SOME RESULTS CONCERNING SECURITY IN THE RANDOM ORACLE
MODEL

Victor Glazer

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science
University of Toronto

Copyright (¢) 2005 by Victor Glazer

Abstract

Some results concerning security in the Random Oracle Model

Victor Glazer
Master of Science
Graduate Department of Computer Science

University of Toronto

2005

The Random Oracle Model (ROM) is a setting where all parties, including the adversary,
have black-box access to a “truly random function” (the random oracle). In this thesis,
we present two results concerning security in the ROM. First, we show that, for every
canonical identification scheme, the corresponding Fiat-Shamir signature scheme is secure
in the ROM. Previously, only “non-trivial” canonical identification schemes were known
to yield Fiat-Shamir signature schemes which are secure in the ROM. Second, we show
how to modify a certain discrete logarithm-based public-key encryption scheme so that it
becomes CCA2-secure in the ROM. In conclusion, we review several “uninstantiability”
results which demonstrate that security in the ROM does not guarantee “real-world”
security, and briefly survey a number of signature and public-key encryption schemes

which are secure in the “real world”.

i

For ELEYNA

il

Acknowledgements

First and foremost, I would like to thank my supervisor, Charles Rackoff. Working with
Charlie has been an amazing experience. This thesis is as much his as mine, in that he
both helped me decide what problems to tackle and provided crucial insights into their

solution.

[would also like to thank my second reader, lan F. Blake, for his helpful comments and

suggestions.

[am grateful to Allan Borodin and Faith Fich for introducing me to the manifold joys of
theoretical Computer Science, and to Rudi Mathon and Christina Christara for encour-

aging me to pursue graduate studies.

Last but not least, I want to thank my awesome wife Eleyna and my parents Michael
and Rimma. I wouldn’t have made it through two long years of graduate school without

their constant love and support.

iv

Contents

1 Introduction

2 Preliminaries

1

2

Negligible and non-negligible functions
One-way functions
Hash function ensembles

Trapdoor permutations

Signature schemes and message authentification codes (MACs)

Identification schemes

Public-key encryption schemes

The Random Oracle Model (ROM)

3 On the security of Fiat-Shamir signature schemes in the ROM

1

2

Fiat-Shamir signature schemes: an overview . .
The Fiat-Shamir transform
An earlierresult oL
The non-triviality assumption

Ourresult

4 A public-key encryption scheme CCA2-secure in the ROM

1

Public-key encryption in the ROM: an overview

10

12

16

21

22

22

24

25

28

31

35

The original scheme 0oL
Our modification L
3.1 Semantic security Lo

3.2 Plaintext awareness

5 Uninstantiability

1
2
3
4

The random oracle methodology and “uninstantiable” schemes
The first uninstantiability result
A simple proof of the first result

An uninstantiability result for Fiat-Shamir signature schemes

6 A taste of “real-word” security

1 Signature schemes oL
2 Public-key encryption schemes
Bibliography

vi

46
46
48
50
51

53
53
%)

57

Chapter 1

Introduction

Modern cryptography has computational complexity at its foundation. In order to
gain confidence in the security of a cryptographic construction, we show that every
polynomially-bounded adversary which succeeds in “breaking” it can be used to solve
a computational problem widely believed to be “hard on average”, say integer factor-
ization ([Len00]) or the discrete logarithm problem ([Odl00]). This means that no such

“breaker” exists, provided the problem in question is indeed “hard”.

Cryptographers make two kinds of “hardness” assumptions: ones asserting the diffi-
culty of specific (usually number-theoretic) problems, and ones asserting the ezistence of
secure cryptographic primitives such as “one-way functions” (see Chapter 2, Section 2)
or “trapdoor permutations” (see Chapter 2, Section 4). Assumptions of the first kind
enable us to prove the security of constructions which are efficient enough to be practical.
Unfortunately, the particular problem we assume to be “hard” might later turn out to
be “easy”, rendering the protocol insecure. Assumptions of the second kind (often called
“general assumptions”) often lead to constructions which are too inefficient to be of prac-
tical interest. Although such constructions are in a sense mere “proofs of concept”, their

security is guaranteed as long as any secure primitives of the relevant kind exist.

)

Broadly speaking, cryptographic problems fall into two categories: “public-key” and

CHAPTER 1. INTRODUCTION 2

“private-key”. In both cases, two or more people wish to securely interact over an insecure

channel, which is either controlled or monitored by the adversary.

In the private-key setting, the participants share a common secret pri, unknown to
the adversary. The intuition is that they are “friends who trust each other”. In contrast,
in the public-key setting each person has associated with him both private information
pri, known only to himself, and public information pub, known to everyone (including
the adversary). Here the intuition is that the participants are “mutually mistrustful
strangers”. Many important cryptographic problems, including “signature schemes” (see
Chapter 2, Section 5) and “encryption schemes” (see Chapter 2, Section 7), come in both

public-key and private-key flavours.

Today we have extremely efficient private-key constructions which are secure if “block
ciphers” such as DES ([NIS99]) and AES ([NIS01]) are “pseudorandom”, as well as
fairly inefficient private-key constructions which are secure if “one-way functions” exist
([GGM84a|, [GGMS84b]|, [GGMS86|, [HILLI9]). It could therefore be argued that private-
key cryptography is now largely “an engineering problem”. Unfortunately, that is not

yet the case for public-key cryptography.

Beginning in the late eighties, much work was done on formulating the “right” defi-
nitions of public-key security and showing that constructions which are secure according
to these definitions can be obtained from “trapdoor permutations”. Such constructions
were available by the early nineties ([GMRS8S8], [Rom90], [NY90], [RS92]), but from a
practical standpoint their efficiency left a lot to be desired. Numerous attempts were
also made to come up with efficient constructions which are secure under some variant
of the popular “RSA” (factoring-related) and “Diffie-Hellman” (discrete log-related) as-
sumptions ([Bon99],[MWO00]), but they were not successful. Lacking viable alternatives,
practitioners mostly relied on ad hoc approaches of dubious security, many of which were

eventually broken ([Bri85], [Ble98]).

In [BR93|, Mihir Bellare and Phillip Rogaway introduced the “Random Oracle Method-

CHAPTER 1. INTRODUCTION 3

ology” in an effort to bridge the gap between cryptographic theory and practice. In-
formally, the Random Oracle Model, or ROM for short, is a setting where all parties
(including the adversary) have black-box access to a “truly random function” (the ran-
dom oracle). Although it has other applications in complexity theory, notably to Micali’s
non-interactive “CS proofs” ([Mic94], [Mic00]), the ROM is usually encountered in the

context of public-key cryptography.

The Random Oracle Methodology is a two-step procedure for obtaining practical
public-key constructions. In the first step, one designs an efficient construction which is
secure in the ROM under some standard hardness assumption, say the “Computational
Diffie-Hellman” assumption. Because of the many nice properties enjoyed by random
oracles, this generally isn’t too difficult. In the second step, one “instantiates” the random
oracle R using a “cryptographic hash function” h; a reasonable choice for h might be
SHA-256 ([NIS04]). Thereafter, whenever R is queried on a string s, the answer is h(s).
A heuristic justification for this step is that good cryptographic hash functions hopefully
behave “a lot like” random oracles. However, as we will see in Chapter 5, R should strictly
speaking be instantiated using an ensemble H = {#,, }nen of hash function families (see

Chapter 2, Section 3) rather than a single function h.

Because in the first step we have the powerful random oracle primitive at our disposal,
it is natural to question the need to make any hardness assumptions at all. However, as
shown in [IR89], if a “key exchange protocol” which is secure in the ROM exists then
P # NP. Since it is easy to securely exchange a key using a secure public-key encryption
scheme, proving that such a scheme is secure in the ROM without making any additional
assumptions is therefore prohibitively difficult. But if we are willing to make additional
assumptions, why not simply make one strong enough to eliminate the need for the
random oracle altogether? Ronald Cramer and Victor Shoup developed a fairly efficient
public-key encryption scheme ([CS98|) which is secure in the “real world” under just

such a “non-standard-yet-plausible” hardness assumption, namely the “Decisional Diffie-

CHAPTER 1. INTRODUCTION 4

Hellman assumption”.

On the other hand, no hardness assumptions are necessary in order to show that
signature schemes which are secure in the ROM exist. Since random oracles are one-way
(see Chapter 2, Section 8), we can replace the one-way function evaluations in Rompel’s
construction ([Rom90]) with R queries. While the resulting construction is admittedly
quite inefficient (in the sense that it requires many random oracle queries), it appears

that one can’t do much better without making hardness assumptions.

As for signature schemes which are secure in the ROM under standard hardness as-
sumptions such as the “RSA assumption”, for example the schemes presented in [BR93]
and [BR94|, their benefits are less clear today. Although they are considerably more
efficient than both constructions which are secure in the “real world” under standard
assumptions ([DN94],[Cr96]) and constructions which are secure in the ROM uncondi-
tionally, we now have constructions of comparable efficiency which are secure in the “real
world” under “non-standard-yet-plausible” assumptions like the “Strong RSA assump-

tion” ([CS99], [GHR99], [Fis03]).

