nally outputs a bit b

0

. We may assume that a

i

2 f0; 1g

3n

(so that a

i

= (�

i

; �

i

; 


i

) for
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some �

i

; �

i

; 


i

2 f0; 1g

n

), sin
e D's reply would de�nitely be ? otherwise. Let p

ADV

(n)

denote the probability that b

0

= b; p

ADV

(n) taken over ADV

R;D

's random bits and the

randomness of R, as well as the 
hoi
e of v, u and b. We must exhibit a probabilisti


polynomial-time adversary A

R

, also given g

v

and e

b

, su
h that jp

ADV

(n) � p

A

(n)j is

negligible; here p

A

(n) is the probability that A

R


orre
tly outputs b, taken over his

random bits and the randomness of R, as well as the 
hoi
e of v, u and b.

Let A

R

simulate ADV

R;D

, answering his D(a

i

) queries as follows. A

R


he
ks whether

ADV

R;D

has previously queried the random ora
leR on a string w su
h that (�

i

; �

i

; 


i

) =

(g

u

0

; s

0

m

; u

0

� r

0

), where w = g

u

0

v

, s

0

0

s

0

1

r

0

= R(w), u

0

2 f1; : : : ; qg and m is a bit; he is

basi
ally just trying to determine if ADV

R;D

already knows the de
ryption of a

i

. A

R

's

answer is m if su
h a w exists and ? otherwise.

First, observe that whenever A

R

answers D(a

i

) with m, so doesD, sin
eD(g

u

0

; s

0

m

; u

0

�

r

0

) = m provided that s

0

0

s

0

1

r

0

= R(g

u

0

v

) and u

0

2 f1; : : : ; qg. It remains to show that if

A

R

's answer is ?, then so is D's (almost 
ertainly, anyway). We 
onsider the following

two exhaustive 
ases.

� Case #1: �

i

6= g

u

If �

i

=2 G then D(a

i

) = ? and we are done. Let us therefore suppose that �

i

= g

u

0

for some u

0

2 f1; : : : ; qg, u

0

6= u, so that a

i

= (g

u

0

; �

i

; 


i

). Set s

0

0

s

0

1

r

0

= R(g

u

0

v

).

Sin
e G has prime order, we are guaranteed that g

u

0

v

6= g

uv

. This matters be
ause

we would otherwise have s

0

b

= s

b

, r

0

= r, and ADV

R;D

has information about both

s

b

and r by virtue of having seen e

b

= (g

u

; s

b

; u� r).

{ Sub
ase #1a: ADV

R;D

has queried R on g

u

0

v

Sin
e A

R

's answer was ?, either �

i

=2 fs

0

0

; s

0

1

g or 


i

6= u

0

� r

0

. In both 
ases,

D(a

i

) = ?.

{ Sub
ase #1b: ADV

R;D

hasn't queried R on g

u

0

v

In this 
ase s

0

0

, s

0

1

and r

0

are 
ompletely random (note that this assertion is
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justi�ed only be
ause g

u

0

v

6= g

uv

). The probability that a

i

is a valid en
ryption,

so that D(a

i

) 6= ?, is therefore

2

2

n

|{z}

s

0

0

or s

0

1

�

1

2

n

|{z}

r

0

=

2

4

n

;

whi
h is 
ertainly negligible.

� Case #2: �

i

= g

u

{ Sub
ase #2a: 


i

= u� r

If �

i

=2 fs

0

; s

1

g then D(a

i

) = ? and we are done, so suppose that �

i

= s

�

b

(re
all that ADV

R;D

isn't allowed to query D on e

b

= (g

u

; s

b

; u � r)). Sin
e

A

R

's answer was ?, we know that ADV

R;D

hasn't queried R on g

uv

, and


onsequently has no information about s

�

b

(be
ause ADV

R;D

hasn't seen s

�

b

,

we may view it as not having been 
hosen yet). The probability that a

i

is

a valid en
ryption (so that D(a

i

) 6= ?) is therefore

1

2

n

in this 
ase, whi
h is

again negligible.

{ Sub
ase #2b: 


i

6= u� r

In this 
ase D(a

i

) = ?, so we are done.