What sort of security does the Random Oracle Methodology guarantee? Informally,
hash functions are efficiently evaluable and thus have a short description, which means
that they cannot be “truly random”. It is therefore unclear why security should be
preserved when the random oracle is “instantiated” using a hash function. Nonetheless,
security in the ROM was at first believed to provide “strong evidence” of real-world se-
curity. However, in [CGH98] Canetti, Goldreich and Halevi exhibited a signature scheme
and a public-key encryption scheme which are secure in the ROM yet insecure in the “real
world”, no matter what hash function s used to “instantiate” the random oracle; such
schemes are said to be “uninstantiable” (see Chapter 5). From a theoretical standpoint,
this result conclusively demonstrated that security in the ROM does not imply real-world
security. However, since Canetti et al.’s constructions were rather contrived and quite

inefficient, practitioners remained unconvinced.

CHAPTER 1. INTRODUCTION 5

Several additional uninstantiability results have emerged since, arguably the most
significant being Goldwasser and Tauman-Kalai’s proof ([GTKO03]) that there exist unin-
stantiable “Fiat-Shamir signature schemes” (see Chapter 3, Section 1 for an overview of
Fiat-Shamir signature schemes). Like Canetti et al.’s, Goldwasser and Tauman-Kalai’s
constructions are contrived and inefficient. Worse still, their actual proof has a somewhat
non-constructive flavour (see Chapter 5, Section 4). However, since Fiat-Shamir signa-
ture schemes are widely used in practice, Goldwasser and Tauman-Kalai’s result can be
viewed as dealing the Random Oracle Methodology a more severe blow than Cenetti et

Y

al.’s.

Chapter Outline

Chapter 1 is this introduction.

Chapter 2 contains definitions of the relevant cryptographic primitives, including one-
way functions, signature schemes, identification schemes, trapdoor permutations and

public-key encryption schemes.

Chapter 3 concerns the security of Fiat-Shamir signature schemes in the ROM. We first
present an earlier result ([AABNO02]) demonstrating that every “passively secure non-
trivial canonical identification scheme” yields a “Fiat-Shamir signature scheme” which is
secure in the ROM. We then show that, for “actively secure” schemes, the “non-triviality”
assumption is not necessary. Namely, we prove that, for every “actively secure canoni-
cal identification scheme” (non-trivial or not), the corresponding Fiat-Shamir signature

scheme is secure in the ROM.

Chapter 4 describes a certain public-key encryption scheme which is “CCA2-secure” in
the ROM. We first present an earlier version of the scheme, proposed in [BR97], which
was initially claimed to be CCA2-secure in the ROM under the “Computational Diffie-

Hellman assumption”. It was later pointed out in [ABROla] that the original proof

CHAPTER 1. INTRODUCTION 6

of security was flawed. We then show how to modify the scheme so that it is indeed

CCAZ2-secure in the ROM under the “Computational Diffie-Hellman” assumption.

Chapter 5 sketches Canetti, Goldreich and Halevi’s seminal result that “uninstantiable”
signature and public-key encryption schemes exist ([CGH98]) and presents Maurer, Ren-
ner and Holenstein’s recent simple proof thereof ([MRHO04]). Goldwasser and Tauman-
Kalai’s proof that there exist uninstantiable Fiat-Shamir signature schemes ([GTKO03])

is also discussed.

Chapter 6 briefly surveys a number of practical signature and public-key encryption
schemes which are secure in the “real world” under either standard or non-standard-yet-

quite-plausible hardness assumptions.

Chapter 2

Preliminaries

1 Negligible and non-negligible functions

A function g : N — R is negligible (in n) if it goes to zero faster than any inverse
polynomial ﬁ in n. In other words, for every ¢ € N there exists an ny € N such that
p(n) < = for all n > ny. If 1 is not negligible it is said to be non-negligible (in n). In
that case there exists a d € N such that u(n) > - for infinitely many n (not necessarily
contiguous).

If definitional robustness is desired, negligible and non-negligible functions are a nat-
ural choice for formalizing the intuitive notions of “insignificant” and “significant” prob-

abilities when dealing with polynomial-time adversaries.

2 Omne-way functions

One-way functions are a cryptographic primitive of fundamental importance. Informally,
a function mapping strings to strings is one-way if it is “easy to evaluate” but “hard
to invert on average”. Formally, a function f : {0,1}* — {0,1}* is one-way if it is
computable in deterministic polynomial time and, for every probabilistic polynomial-

time “inverter” INV pryv(n) is negligible. Here pryy(n) is the probability that, given

CHAPTER 2. PRELIMINARIES 8

1" and y = f(z) for a random = € {0,1}", INV outputs an 2’ € {0,1}" such that
f(2") = y; pinv(n) is taken over the choice of x € {0,1}" and the random bits of INV.

Observe that if P = NP then every function f computable in deterministic polyno-
mial time can be easily inverted by non-deterministically guessing an 2’ € {0, 1}" such

that f(z') = y. Proving the existence of one-way functions is therefore no easier than

proving P # NP.

3 Hash function ensembles

A hash function h is simply an efficiently-evaluable function mapping {0,1}* to {0,1}",
where n is some security parameter. “Cryptographic” hash functions such as SHA-256
([NISO4]) are informally believed to “hide all information about their input”. More
rigorously, hash functions are often assumed to be “collision resistant” or “collision in-
tractable”, meaning that it’s infeasible to find two domain elements which have the same
image under h. Formally, however, it doesn’t make sense to assert that collisions in SHA-
256 or any other fixed hash function are hard to find, since they can always be built into
the code of the finder machine. Instead, we prefer to talk about hash function ensembles.

A hash function ensemble H = {H,, }nen is a collection of hash function families H,, =
{hs : {0,1}* = {0, 1}"}seqo1yn . H is efficiently evaluable in the sense that there exists a
(deterministic) polynomial-time Turing machine My such that My (s,) = hs(z) for all
s € {0,1}" and = € {0,1}*. We say that H is collision resistant if, for every probabilistic
polynomial time “collision finder” F' who is given a randomly chosen s € {0,1}", the
probability pp(n) that F' outputs xy,xe € {0,1}*, 21 # x9 such that hs(x;) = hs(z2) is
negligible; here py(n) is taken over the choice of s and the random bits of F'.

It is worth pointing out that collision-resistance implies a kind of one-wayness (see

Section 2). Suppose that we have a probabilistic polynomial-time inverter INV who,

'In general, hy maps {0,1}* to {0,1}¥("") where £(n) < n° for some c¢. However, we will usually
assume that ¢(n) = n to simplify the presentation.

CHAPTER 2. PRELIMINARIES 9

given a randomly chosen s € {0,1}" and y = hs(x) € {0,1}" for a randomly chosen
z € {0,1}"" outputs with non-negligible (in n) probability an 2’ € {0,1}"™! such
that hs(z') = y; here the probability is taken over the choice of s and x, as well as the
random bits of INV. Notice that, provided z' # =z, (x,2') is a collision in h. Also,

0.1 n+1 . .
‘{| Q]i}n| | = 2, hs maps two domain elements to each codomain element on average.

since
We can use INV to construct a collision finder F' as follows. Given a randomly chosen
s € {0,1}", F randomly chooses (say without replacement) 1, ..., 2, € {0,1}"™! and
simulates INV to obtain x} = INV (s, z;), 1 <i < n° It can be shown that, if ¢ is “large
enough”, the probability that there exists an 1 < i < n such that hy(x}) = hy(x;) and

x} # x; is non-negligible (in n).

4 Trapdoor permutations

Impagliazzo and Rudich show in [IR89] that proving secure public-key encryption schemes
(see Section 7) exist assuming only that one-way functions exist is no easier than proving
P # NP. On the other hand, if trapdoor permutations exist then so do secure public-key
encryption schemes ([RS92]).

Informally, a bijection mapping n-bit strings to n-bit strings is a trapdoor permutation
if it is “easy to evaluate” and “hard to invert on average”, yet “easy to invert” given
some additional information.

Formally, a trapdoor permutation F consists of three polynomial-time algorithms: a
key generator G and two function evaluators, f and f’. G is probabilistic, whereas f
and f' are both deterministic. Given 1™ and some random bits, G outputs a pair of
keys (k,k'). Associated with every pair of keys (k, k') is a pair of functions (f, fi/),
each mapping n-bit strings to n-bit strings; fi, and f}, are both injective (and therefore
surjective), and fi, = f, .

For every pair of keys (k,k’) generated by running G on 1™ (together with some

CHAPTER 2. PRELIMINARIES 10

random bits) and every x € {0,1}", f(k,z) = fe(z) and f'(K',x) = fi.(z). Moreover,
fr 1s a one-way function in the following sense. For every probabilistic polynomial-time
“inverter” INV, p;yv(n) is negligible in n. Here p;yy(n) is the probability that, given
a key k (generated by running G on 1" and some random bits) and y = fi(z) € {0,1}"
for a random z € {0,1}", INV outputs = = f},(y); pinv(n) is taken over the choice of
s € {0,1}", as well as the random bits of INV and G (that is, the choice of k).

5 Signature schemes and message authentification

codes (MACsS)

A signature scheme SIG consists of three polynomial-time algorithms: a key generator
GEN, a signer SIGN and a verifier VER. Although in general all three may be proba-
bilistic, we will assume for convenience that GEN and SIGN are probabilistic, whereas

VER is deterministic (this is nearly always the case in practice).

GEN, SIGN and VER work as follows.

e Given 1" and some random bits, GEN outputs a pair of keys (pub, pri), where pub
is the public key and pri is the private key. Although in general |pri| < n¢ for some

¢, we will usually assume that [pri| = n to simplify the presentation.

e Given 1", pri, a message m € {0,1}* and some random bits, SIGN outputs a

signature o,,, € {0,1}?™ of m, where p(-) is some polynomial.

e Given 17, pub, a message m and a supposed signature a € {0,1}*™ or m, VER
outputs either 1, indicating he thinks « is a valid signature of m, or 0, indicating

he thinks it is not.

Denote the output of SIGN given 1", pri, a message m and some random bits by

SIGN,,.i(m), and the output of VER given 1", pub, m and a supposed signature o of

CHAPTER 2. PRELIMINARIES 11

m by VER,,(m,a). We require that VER accept all signatures output by SIGN, so
that for all n, all key pairs (pub, pri) generated by running GEN on 1" and some random

bits, all messages m and all signatures o, = SIGN,;(m), VER,,,(m,0n) = 1.

Informally, SIG is secure if no probabilistic polynomial-time “forger” F' who knows
pub has a significant probability of coming up with a valid signature ¢* of a new message
m* € {0,1}*, even after being shown the signatures of polynomially many messages of his
choice. Since F' adaptively chooses the messages whose signatures he is shown and wins
if he successfully signs any new message (even a “silly” one such as the empty string M),
this sort of security for signature schemes is sometimes called “security against existential

forgery under adaptive chosen-message attack”.

Formally, F' is equipped with a “signature oracle” S; given a message m € {0,1}",
S outputs a signature o, = SIGN,;(m) of m. SIG is secure if, for every probabilistic
polynomial-time forger F'®, py(n) is negligible in n. Here pp(n) is the probability that,
given 1™ and a public key pub (generated by running GEN on 1™ and some random bits),
FS outputs a pair (m*, 0*) such that & has not been queried on m* and V E R, (m*, 0*) =
1; pp(n) is taken over the random bits of GEN (that is, the choice of (pub, pri)), F;fw
and VE Ry, as well as the randomness of S (that is, the random bits of SIGN).

Building on the results of [GMR88], [BM88] and [NY89], Rompel showed in [Rom90]
that if one-way functions exist, then so do secure signature schemes. It’s not hard to
show that the converse also holds, namely that if secure signature schemes exist, then
so do one-way functions. Notice that if SIG is a secure signature scheme, then the
function fgpy mapping the random bits r of GEN to the public key pub is one-way.
Since GEN runs in polynomial time, fopy is efficiently evaluable. If fopny were easy
to invert on average, then a forger F' who is given pub could compute pri with high
probability, thereby completely breaking the security of SIG. Thus fggpy is a one-way
function. Notice that this means that if one-way functions do not exist, then neither do

secure signatures schemes.

CHAPTER 2. PRELIMINARIES 12

Message authentification codes or MACs, as they are commonly referred to, are es-
sentially private-key signature schemes. This time there is only one (private) key, k,
which is chosen randomly and given to both the signer and the verifier. As with signa-
ture schemes, the standard notion of security for MACs is “security against existential
forgery under adaptive chosen-message attack”. Although the forger still has access to a
signature oracle S, this time he is obviously not given the private key & (which is built

into §); the forger’s success probability is taken over his random bits and the choice of

k.

6 Identification schemes

An identification scheme I D consists of three probabilistic polynomial-time algorithms: a
key generator G, a prover P and a verifier V. P and V are “linked interactive machines”,
meaning that they can “interact” by sending messages back and forth between each other.
Informally, P’s goal is to convince V' that he knows some secret, for example the private
key generated by GG. Although identification schemes are interesting in their own right,
our interest in them stems from the fact that they are a source of signature schemes
secure in the ROM ([AABNO02]).

Each message exchanged between P and V is called a round. If V’s messages consist
solely of random bits, then ID is said to be public-coin. Three-round, public-coin identi-
fication schemes are called canonical. This thesis only deals with canonical identification
schemes, so let 1D be canonical. Observe that the prover always goes last, because oth-
erwise he wouldn’t be able to respond to the verifier’s last challenge. Since the prover
and the verifier alternate rounds, this means that P first sends a message to V', then V'
challenges P, and finally P responds to V'’s challenge.

Formally, I D works as follows. First, G is run on 1" and some random bits to obtain

a pair of keys (PK, SK'), where PK is the public key and SK is the private key. Let Pgg

CHAPTER 2. PRELIMINARIES 13

denote the behaviour of P when given 1", SK and some random bits, and Vpg denote
the behaviour of V' when given 1" and PK. Psy first sends a commitment CMT to Vpg,
to which Vpg replies with a challenge CH consisting of the entire contents of his random
tape. Psy then sends a response RSP to Vpy, at which point Vpyx makes a deterministic
decision to either accept or reject (see Figure 2.1). For reasons which will become clear
later, it is convenient to assume that all of Pgx’s commitments are of length ¢(n), where
¢ is some polytime-computable function of the security parameter n. This is always the

case in practice.

(1*n, SK) (1*n, PK)
HOE Ok
Rsp

Figure 2.1: The interaction between P and V'

Since the behaviour of Vpk is completely determined once his random tape CH is fixed,
we may think of Vpy as a deterministic function accepting or rejecting “transcripts” of
the form (m;, CH, ms), where m; and msy are the first and second messages received by
Vpk, respectively; Vpi may interact with an adversary who is not Psg, so these need
not equal CMT and Rsp. We require that Psx always convince Vpg to accept, so that
Vpr(CMmT, CH, Rsp) = 1 for all CMT and Rsp produced by Psg.

We are interested in two notions of security for identification schemes: passive security
and active security.

Informally, I D is passively secure if no probabilistic polynomial-time “impersonator”
I who knows PK (but not SK) has a significant probability of convincing Vi to ac-
cept when interacting with him in the role of Psg, even after seeing polynomially many
transcripts of conversations between Psg and Vpg. This weak type of security for iden-
tification schemes is called “passive” because Ipg passively monitors the conversation

between Psg and Vpg without interfering with it.

CHAPTER 2. PRELIMINARIES 14

Formally, I is equipped with a “transcript oracle” 7. Every time 7 is queried, it
generates a transcript (CMT, CH, RSP) by running Psj and Ve on some random bits.
I}, is given 1" and a public key PK (generated by running G on 1" and some random
bits), together with some random bits. I}, first obtains polynomially many transcripts
by repeatedly querying 7. Next, I}, sends a commitment CMT’ to Vpg, receiving a
challenge CH in reply. I}, then responds to the challenge by sending RSP’ to Vpg. ID
is passively secure if, for every passive probabilistic polynomial-time impersonator I},
the probability p;(n) that Ve (CMT', CH, RsP’) = 1 is negligible in n; p;(n) is taken over
the random bits of G (that is, the choice of (PK, SK)), I} and Vpg (that is, the choice

of CH), as well as the randomness of 7 (that is, the random bits of Psx and Vpg).

Informally, ID is actively secure, or simply secure, if no probabilistic polynomial-
time “impersonator” I who knows PK (but not SK) has a significant probability of
convincing Vpg to accept when interacting with him in the role of Pgg, even after
arbitrarily interacting with Psx in the role of Vpgx polynomially many times. This
strong type of security for identification schemes is called “active” because Ipg actively

interacts with Psj rather than merely monitoring Psy’s conversation with Vpg.