We 
an therefore 
on
lude that the di�eren
e between p

A

(n) and p

ADV

(n) is negligi-

ble, whi
h means that DHIES+ is plaintext-aware in the ROM. Sin
e we have already

shown in Se
tion 3.1 that DHIES+ is semanti
ally se
ure in the ROM under the CDH

assumption, this 
ompletes our proof that it is CCA2-se
ure in the ROM under the CDH

assumption. �
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Uninstantiability

1 The random ora
le methodology and \uninstan-

tiable" s
hemes

As originally proposed in [BR93℄ and applied in pra
ti
e, the Random Ora
le Method-

ology involves taking a 
onstru
tion whi
h is se
ure in the ROM (usually under a stan-

dard hardness assumption) and \instantiating" the random ora
le R using a \
ryp-

tographi
ally strong" hash fun
tion h : f0; 1g

�

! f0; 1g

n

; whenever R is queried on

m 2 f0; 1g

�

, the answer is h(m). However, a hash fun
tion ensemble H = fH

n

g

n2N

,

H

n

= fh

s

: f0; 1g

�

! f0; 1g

n

g

s2f0;1g

n

(see Chapter 2, Se
tion 3) must stri
tly speaking

be used instead. The reason is that, as we'll see shortly, it isn't hard to 
ome up with

signature and publi
-key en
ryption s
hemes (see se
tions 5 and 7 of Chapter 2, respe
-

tively) whi
h are se
ure in the ROM yet be
ome hopelessly inse
ure if R queries are

answered using a �xed fun
tion h. We therefore 
all a signature or publi
-key en
ryption

s
heme uninstantiable if it is se
ure in the ROM (possibly under some hardness assump-

tion) yet inse
ure in the real world, no matter what hash fun
tion ensemble H is used to

instantiate the random ora
le R.

Sin
e random ora
les are one-way (see Chapter 2, Se
tion 8), the results of [Rom90℄

46
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imply that signature s
hemes whi
h are se
ure in the ROM exist un
onditionally

1

. Given

a hash fun
tion h, we 
an obtain a signature s
heme whi
h is se
ure in the ROM but


annot be instantiated using h by modifying any signature s
heme whi
h is se
ure in the

ROM as follows. Given a message m 2 f0; 1g

�

, the new signer 
omputes a signature � of

m as before and then 
he
ks whether R(

�

0) = h(

�

0). If so, he outputs (pri; �); otherwise,

he outputs (

�

0; �). Given a message m and a purported signature � of m, the new veri�er

parses � as (�; 
), where j�j = n, and then 
he
ks whether 
 is a valid signature of m as

before. Observe that our modi�
ation does not violate the 
orre
tness of the s
heme, sin
e

every signature output by the signer is a

epted by the veri�er, whether R(

�

0) = h(

�

0) or

not. The modi�ed s
heme also remains se
ure in the ROM, be
ause the probability that

R(

�

0) = h(

�

0) (taken over the randomness of R) is

1

2

n

. However, on
e R is instantiated

using h, all the forger has to do to learn pri | thereby 
ompletely breaking the s
heme's

se
urity | is query his signature ora
le on some string (say � for 
on
reteness).

The above approa
h 
an be readily adapted to yield a publi
-key en
ryption s
heme

whi
h is se
ure in the ROM, but 
annot be instantiated using h. To obtain su
h a s
heme,

simply take any publi
-key en
ryption s
heme whi
h is se
ure in the ROM (as noted in

Chapter 1, in light of the results of [IR89℄ a hardness assumption of some sort will almost


ertainly be ne
essary here) and modify it as follows. Given a message m 2 f0; 1g

n

,

the new en
ryptor 
omputes an en
ryption e of m as before and then 
he
ks whether

R(

�

0) = h(

�

0). If so, he outputs (m; e); otherwise, he outputs (

�

0; e). Given a purported

en
ryption �, the new de
ryptor �rst parses � as (�; 
), where j�j = n, then de
rypts


 as before. Observe that our modi�
ation on
e again doesn't violate the 
orre
tness

of the s
heme, sin
e every en
ryption output by the en
ryptor is 
orre
tly de
rypted by

the de
ryptor, whether R(

�

0) = h(

�

0) or not. It is easy to see that the modi�ed s
heme

remains se
ure in the ROM, but be
omes 
ompletely inse
ure ifR is instantiated using h.