Formally, we think of Ipg, who is given 1™ and a public key PK (generated by running
G on 1" and some random bits), together with some random bits, as operating in two
“phases”. In the first phase, Ipy interacts with Psy (in the role of Vi) by sending
him polynomially many adaptively chosen challenges; note that Ipx is not constrained
to choose his challenges randomly. In the second phase, Ipj interacts with Vi (in
the role of Psy) as follows. Ipg first sends a commitment CMT"” to Vpg, receiving a
random challenge CH in reply. Ipx then responds to the challenge by sending Rsp” to
Vpk. ID is secure if, for every active probabilistic polynomial-time impersonator Ipg,
the probability p;(n) that Vpr(CmT”, CH, RsP”) = 1 is negligible in n; p;(n) is taken
over the random bits of G (that is, the choice of (PK, SK)), Ipk, Vpk (that is, the choice

of CH) and PSK-

CHAPTER 2. PRELIMINARIES 15

Note that if Vpg's challenge CH is too short, |CH| = log,(n) say, then the size of the
challenge space is only 2/°" = n. An impersonator Ipj in possession of even a single valid
transcript (CMT, CH, RSP), obtained through either interacting with Psy or querying 7,
can in this case break the security of I D as follows. Ipx sends CMT to Vpg, receives a
challenge CH' from Vpg and sends RSP to Vpg in response. Since Vpg accepts whenever
CH' = CH, which happens with probability * (and possibly even if CH' # CH), Ipk’s
success probability is non-negligible. In order for I D to hope to satisfy either of the above
two definitions of security, the challenge space must therefore be of size super-polynomial

in n, meaning that |CH| = w(logn).

Observe that passive security is strictly weaker than active security, since every ac-
tively secure ID is also passively secure, but not vice versa. Active security implies
passive security because, for every (passive) impersonator I}, who breaks the passive
security of 1D, there is a corresponding (active) impersonator Ipx who breaks the active
security of ID: Ipg simply simulates I}, taking care to accumulate enough valid tran-
scripts during the first phase (by choosing the challenges he sends to Psx randomly) to

answer all of I1,’s T queries; Ipg’s success probability is identical to that of I7 .

To see that passive security does not imply active security, consider the following (ad-
mittedly rather contrived) modification I D’ of an arbitrary passively secure identification
scheme ID (such identification schemes exist if one-way functions do, as we’ll see below);
we may assume without loss of generality that |CH| = n. ID' is identical to ID, except
that whenever the new prover P{, receives the challenge 0 = 0", he responds by reveal-
ing the private key SK. ID' remains passively secure, since a passive impersonator 17,
whose running time is bounded above by some polynomial p(-) in the security parameter
n will see a transcript containing SK with probability at most ’%, which is negligible.
However, it is completely trivial for an active impersonator Ipx to break the (active)

security of ID": Ipg sends 0 to P& to obtain the secret key SK in the first phase, then

simulates P}, in order to correctly respond to V},’s challenge in the second phase.

CHAPTER 2. PRELIMINARIES 16

Finally, observe that secure identification schemes exist if and only if one-way func-
tions do. To see that if secure identification schemes exist then so do one-way functions,
let ID = (G, P,V) be an arbitrary secure canonical identification scheme. The function
fe mapping the random bits r of G to the public key PK must be one-way, since oth-
erwise an impersonator could completely break the security of ID (see Section 5). To
see that secure canonical identification schemes exist if one-way functions do, we need
only show how to convert an arbitrary secure signature scheme into a secure canonical
identification scheme (recall that secure signature schemes exist if one-way functions do).

We can easily obtain a canonical identification scheme ID = (G, P,V) from any
signature scheme SIG = (GEN,SIGN,V ER); V simply challenges P to sign a random
n-bit message CH and accepts only if RSP is a valid signature of CH. Specifically, G is
the same as GEN (so that (pub,pri) = (PK,SK)), CMT = A, RsP = SIGNgk(CH)
and Ve (A, CH,RsP) = VERp(CH, RsSP).

It’s not too hard to see that if SIG is secure (as a signature scheme) then ID is
secure (as an identification scheme). An active impersonator I which successfully breaks
the security of I D first gets to see the signatures of polynomially many messages of his
choice and then successfully signs a random message CH, whose signature he almost
certainly hasn’t already seen (because the challenge space is of super-polynomial size);
a polynomial-time forger F'® with access to a signature oracle S can easily simulate I,

thereby breaking the security of SIG.

7 Public-key encryption schemes

A public-key encryption scheme PKE consists of three polynomial-time algorithms: a
key generator GEN, an encryptor ENC' and a decryptor DEC. GEN and ENC' are
probabilistic (our definition of security will crucially depend on the fact that ENC' is

probabilistic), whereas DEC is deterministic.

CHAPTER 2. PRELIMINARIES 17

Informally, the setup is that a person A wants to securely communicate with some
stranger B he knows nothing about, except for his name and address. To this end,
A generates a pair of keys (pub, pri) using GEN, sends the public key pub to B and
keeps the private key pri for himself. To communicate a message m to A, B obtains an
encryption e, of m using ENC' and sends ¢, to A; A then decrypts e, using DEC.

For reasons of modularity and efficiency, public-key encryption schemes are in practice
almost always used solely to securely exchange a “short” private key k, whose length we’ll
assume to be equal to the security parameter n for convenience. Once both A and B
are in possession of k, they can securely communicate using highly efficient “private-key
encryption”. Thus, unlike in the case of signature schemes, where we insisted that SIGN
be able to sign messages of arbitrary length, here we will only require ENC' to be able
to encrypt n-bit messages.

Formally, GEN, ENC and DEC work as follows.

e Given 1" and some random bits, GEN outputs a pair of keys (pub, pri), where pub

is the public key and pri is the private key.

e Given 1", pub, a message m € {0,1}" and some random bits, ENC outputs an

encryption e, € {0, 1}?™ of m, where p(-) is some polynomial.

e Given 1", pri and a supposed encryption a, DEC either outputs a message m €

{0,1}™ or a special symbol L indicating a failure to decrypt.

Denote the output of ENC given 1", pub, m € {0,1}" and some random bits by
ENC,u(m), and the output of DEC given 1%, pri and o € {0,1}*"™) by DEC,,;(«).
We require that DEC correctly decrypt all encryptions produced by ENC', so that for
all n, all key pairs (pub, pri) generated by running GEN on 1™ and some random bits,
all messages m € {0,1}" and all encryptions e,,, = ENCpy(m), DEC,,i(en,) = m.

We are interested in two notions of security for public-key encryption schemes: se-

mantic security and chosen-ciphertext security.

CHAPTER 2. PRELIMINARIES 18

Informally, PKE is semantically secure ([GM84]) if no probabilistic polynomial-time
“eavesdropper” E who knows pub (but not pri) and passively monitors the channel
between A and B can “learn” even a single bit of information about a message m through

seeing its encryption e,,.

Formally, E is given 1" and a public key pub (generated by running GEN on 1" and
some random bits) and chooses two distinct n-bit messages, my and m;. A bit b is then
chosen randomly (but not shown to E), and E' is given an encryption e, = ENClpyp(my)
of mp. E next computes for a while, finally outputting a bit &'. Let pg(n) be the
probability that b’ = b, meaning that E correctly determined b; pg(n) is taken over the
random bits of £ and GEN (that is, the choice of (pub, pri)), as well as the choice of b.
PKE is semantically secure if, for every probabilistic polynomial-time eavesdropper E,
1

s — pe(n)| is negligible in n (in other words, py(n) doesn’t significantly differ from £,

the probability of randomly guessing b).

Note that PKE cannot be semantically secure if ENC' is deterministic. In order
to break the semantic security of PKFE, an eavesdropper E (who knows pub) simply
computes 19 = ENCpyu(0) and 171 = ENCpyp(1), where 0 = 0" and 1 = 0™ '1, then
sets my = 0 and m; = 1. Once E receives ¢, he outputs 0 if ¢, = 19 and 1 if ¢, = 1y
(these are the only two possibilities because ENC' is deterministic). Since E always
outputs b correctly (so that o' = b with probability 1), |% —pe(n)| = %, which is certainly

non-negligible.

Informally, PK E is secure against (adaptive) chosen-ciphertext attack or CCA2-secure
([RS92]) if no probabilistic polynomial-time adversary ADV who knows pub (but not pri)
and has complete control over the channel between A and B can “learn” even a single bit
of information about a message m through seeing its encryption e,,. What does it mean
for ADV to have “complete control” over the channel between A and B? Intuitively,
ADYV intercepts all encryptions or “ciphertexts” sent by A to B and sends B whatever

he likes instead.

CHAPTER 2. PRELIMINARIES 19

Formally, ADV is given 1" and a public key pub (generated by running GEN on
1" and some random bits) and equipped with a “decryption oracle” D, which outputs
DEC,,;(c) when queried on a ciphertext a € {0,1}*™). D is meant to capture the
intuition that ADV can effectively force B to decrypt any ciphertext of his choosing (of
course the answer may well be L; we think of “ciphertexts” that decrypt to L as being

malformed).

ADVP queries D on ap and receives DEC,,;(cg), queries D on «; and receives
DEC,,i(e1), and so on. Since ADV? may in general choose his queries based on D’s
previous answers, this is an adaptive attack. Eventually, ADVP chooses two distinct
n-bit messages, my and m;. A bit b is then chosen randomly (but not shown to ADV?),

and ADV'P is given an encryption e, = ENC,;(my) of my,.

ADV'P now gets to query D on some additional ciphertexts, whose choice may in
general depend on e,. Naturally, we don’t allow ADVP to query D on e, itself, since
DEC,,;(e) uniquely determines b (because mg # my). Alternatively, once ADVP re-
ceives e, we could forbid him from querying D altogether; security against this type of
“lunchtime attack” is called CCA1 security ([NY90]). However, that would arguably be
too restrictive, since in practice CCA2 security is almost always broken by querying D

on ciphertexts “related to” (though not the same as) e.

ADVP next computes for a while, finally outputting a bit &'. Let papy(n) be the
probability that ¥ = b, meaning that ADV? correctly determined b; papy(n) is taken
over the random bits of ADVP? and GEN (that is, the choice of (pub, pri)), as well as
the choice of b (the decryption oracle D is deterministic). PKFE is CCA2 secure if, for
every probabilistic polynomial-time adversary ADV?, |% — papv(n)| is negligible in n
(in other words, papy(n) doesn’t significantly differ from %, the probability of randomly
guessing b).

Observe that semantic security is strictly weaker than CCA2 security, since every

CCA2-secure PK F is also semantically secure, but not vice versa. CCA2 security implies

CHAPTER 2. PRELIMINARIES 20

semantic security because, for every eavesdropper E who breaks the semantic security
of PKE, there is a corresponding adversary ADV? who breaks the CCA2 security of
PKE: ADVP simply simulates E, ignoring the decryption oracle D; ADVP’s success
probability is identical to that of E. This implies that PK E cannot be CCA2-secure if
ENC' is deterministic — we already know that such a PKE is not semantically secure,

and we just showed every CCA2-secure public-key encryption scheme is.

To see that semantic security does not imply CCA2 security, consider the following
(admittedly rather contrived) modification PKE’" of an arbitrary semantically secure
public-key encryption scheme PKE. PKFE' is identical to PKE, except that the new
encryptor ENC" appends an additional bit, say 0 for concreteness, to every encryption;
this bit is ignored by the new decryptor DEC'. PKE' remains semantically secure,
since, for every eavesdropper E’ who breaks the semantic security of PKE’, there is a
corresponding eavesdropper E who breaks the semantic security of PKE: E simulates
E’ to obtain a pair of messages (mg, m;), receives an encryption e, and gives €,0 to E',

accepting if and only if £ accepts; E’s success probability is identical to that of E'.

However, it is completely trivial for an adversary ADV® to break the CCA2 security
of PKE": ADV™ sets mg = 0 and my = 1, receives ¢, = ENC},,(m;), and queries D on
eyl to obtain a decryption m'. He then outputs 0 if m’ = 0 and 1 if m’ = 1 (these are the
only two possibilities, since DEC' ignores the trailing bit). Since ADVP always outputs
b correctly (so that b’ = b with probability 1), |1 — papy(n)| = 3, which is certainly non-
negligible. Although our highly artificial modification of PKE may seem like a cheat,
in practice public-key encryption schemes fail to be CCA2-secure for the same reason as
PKE'. Namely, they are “malleable”, which informally means that an adversary ADV?
can “malleate” (that is, modify) e, into some related encryption e} such that b can be

computed from D(e,) (ADVP is allowed to query D on e} since e} # e;).

CHAPTER 2. PRELIMINARIES 21
8 The Random Oracle Model (ROM)

The Random Oracle Model, or ROM for short, is a setting where all parties have access to
a “random oracle” R. The ROM was formally introduced in the context of cryptography
in [BR93|.

One way to think of R is as a randomly chosen function mapping {0, 1}* to {0,1}"1.
However, the set of all such functions is (countably) infinite, and we prefer not to talk
about sampling such sets. Instead, we view R as choosing his answers “on-line”. When
queried on ¢ € {0,1}*, R first checks whether ¢ is a “new query”, meaning that he hasn’t
been queried on ¢ before. If so, he randomly chooses a response ans € {0,1}" to g,
writes ans down somewhere and then outputs it. Otherwise (namely in the case that R
has been queried on ¢ already), he looks up and outputs his previous response to ¢; this
ensures that identical queries receive an identical response (which is the case when R is
viewed as a function).

We next show that, in some appropriate sense at least, random oracles are one-way
(see Section 2 for a definition of one-wayness). Let pyyy(n) denote the probability that
a probabilistic polynomial-time inverter TNV who is given y = R(z) € {0,1}" for a
randomly chosen z € {0,1}" outputs an a' € {0,1}" such that R(z') = y; pryv(n)
is taken over the choice of x, the random bits of INV® and the randomness of R.
Observe that y yields no information about z, since it is distributed uniformly over
{0,1}" no matter what x is. Denote the strings INV® queries R on by 1, ..., Z4,, and
set y; = R(x;) for 1 < i < gg; notice that gr < n¢ for some ¢, because INV® runs in
(strict) polynomial time. TNV wins if there is an 1 < i < gg such that either z; = z

or x; # = but y; = y anyway. Applying the union bound, we see that this happens with

probability at most 22‘1—7? < 22%6, which is negligible.

fIn general, R maps {0,1}* to {0,1}¢(™ where £(n) < n° for some c. However, we will usually
assume that ¢(n) = n to simplify the presentation.

Chapter 3

On the security of Fiat-Shamir

signature schemes in the ROM

1 Fiat-Shamir signature schemes: an overview

In their seminal 1986 paper ([FS87]), Amos Fiat and Adi Shamir proposed a new, highly
efficient signature scheme based on a certain canonical identification scheme closely re-
lated to the protocols presented in [GMR85] and [FMRI6] (for definitions of signature
schemes and canonical identification schemes, see Sections 5 and 6 of Chapter 2). Such
signature schemes are now called “Fiat-Shamir signature schemes”, whereas Fiat and
Shamir’s approach itself is referred to as the “Fiat-Shamir paradigm”. Essentially, their
idea was as follows. In order to sign a message m, simply simulate the prover, replacing
the verifier’s random challenge with h(m), where h is some “cryptographic hash function”
(actually, this isn’t quite right, as we’ll see below). The resulting transcript then serves

as a signature of m.

Fiat and Shamir showed that the signature scheme in question is secure if h is “truly
random”, provided that taking square roots modulo N = pq, where p and ¢ are unknown

“large” primes, is hard (a standard hardness assumption). In modern terminology, Fiat

22

CHAPTER 3. ON THE SECURITY OF FIAT-SHAMIR SIGNATURE SCHEMES IN THE ROM?23

and Shamir effectively showed that the signature scheme is secure in the Random Oracle
Model, or ROM (see Chapter 2, Section 8 for a discussion of the ROM), under a standard
hardness assumption. Although this may strike one as a rather weak security guarantee,
no practical signature schemes provably secure under standard hardness assumptions
were known at the time. Today, a number of highly efficient signature schemes provably
secure under such “non-standard-yet-plausible” hardness assumptions as the “strong RSA

assumption” and the “strong Computational Diffie-Hellman assumption” are available

([GHR99], [CS99], [Fis03], [BBO4]).

Various other Fiat-Shamir signature schemes which are provably secure in the ROM
under standard hardness assumptions have been described over the years ([MS90], [Oka93],
[Sho96], [GaJ03]), but until fairly recently it was not known whether every (actively) se-
cure canonical identification scheme yields a Fiat-Shamir signature scheme secure in the
ROM. While Abdalla et al. showed in [AABNO02] that secure “non-trivial” canonical iden-
tification schemes yield Fiat-Shamir signature schemes secure in the ROM (informally, a
canonical identification scheme is “non-trivial” if the prover’s commitment distribution
has “high entropy”), they left open the question of whether secure “trivial” canonical
identification schemes do. In Section 5, we prove that every secure canonical identifica-
tion scheme, trivial or not, does indeed yield a Fiat-Shamir signature scheme secure in

the ROM.

However, as we will see in Chapter 5, security in the ROM is no guarantee of real-
world security. In [GTKO03|, Goldwasser and Tauman show that there exist Fiat-Shamir
signature schemes which, although secure in the ROM, are “uninstantiable” (see Chap-
ter 5, Section 4). Such schemes are not secure in the “real world”, no matter what hash

function ensemble is used to “instantiate” the random oracle.

CHAPTER 3. ON THE SECURITY OF FIAT-SHAMIR SIGNATURE SCHEMES IN THE ROM24

2 The Fiat-Shamir transform

Let ID = (G, P,V) be a canonical identification scheme and h be a “cryptographic hash
function”. The function mapping I D and h to the corresponding Fiat-Shamir signature
scheme SIG(ID) is sometimes called the “Fiat-Shamir transform”. Since this thesis

is primarily concerned with security in the ROM, we will only present the transform’s

ROM version, which maps ID to SIG(ID) = (G, SIGN*,VERR).