1

A subtle but important te
hni
al point to note here is that both Rompel's 
onstru
tion and his proof

are of the \bla
k-box" variety.
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2 The �rst uninstantiability result

Canetti, Goldrei
h and Halevi �rst showed that uninstantiable signature and publi
-key

en
ryption s
hemes exist in [CGH98℄. Their key insight was that, for every hash fun
tion

ensemble H = fH

n

g

n2N

, H

n

= fh

s

: f0; 1g

�

! f0; 1g

n

g

s2f0;1g

n

, there exists a binary

relation R

H

=

S

n2N

f(s; h

s

(s))g

s2f0;1g

n

with the following two properties:

(i) There is a (deterministi
) polynomial-time ma
hine M

H

whi
h, given any s 2

f0; 1g

n

, outputs an x 2 f0; 1g

�

su
h that (x; h

s

(x)) 2 R

H

.

(ii) For every probabilisti
 polynomial-time \�nder" F

R

who is given 1

n

, the probability

(taken over the random bits of F

R

and the randomness of R) that F

R

outputs an

x 2 f0; 1g

�

su
h that (x;R(x)) 2 R

H

is negligible in n.

R

H

obviously satis�es property (i), sin
e M

H


an simply output s itself as x. To see that

R

H

satis�es property (ii), observe that (x;R(x)) 2 R

H

, R(x) = h

x

(x). F

R

's su

ess

probability is therefore at most

q

R

2

n

, where q

R

is the (polynomially bounded) number of

times he queries R. Noti
e that R

H

is also polynomial-time de
idable in the following

sense: to determine whether (x; y) 2 R

H

, one need only 
ompute y

0

= h

x

(x) (this 
an be

done in polynomial time, be
ause H is eÆ
iently evaluable) and 
he
k if y = y

0

.

Given any hash fun
tion ensemble H, we 
an use R

H

to obtain a signature s
heme

whi
h is se
ure in the ROM yet be
omes inse
ure when the random ora
le R is instan-

tiated using H. The idea is to take a signature s
heme whi
h is se
ure in the ROM (as

pointed out in Se
tion 1, su
h s
hemes exist un
onditionally) and modify it as follows.

Given a message m 2 f0; 1g

�

, the new signer 
omputes a signature � of m as before and

then 
he
ks whether (m;R(m)) 2 R

H

(this 
an be done in polynomial time, sin
e R

H

is polynomial-time de
idable). If so, he outputs (pri; �); otherwise, he outputs (

�

0; �).

Given a message m and a purported signature � of m, the new veri�er parses � as

(�; 
), where j�j = n, and then 
he
ks whether 
 is a valid signature of m as before.

Observe that our modi�
ation does not violate the 
orre
tness of the s
heme, sin
e every
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signature output by the signer is a

epted by the veri�er, whether (m;R(m)) 2 R

H

or

not. The modi�ed s
heme also remains se
ure in the ROM, sin
e property (ii) above

guarantees that any forger has only a negligible probability of �nding an m su
h that

(m;R(m)) 2 R

H

. However, on
e R is instantiated using H, the forger, who is given s,

need only query his signature ora
le S on s to obtain pri.

We next use diagonalization to go from s
hemes whi
h 
annot be instantiated using

some spe
i�
 ensemble H to s
hemes whi
h 
annot be instantiated using any ensem-

ble. Re
all from Se
tion 3 of Chapter 2 that every hash fun
tion ensemble H 
an be

identi�ed with its polynomial-time \evaluator" Turing ma
hine M

H

. We 
an therefore

e�e
tively enumerate all hash fun
tion ensembles by enumerating all polynomial-time

Turing ma
hines and padding or trun
ating their output as ne
essary. Let M

U

be the

universal Turing ma
hine doing the enumerating, and denote the 
orresponding \univer-

sal" ensemble by U = fU

n

g

n2N

. Sin
e the running time of every polynomial-time ma-


hine 
annot be upper-bounded by a single polynomial, M

U

will need to run in \slightly

super-polynomial" time, say O(n

log n

) for 
on
reteness. It is easy to see that when U

is substituted for H in the above 
onstru
tion, the resulting signature s
heme is unin-

stantiable. However, the signer no longer runs in polynomial time, sin
e to determine

whether (m;R(m)) 2 R

U

he must e�e
tively simulate M

U

.

Fortunately, the above diÆ
ulty 
an be over
ome with the aid of Mi
ali's non-intera
tive

CS proofs ([Mi
94℄, [Mi
00℄). Let M

0

U

be a de
ider for R

U

. Instead of running M

0

U

di-

re
tly to determine whether (m;R(m)) 2 R

U

, the new signer parses m as (s; �) and


he
ks if � is a valid CS proof that M

0

U

a

epts (s;R(s)) within O(n

log n

) steps, where

n = jsj+jR(s)j. Sin
e CS proofs 
an be veri�ed very eÆ
iently, this only takes polynomial

time. In the ROM, the s
heme remains se
ure be
ause CS proofs are \
omputationally

sound"

2

, meaning that it is infeasible to �nd a valid proof of a false statement. However,

2

Interestingly, it is not known whether non-intera
tive CS proofs are 
omputationally sound in the

\real world" under some reasonable 
omplexity assumption.
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on
e R is instantiated using some ensemble H, the \perfe
t 
ompleteness" property of

CS proofs guarantees that a forger 
an 
ompute a valid � in polynomial time.

Just as in Se
tion 1, the above approa
h 
an be readily adapted to yield an uninstan-

tiable publi
-key en
ryption s
heme.

3 A simple proof of the �rst result

In [MRH04℄, Maurer, Renner and Holenstein introdu
ed a new type of redu
ibility, based

on the 
on
ept of indi�erentiability. To motivate their de�nitions, they gave a simple

proof of the existen
e of uninstantiable signature and publi
-key en
ryption s
hemes. We

present a further simpli�ed version of their argument below.

To obtain an uninstantiable signature s
heme, modify any signature s
heme whi
h is

se
ure in the ROM (as pointed out in Se
tion 1, su
h s
hemes exist un
onditionally) as

follows. Given a message m 2 f0; 1g

�

, the new signer �rst 
omputes a signature � of m

as before. He then parses m as (hMi; 1

t

), where hMi des
ribes a (deterministi
) Turing

ma
hine M under some reasonable en
oding, and simulates M on hMi for at most t steps.

If M outputs R(hMi), the signer outputs (pri; �); otherwise, he outputs (

�

0; �). Given a

message m and a purported signature � of m, the new veri�er parses � as (�; 
), where

j�j = n, and then 
he
ks whether 
 is a valid signature of m as before. Observe that our

modi�
ation does not violate the 
orre
tness of the s
heme, sin
e every signature output

by the signer is a

epted by the veri�er, whether M outputs R(hMi) within t steps or

not. Also note that the new signer runs in polynomial time, sin
e simulating M takes

time O(t) and t � jmj.

To 
onvin
e yourself that the modi�ed s
heme remains se
ure in the ROM, 
onsider

a fun
tion family F = ff

t

g

t2N

where ea
h f

t

: f0; 1g

�

! f0; 1g

�

is de�ned by

f

t

(hMi) =

8

>

>

<

>

>

:

M(hMi) if M halts within t steps

� otherwise
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To learn pri using the \trapdoor" we have built into the s
heme, a forger would e�e
tively

need to �nd a t 2 N and an x 2 f0; 1g

�

su
h that f

t

(x) = R(x). His probability of �nding

su
h a pair (t; x) is at most

q

R

2

n

(where q

R

is the number of times he queries R), whi
h is

negligible in n.

On
e R is instantiated using a hash fun
tion ensemble H, however, it be
omes trivial

to 
ompletely break the s
heme's se
urity. Re
all that, be
ause H is eÆ
iently evaluable,

there exists a (deterministi
) polynomial-time Turing ma
hine M

H

su
h that M

H

(s; x) =

h

s

(x) for all s 2 f0; 1g

n

and x 2 f0; 1g

�

(see Chapter 2, Se
tion 3). Let M

h

s

denote

M

H

with some parti
ular s \hard-
oded" into it, so that M

h

s

(x) = M

H

(s; x) for all

x 2 f0; 1g

�

, and suppose that n




is an upper bound on the running time of M

h

s

. When

given input hM

h

s

i, M

h

s

halts within n




steps and outputs h

s

(hM

h

s

i). The forger, who is

given s, need therefore only query his signature ora
le on (hM

h

s

i; 1

n




) to learn pri. �

Just as in Se
tion 1, the above approa
h 
an be readily adapted to yield an uninstan-

tiable publi
-key en
ryption s
heme.