Given 1", a private key SK (generated by running G on 1™ together with some
random bits), a message m € {0, 1}* and some random bits, the signer STGN™ proceeds
as follows. He first simulates Psx to obtain a commitment CMT and computes a challenge
CH,, = R(CMT, m) by querying R; note that the challenge depends on the message to
be signed. SIGN® then simulates Psx on CH,, to obtain a response RSP and outputs
om = (CMT, RsP) as the signature of m. (Recall that Psy denotes the behaviour of P
when given 1", SK and some random bits . Specifically, P computes a commitment
CMmT as a function of 1*, SK and r, receives a challenge CH, and then computes a

response RSP as a function of 1", SK, r and CH).

Given 1", a public key PK (generated by running G on 1" together with some random
bits), a message m € {0,1}* and a supposed signature («,) of m, the verifier VER®
simply computes 8 = R(«, m) by querying R and outputs Vpx(«, 5,7) (Recall that Vp

is a deterministic function of («, 3, 7)).

Our goal is to show that if ID is secure then SIG(ID) is secure in the ROM. By
security in this setting we mean the ordinary security for signature schemes (that is,
security against existential forgery under adaptive chosen-message attack), except that
the forger F' now has access to the random oracle R in addition to the signature oracle

S, and his success probability is also taken over the randomness of R.

CHAPTER 3. ON THE SECURITY OF FIAT-SHAMIR SIGNATURE SCHEMES IN THE ROM25
3 An earlier result

Abdalla, An, Bellare and Namprempre present several results concerning the Fiat-Shamir
transform in [AABNO02], including a randomized version of the transform and applications
to “forward-secure signature schemes”. However, we are only interested in the following
result of theirs: for every passively secure “non-trivial” canonical identification scheme
ID, the corresponding Fiat-Shamir signature scheme SIG(ID) is secure in the ROM.
Since active security implies passive security for identification schemes, this means that
every secure “non-trivial” canonical identification scheme yields a Fiat-Shamir signature
scheme secure in the ROM.

Informally, ID is “non-trivial” if the prover’s commitment distribution has “high
entropy”. Formally, let Psx = {p;}*_, denote Psx’s commitment distribution and define
the min-entropy of Psg by Huin(Psk) = —10gy(Pmax), Where puax = max{p;}¥_ is the
largest probability mass in Pgg. ID is non-trivial if min{H,,;,(Psk) : SK + G(1")} =
w(logn), meaning that the minimum min-entropy of Psg, taken over all private keys
SK (generated by running G' on 1™ and some random bits), is super-logarithmic in the
security parameter n. It can be shown that in this case the probability of seeing the same
commitment more than once in polynomially many trials is negligible, so that, for all
practical purposes, Psk’s commitments don’t repeat. Canonical identification schemes
which are not non-trivial are said to be trivial.

Let ID be a non-trivial canonical identification scheme. Suppose that F® is a
polynomial-time forger who breaks the security of SIG(ID) in the ROM, and denote his
(non-negligible) success probability by pr(n). F;,zlf is given 1", PK and some random
bits, and his goal is to output a new message m* (i.e. one he hasn’t queried S on)
together with a valid signature o* = (CMT", RSP*) of m*.

We may assume, without loss of generality, that F 17} 159 doesn’t query R on any string
more than once, since that would yield no new information (because R’s responses would

all be identical). We may additionally assume, again wlog, that F: 1733; doesn’t query R on

CHAPTER 3. ON THE SECURITY OF FIAT-SHAMIR SIGNATURE SCHEMES IN THE ROM?26

strings whose length is less than £(n); recall that all of Psx’s commitments are of length
¢(n). R queries involving such “short strings” can safely be answered randomly, since
there is no interplay between them and S queries (more on this interplay later). This
assumption ensures that every s € {0,1}* FZ}I}S queries R on can be parsed as (CMT, m),
where CmT € {0,1}4™ and m € {0,1}*. Finally, it will be convenient for us to assume
that FZ}I}S queries R on (CMT*, m*) at some point during his execution; following the
terminology of [AABNO(2], we refer to this special R query as the “crucial query”. There
is no loss of generality in assuming that the forger makes the crucial query, since every
F™S who doesn’t can easily be converted into a corresponding forger FRS who does:
ﬁ';?KS obtains m* and o* = (CmT", RSP*) by simulating F;,ZI’(S, queries R on (CmT", m*)
and then outputs (m*,0*). Since the additional R query doesn’t affect the choice of m*

and o*, F®S’s success probability is identical to that of F®S.

We now describe a polynomial-time impersonator I7 who, given 17, PK and some
random bits, breaks the passive security of I D (in the real world) by simulating F’ 175 If . Let
¢r (n) denote the number of times F;° queries R. Since Fj5¢ runs in (strict) polynomial
time, ggr(n) < n° for some ¢ (in the worst case, F]}KS does nothing but query R, each

query taking a single step).

I}, begins by randomly choosing an index i € {1,...,qr(n)}; as we'll see later, i
is not revealed to F;?KS in the course of the simulation. Since we’ve assumed both that

F 1733; makes the crucial query and that he never queries R on the same string more

than once, 7 is the index of the crucial query with probability qu(n) > # A technical

FRS’s views (namely what he “sees”

but important point is that the distribution of
during the simulation, including his random bits and the answers to his oracle queries)
is independent of the choice of 7, so that he gets no information about ¢. If that were

not the case, F5;° could exploit his knowledge of i to ensure that I7, never guesses the

index of the crucial query correctly.

During the simulation, I} responds to all of Fjy2’s random oracle queries but the %

CHAPTER 3. ON THE SECURITY OF FIAT-SHAMIR SIGNATURE SCHEMES IN THE ROMZ27

with a randomly chosen n-bit string (since F' 17} KS never queries R on the same string more
than once, there is no risk of giving inconsistent answers). The i* query is handled as
follows. Suppose that, for his " random oracle query, Fis® queries R on some s € {0, 1}*
(recall that |s| > £(n), since F}5S doesn’t query R on “short strings”). I}, parses s as
(CMmT*, m*), sends CMT* € {0, 1}*™ to Vpj, and receives a challenge Cu* € {0,1}" in
reply. He then gives CH to Flyo as the answer to R(s) and continues his simulation.
This ensures that RSP* is a correct answer to CH", so that (CmT*, CH*, RSP") is a valid

transcript.

Whenever Fly® asks to see a signature of a message m, I}, queries 7 to obtain a
valid transcript (CMT, CH, RSP) and gives (CMT, RSP) to F;°. To ensure that future
R queries are answered consistently, I7 then sets R(CMT,m) to CH. Observe that if
(CmT, RSP) is to be a legitimate signature of m, we must have R(CmT, m) = CH, so
that every S query effectively involves an implicit R query. But what if R has been
queried on (CMT, m) already? Unless we are very lucky and CH matches the value pre-
viously assigned to R(CMT, m) (which happens with probability 2%, since CH € {0,1}"
is chosen randomly), this prevents R from being well-defined. We may thus view a new
commitment CMT as being added to the (notional) set of “forbidden commitments” ev-
ery time R is queried on s € {0, 1}* — simply parse s as (CmT, m). Notice that the size
of this “forbidden commitment set” is polynomial in the security parameter n, because
qr(n) < nf Since ID is non-trivial (which informally means that the number of com-
mitments is super-polynomial in n), the probability that a randomly chosen commitment
belongs to the “forbidden commitment set” is therefore negligible in n, so this event can

be safely ignored for the purposes of our analysis.

Eventually, F }732[;9 outputs a message m* together with a purportedly valid signature
o* = (CMT*, RsP*) of m*. I}, then sends RSP* to Vpx as the answer to the challenge
CH". Since pp(n) is non-negligible, there is a d such that pp(n) > - for infinitely

many n. What is the probability that I, breaks the security of ID, namely that

CHAPTER 3. ON THE SECURITY OF FIAT-SHAMIR SIGNATURE SCHEMES IN THE ROM?28

Ve (CMmT*, CH*, RSP*) = 1?7 If I}, correctly guesses the index of the crucial query
and there are no “commitment collisions” (recall that these only occur with negligible
probability), then his simulation of F }7}; is perfect; in that case his success probability

is just pp(n). Since the choice of 7 is independent of the simulation, we get:

L e) = S pe(n)

Pr[Vpg(CmT*, CH", RSP") = 1] &~

_ for infinitel
>E'W‘W or infinitely many n.

I, therefore breaks the passive security of ID, so that SIG(ID) is secure in the ROM

if ID is passively secure. Bl

4 The non-triviality assumption

It’s not hard to show that passive security of 1D is a necessary condition for SID(ID) to
be secure in the ROM, meaning that 1D is passively secure whenever SIG(1D) is secure
in the ROM; Abdalla et al. claim that non-triviality is also necessary. To support this
claim, they show that, subject to an assumption, there exists a passively secure trivial
identification scheme which yields a Fiat-Shamir signature scheme that is not secure in
the ROM. However, below we show that, subject to a different assumption, there exists a
passively secure trivial canonical identification scheme I D’ such that SIG(ID') is secure
in the ROM. Thus, in some sense at least, the non-triviality assumption is not necessary.

Let F = (G, f, f") be a trapdoor permutation (see Chapter 2, Section 4 for the
relevant definitions), and consider the following identification scheme ID' = (G, P', V).
ID"s key generator G is identical to that of F, so PK =k and SK = k'. Informally, we
think of I D" as a two-round scheme: the verifier V' challenges the prover P’ to invert fj
on a random string CH, accepting if and only if P" does so successfully. Formally, I D'
is a canonical (three-round) scheme where P”’s commitment CMT is fixed, say CMT = A

for concreteness. The verifier V', who knows k, accepts a transcript (CH, Rsp) if and

CHAPTER 3. ON THE SECURITY OF FIAT-SHAMIR SIGNATURE SCHEMES IN THE ROM?29

only if fy(Rsp) = CH (since the commitment A is fixed, it may be omitted from the
transcript). We refer to such schemes as “hyper-trivial”, since not only is the entropy of

their commitment distribution “low”, it’s actually zero.

First, we show that 1D’ is passively secure. Observe that, although for complete-
ness we establish it directly, the passive security of I D" also follows from the fact that
SIG(ID') is secure in the ROM (as shown below). Suppose that I7 is a polynomial-time
passive impersonator who breaks the security of ID’, and denote his (non-negligible)
success probability by p;(n). We use I7 to construct a polynomial-time inverter INV

who breaks the one-wayness of fj.

Recall that TNV is given 1", k, y € {0,1}" and some random bits, and his goal is
to output an x € {0,1}" such that fi.(z) = y. INV}, simulates I] as follows. Whenever
I] queries the transcript oracle 7, NV} randomly chooses z’ € {0,1}", computes y' =
fe(z) € {0,1}™ and gives (y/,2') to I]. Since fi is a bijection, setting y' to fx(z') for
a random z' is equivalent to setting z’ to f;,(y') for a random ¥, so (v',2') has exactly
the right distribution. Once I} outputs A to signal he is ready to be challenged, INV}
gives him y, receiving RSP’ in reply. INVj then outputs Rsp’ as his guess at fi,(y).
Since INV}’s simulation of I] is perfect, f,(RSP') = y with probability p;(n), which is
non-negligible. I NV} therefore breaks the one-wayness of fi, so that 1D’ is passively

secure.

Next, we show that SIG(ID') is secure in the ROM. Suppose that F* is a polynomial-
time forger who breaks the security of SIG(ID') in the ROM, and denote his (non-
negligible) success probability by pp(n). We use F™S to construct a polynomial-time

inverter INV who breaks the one-wayness of fj.

Recall that F®° is given 1", k and some random bits, and his goal is to output a new
message m* together with a signature Rsp* such that fy(Rsp*) = R(m*). Whenever
F° queries S on a message m € {0,1}*, he is given fL,(R(m)). As in Section 3, we

assume, without loss of generality, that F,Z2 S doesn’t query R on “short strings” (i.e.

CHAPTER 3. ON THE SECURITY OF FIAT-SHAMIR SIGNATURE SCHEMES IN THE ROM30

strings whose length is less than ¢(n)), doesn’t query R on the same string more than
once, and makes the “crucial query” R(m*). We additionally assume that F,*° doesn’t
query S on the same message more than once. There is no loss of generality in making
this assumption, because signing in SIG(ID') is deterministic (since P’ is deterministic).
Let gr(n) and gs(n) denote the number of times F, ,ZZ S queries R and S, respectively,
and suppose that the running time of F,Zz’s is bounded above by n‘ such a ¢ must exist
because F,>° runs in strict polynomial time. Observe that gz (n) + ¢s(n) < nc, since in

R,S . . i
the worst case F}” queries an oracle at every step of his execution.

Recall that INV is given 1", k, y € {0,1}" and some random bits, and his goal is to
output an x € {0, 1}" such that fi(z) =y. As in Section 3, INV}, first randomly chooses
an index i € {1,...,qr(n)}; i represents INV},'s guess at the index of the crucial query,
and won'’t be revealed to F,ZQ’S in the course of the simulation. Since F,ZQ’S gets no infor-

mation about i, INV} guesses the index of the crucial query correctly with probability

gr(n) = n°’

Before beginning the simulation proper, I NV} generates n® “transcripts” (y1, 1), .. .,
(Yne, Tpe) by randomly choosing x; € {0, 1}™ and setting y; = fi(z;) for 1 < j < nf; since
fx is a bijection, this is equivalent to randomly choosing y; and setting z; to fi(y;).
The idea of generating transcripts ahead of time is key, since it later enables I NV}
to consistently answer F) ,Zz g oracle queries; recall from Section 3 that every S query
effectively involves an implicit R query, and this time we can’t rely on the non-triviality
assumption to bail us out. A similar technique is used to prove our main result in

Section 5.

INV), now begins his simulation of F,ZQ’S. As in Section 3, the i random oracle query
is treated specially. Since in this case the commitment A is fixed, INV} simply answers
the query with y (the string he is trying to invert fz on). The rest of F,Zz’s’s oracle queries
are handled as follows. Each time F,ZQ’S queries an oracle on a new message m € {0,1}",

INVj, associates an unused transcript (y;,2;) with m; all oracle queries regarding m are

CHAPTER 3. ON THE SECURITY OF FIAT-SHAMIR SIGNATURE SCHEMES IN THE ROM31

answered using (y;,x;). Specifically, INV}, sets R(m) to y; and S(m) to z;. Note that
INYV, won’t run out of transcripts, because F,Z2 S queries his oracles on at most n° distinct
messages.

F,Zz’s eventually outputs RsP* (purportedly a signature of m*), which INV} then
outputs as his guess at f;,(y). Since INV}’s simulation of F,ZZ"S is perfect and the choice
of i is independent of it, INV} succeeds with probability at least n—lc - pr(n), which is
non-negligible. TNV}, therefore breaks the one-wayness of fi, so that SIG(ID’) is secure
in the ROM.

Here we have only shown that D', which is hyper-trivial, yields a Fiat-Shamir sig-
nature scheme that is secure in the ROM. However, a similar argument demonstrates
that every passively secure canonical identification scheme whose prover is deterministic

(trivial or not) does.

5 Our result

In this section, we prove the following theorem:.

Theorem. For every (actively) secure canonical identification scheme ID = (G, P,V),
the corresponding Fiat-Shamir signature scheme, SIG(ID) = (G,SIGN® , VERR), is
secure in the ROM.

Proof. Suppose that F™S is a polynomial-time forger who breaks the security of SIG(ID)
in the ROM, and denote his (non-negligible) success probability by pg(n). We use F*
to construct an active impersonator I who breaks the security of ID.

Recall that ™S is given 1", PK and some random bits, and his goal is to output
a new message m* together with a valid signature (CMT*, RsP*) of m*. As in previous
sections, we make a number of “regularity assumptions” about F 1733; , without loss of
generality: F;?KS doesn’t query R on “short strings” (i.e. strings whose length is less

than ¢(n)), doesn’t query R on the same string more than once, and makes the “crucial

CHAPTER 3. ON THE SECURITY OF FIAT-SHAMIR SIGNATURE SCHEMES IN THE ROM32

query” R(CMT", m*) at some point during his execution. Note, however, that FZ}KS may

query S on the same message more than once. Since signing in SIG(1D) is probabilistic,

this makes perfect sense and could yield useful information.

Recall that [is given 1", PK and some random bits. As per the definition of active
security (see Chapter 2, Section 6), Ipy first gets to interact with Psy polynomially
many times in the role of Vpy. Each time, Ipj receives a commitment CMT € {0, 1}“”)
from Psy, sends a (not necessarily random) challenge CH € {0,1}" to Psg, and then
receives a response RSP from Psy. Next, Ipk sends a commitment CMT' to Vpyx — this
marks the end of his “interactive” phase — receiving a random challenge CH' in reply.

His goal is to output a response RsP’ such that Vpg(CMT', CH', RsP') = 1.

Let gr(n) and gs(n) denote the number of times F;° queries R and S, respectively,
and set g(n) = gr(n) + gs(n). Also, suppose that the running time of Fj;° is bounded
above by n¢; such a ¢ must exist since F 17} 159 runs in strict polynomial time. Observe that

. . R.S . . .
¢(n) < n° since in the worst case Fiojs queries an oracle at every step of his execution.