4 An uninstantiability result for Fiat-Shamir signa-

ture s
hemes

The arti�
iality of [CGH98℄'s 
onstru
tions left open the possibility that \reasonable"

signature s
hemes whi
h are se
ure in the ROM, and in parti
ular Fiat-Shamir signature

s
hemes, 
an in fa
t be instantiated using appropriate hash fun
tion ensembles. However,

in [GTK03℄ Goldwasser and Tauman-Kalai showed that there exist uninstantiable Fiat-

Shamir signature s
hemes. It must be remarked that Goldwasser and Tauman-Kalai's


onstru
tion is, if anything, even more 
ontrived than those of [CGH98℄. Barak and

Goldrei
h's Universal Arguments ([BG02℄) are used in pla
e of Mi
ali's CS proofs, and

Merkle trees ([Mer90℄) also make an appearan
e. Most distressingly, the proof itself has a

highly non-
onstru
tive, tree-like stru
ture: rather than demonstrate that a single (albeit
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unnatural) Fiat-Shamir s
heme is uninstantiable, Goldwasser and Tauman-Kalai exhibit

three su
h s
hemes, one of whi
h must be uninstantiable. Nonetheless, from a purely

theoreti
al standpoint, Goldwasser and Tauman-Kalai's result deals a severe blow to the

validity of the so-
alled Fiat-Shamir paradigm (see Chapter 3, Se
tion 1).



Chapter 6

A taste of \real-word" se
urity

In the following two se
tions, we brie
y survey a number of pra
ti
al signature s
hemes

and publi
-key en
ryption s
hemes whi
h are se
ure in the \real world" (as opposed to

in the ROM) under either standard or nonstandard-yet-quite-plausible hardness assump-

tions.

1 Signature s
hemes

� In [DN94℄, Dwork and Naor proposed a pra
ti
al signature s
heme whi
h is se
ure

| that is, se
ure against existential forgery under adaptive 
hosen-message atta
k

(see Chapter 2, Se
tion 5) | under the standard \RSA assumption". Informally,

the RSA assumption says that the following problem is hard: given a modulus n =

pq where p and q are random primes, a random y 2 Z

�

n

and a random exponent e

relatively prime to (p�1)(q�1), �nd an x 2 Z

�

n

su
h that x

e

� y mod n. Although

it 
an be shown that this problem would be easy if p and q were given expli
itly,

it is not known whether fa
toring n 
an be redu
ed to �nding x. While their


onstru
tion is 
on
eptually similar to the \authenti�
ation trees" of [GMR88℄,

Dwork and Naor's use of \bushy trees" of high degree and small depth rather than

binary trees signi�
antly improves eÆ
ien
y: for some reasonable settings of the

53
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se
urity parameters, signing requires only four tree authenti
ations. A signi�
ant

drawba
k of their 
onstru
tion is that all signers and veri�ers must share two lists,

one 
onsisting of random integers and the other of random primes.

� In [Cr96℄, Cramer and Damg�ard des
ribed an improved version of Dwork and Naor's

signature s
heme ([DN94℄), se
ure under the same assumptions. In this new version,

signers and veri�ers need only share a single list 
onsisting of random primes.

� In [GHR99℄, Gennaro, Halevi and Rabin presented a rather eÆ
ient \hash-and-

invert" signature s
heme se
ure under the nonstandard-yet-quite-plausible \strong

RSA assumption". Informally, the strong RSA assumption says that the following

problem is hard: given a modulus n = pq where p and q are random primes and

a random y 2 Z

�

n

, �nd an x 2 Z

�

n

and an exponent 1 < e < n relatively prime to

(p � 1)(q � 1) su
h that x

e

� y mod n; noti
e that, unlike in the RSA problem,

here e is allowed to depend on y. Gennaro, Halevi and Rabin's s
heme makes use

of \
ollision-resistant 
hameleon hash fun
tions", whi
h exist if fa
toring is hard.

For typi
al settings of the se
urity parameters, it is more than twi
e as eÆ
ient as

Cramer and Damg�ard's s
heme ([Cr96℄).

� In [CS99℄, Cramer and Shoup presented another eÆ
ient \hash-and-invert" sig-

nature s
heme se
ure under the \strong RSA assumption". Their s
heme builds

on that of Cramer and Damg�ard ([Cr96℄) and is 
onsiderably simpler and po-

tentially more eÆ
ient than Gennaro, Halevi and Rabin's ([GHR99℄). Instead of

\
ollision-resistant 
hameleon hash fun
tions", it makes use of \universal one-way

hash fun
tions" ([NY89℄), whi
h exist if one-way fun
tions do. Interestingly, a

slight modi�
ation of the s
heme 
an be shown to be se
ure in the ROM under the

ordinary RSA assumption.

� In [Fis03℄, Fis
hlin des
ribed an improved version of Cramer and Shoup's signature

s
heme ([CS99℄), again se
ure under the \strong RSA assumption". Signing is
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about thirty per
ent faster in this new version, and veri�
ation is somewhat faster

as well. Also, the length of the signatures is nearly halved.

2 Publi
-key en
ryption s
hemes

� In [CS98℄, Ronald Cramer and Vi
tor Shoup proposed the �rst pra
ti
al publi
-

key en
ryption s
heme whi
h is se
ure | that is, se
ure against adaptive 
hosen-


iphertext atta
k or CCA2-se
ure (see Chapter 2, Se
tion 7) | under a fairly stan-

dard hardness assumption, namely the \De
isional DiÆe-Hellman assumption". In-

formally, the De
isional DiÆe-Hellman assumption (often abbreviated as the DDH

assumption) holds for a 
y
li
 multipli
ative group G of prime order q (say a sub-

group of Z

�

p

, where p > q is some prime) if, given g

u

2 G and g

v

2 G for randomly


hosen u; v 2 f1; : : : ; qg (where g 2 G is some �xed generator of G), it is hard

to distinguish g

uv

2 G from g

r

2 G for a randomly 
hosen r 2 f1; : : : ; qg. While

the Computational DiÆe-Hellman or CDH assumption (see Chapter 4, Se
tion 2)

asserts that it is hard to 
ompute all of g

uv

, the DDH assumption e�e
tively asserts

that it is hard to 
ompute any bit of g

uv

.

� In [Sho00℄, Vi
tor Shoup presented a \hybrid" en
ryption s
heme whi
h makes

use of a \pseudorandom number generator", a 
ollision-resistant hash fun
tion (see

Chapter 2, Se
tion 3) and a \key en
apsulation s
heme"; the latter is based on

the Cramer-Shoup en
ryption s
heme ([CS98℄). A key en
apsulation s
heme is

essentially just a publi
-key en
ryption s
heme whose se
urity is only guaranteed

when the messages being en
rypted are random (private keys, for example). The

new s
heme is somewhat more eÆ
ient than [CS98℄ and is se
ure under the fairly

standard DDH assumption. Interestingly, it is also se
ure in the ROM under the

standard CDH assumption.

� In [KD04℄, Kurosawa and Desmedt des
ribed a new hybrid en
ryption s
heme based
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on [Sho00℄. The s
heme is somewhat more eÆ
ient (it saves one exponentiation

and produ
es shorter en
ryptions) and is again se
ure under the DDH assumption.

Kurosawa and Desmedt's key insight was to noti
e that the underlying key en
ap-

sulation s
heme need not be CCA2-se
ure in order for the overall hybrid s
heme

to be CCA2-se
ure. However, their proof requires the additional assumption that

both the \key derivation fun
tion" and the MAC used by the hybrid s
heme are

se
ure in a strong, information-theoreti
 sense. In parti
ular, the key to be ex-


hanged must be statisti
ally 
lose to random, pre
luding the use of pseudorandom

number generators.

� In [GS04℄, Shoup and Gennaro used the te
hnique of \deferred analysis" to demon-

strate that Kurosawa and Desmedt's hybrid s
heme ([KD04℄) is in fa
t se
ure un-

der the DDH assumption provided that both the \key derivation fun
tion" and the

MAC are se
ure in the ordinary, 
omputational sense.
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