Before beginning his simulation of Fjy, our impersonator Ipg obtains g(n) “tran-
script blocks” By, . .., By, each consisting of gs(n) transcripts, by interacting with Pgg.
A new transcript is added to a given block By as follows. Ipj first receives a commit-
ment CMT € {0,1}™ from Pgg (it’s chosen according to Psx’s commitment distribu-
tion, Psk). Ipx next needs to decide what challenge Cu € {0,1}" to send to Ps-.
If CMmT does not appear in any of the transcripts already contained in By, Ipx chooses
CH randomly. Otherwise, he sets CH to the challenge associated with CMT (since CH
repeats whenever CMT does, every commitment in By is associated with some particu-
lar challenge). After sending CH to Psk, Ipk receives a response RSp; the transcript
(CwmT, CH, RsP) is then added to By. Once the transcript blocks have been generated,
Ipk randomly chooses an index i € {1,...,qr(n)}; i represents Ipg’s guess at the index

of the crucial query, and won’t be revealed to F' 17} 159 in the course of the simulation.

Ipg now begins his simulation of F]}KS Notice that, thanks to our “regularity as-

CHAPTER 3. ON THE SECURITY OF FIAT-SHAMIR SIGNATURE SCHEMES IN THE ROM33

sumptions” above, every oracle query made by F' 17} KS can be unambiguously associated
with some message m € {0,1}*. Let mq, mo, ms, ... be the distinct messages associated
with F%%’s oracle queries (there are at most ¢(n) such messages). Ipx answers R and
S queries associated with the &k distinct message my, using transcripts contained in the
k™ block By. The idea is to ensure that Ipj can answer as many S(my) queries as nec-
essary — there will be at most gs(n) — in a way that is consistent with his answers to
queries of the form R(CMT, my), CMT € {0,1}4™. Specifically, Ipx answers F;fl’f’s Gt
S(my) query with (CMT, Rsp), where (CMT, CH, RsP) is the j% transcript contained in
By.. His answer to queries of the form R(CwmT, my,) depends on whether the commitment
CMT € {0,1}¥™ appears in any of the transcripts in By. If so, Ipx sets R(CMT, my) to
Cu € {0,1}", the challenge associated with CMT. Otherwise, he randomly chooses an
r € {0,1}" and sets R(CMT, my) to 7.

As in previous sections, the i random oracle query is handled specially. Suppose
that, for his i random oracle query, Fiy® queries R on some s € {0,1}* (recall that
|s| > €(n), since F15° doesn’t query R on “short strings”). I}, parses s as (CMmT',m/),
sends CMT’ € {0,1}™ to Vpg, and receives a challenge CH' € {0,1}" in reply. He then
gives CH' to F]}KS as the answer to R(s) and continues his simulation.

Eventually, FZ}I}S outputs a message m* together with a purported signature (CMT",
RsP*) of m*. Ipk then sends RSP to Vpy as the answer to the challenge CH'. If Ipg
guessed the index of the crucial query correctly, then m* = m’ and CMT* = CMT', so
that R(CmT*, m*) = CH'. In that case, Ipg’s simulation of F]}I}S is perfect. Let A denote
the event that Vpx(CMT', CH', RsP*) = 1 and B denote the event that ¢ = i*, where *
is the true index of the crucial query. Since pp(n) > n—ld for some d and infinitely many

n (because FS breaks the security of SIG(ID) in the ROM), we get:

Pr[A] > Pr[A, B] = Pr[A | B] - Pr[B]

1 pr(n)
grn) =

1
> —— for infinitely many n.

CHAPTER 3. ON THE SECURITY OF FIAT-SHAMIR SIGNATURE SCHEMES IN THE ROM 34

Ipg therefore breaks the security of ID, so that SIG(ID) is secure in the ROM. [

Chapter 4

A public-key encryption scheme
CCA2-secure in the ROM

1 Public-key encryption in the ROM: an overview

In [BR93], Bellare and Rogaway proposed the following public-key encryption scheme,
which they showed to be CCA2-secure in the ROM (see Sections 7 and 8 of Chapter 2
for the relevant definitions). Let (G, f, f') be a trapdoor permutation (see Section 4
of Chapter 2). The key generator GEN™ simulates G to obtain a pair of keys (k, k)
and sets pub = k, pri = k'. Let n be the security parameter. To encrypt a message
m € {0,1}"*, ENCF chooses r € {0,1}" randomly, computes y = fi(r) and sets e,, to
(y,R(r) & m,R(r,m)). Given a purported encryption e = («, 3,7v), DECJ computes
r = fi,(a) and sets m = S @ R(r). If v # R(r,m), he outputs L, indicating a failure
to decrypt; otherwise, he outputs m as the decryption of e. Intuitively, r is hard to
find because fy is hard to invert. Together with the randomness of R, this implies
that R(r) @ m yields no information about m, which guarantees semantic security. The

“authentification code” R(r, m) ensures that encryptions are difficult to “malleate”.

One drawback of the above scheme is that encryptions are of length about 3n, or

35

CHAPTER 4. A PUBLIC-KEY ENCRYPTION SCHEME CCAZ2-SECURE IN THE ROM 36

roughly three times the length of the message being encrypted. To address this issue,
Bellare and Rogaway introduced the highly influential Optimal Asymmetric Encryption
Padding or OAEP scheme in [BR94], a simplified version' of which is described next. Let
F = (G, f, f') be a trapdoor permutation. As before, the key generator GEN™ simulates
G to obtain a pair of keys (k, k") and sets pub = k, pri = k'. Let n be the security
parameter. To simplify the presentation, it will be convenient to assume that f; and f,
map 2n bits to 2n bits (as opposed to n bits to n bits). To encrypt a message m € {0,1}",
ENCF chooses r € {0,1}" randomly, computes p(m) = (m & R(r),r ® R(m & R(r)))
and sets e, = fr(p(m)); p is sometimes called the padding function. Given a purported
encryption « € {0,1}**, DECJ computes (8,7) = fi,(«), where |3] = |y| = n, and sets
r=v@®R(S). He then outputs m = @ R(r) € {0,1}" as the decryption of «; notice
that every « is a valid encryption of some m, so that DECJ never outputs L. This
scheme was shown to be “plaintext aware” in [BR94], where it was also claimed (without
proof) that plaintext awareness implies “security against chosen-ciphertext attack” (it’s

not entirely clear whether the authors had CCA1 or CCA2 security in mind).

After Bleichenbacher showed in [Ble98| that version 1.5 of RSA Security’s PKCS #1
standard ([RSA93|) is vulnerable to chosen-ciphertext attack, RSA-OAEP (a concrete
implementation of the OAEP scheme where the role of F is played by the RSA function)
served as the basis for version 2.0 of the standard ([RSA98]). RSA-OAEP was subse-
quently also incorporated into IEEE’s public-key cryptography standard, IEEE P1363-
2000 ([IEEO00]). However, in [Sho01] Shoup pointed out that, although OAEP is indeed
CCAl-secure, there is an (additional, not random) oracle relative to which F remains
one-way but OAEP fails to be CCA2-secure. Since standard “black-box” security reduc-
tions relativize — that is, hold relative to every oracle — any reduction from inverting

F to breaking the CCA2 security of OAEP would therefore have to be “non-black-box”,

!The real scheme makes use of two independent random oracles, G and #, and has three security
parameters.

CHAPTER 4. A PUBLIC-KEY ENCRYPTION SCHEME CCAZ2-SECURE IN THE ROM 37

meaning that it would need to somehow depend on the specifics of F. Shoup also pro-
posed a modification of OAEP, called OAEP+, which he proved to be CCA2-secure in
the ROM. In [FOPSO01], Fujisaki, Okamoto, Pointcheval and Stern proved that OAEP
is CCA2-secure under the stronger assumption that F is “partial domain one-way”, as
opposed to “full domain one-way” or simply one-way (also see [FOPS04] for the journal
version). Since RSA is “random self-reducible” — loosely, this means that being able
to invert it on a large fraction of the inputs allows one to invert it on every single in-
put — it is “partial domain one-way” if and only if it is one-way. Thus, Shoup’s result
notwithstanding, RSA-OAEP is in fact CCA2-secure under the RSA assumption.

In [Bon01], Boneh observed that the OAEP padding function p may be viewed as
two rounds of a “Feistel network” and proposed two simpler, more elegant single-round
padding functions. When used in conjunction with either RSA or Rabin’s modular
squaring function, these new paddings yield encryption schemes which are CCA2-secure
in the ROM (under the assumption that RSA is hard to invert and factoring is hard,
respectively). Interestingly, Boneh recommends using the Rabin function in preference
to RSA where his paddings are concerned, since it has better “reduction efficiency”.

In [CS98], Cramer and Shoup described an efficient, practical public-key encryp-
tion scheme (its efficiency is comparable to that of RSA-OAEP) which is CCA2-secure
in the “real world” (and hence also in the ROM) under the non-standard-yet-highly-
plausible “Decisional Diffie-Hellman” assumption. This important result is perhaps the
main reason why there hasn’t been a great deal of work done on discrete logarithm-based

public-key encryption schemes which are CCA2-secure in the ROM.

2 The original scheme

In [BR97], Bellare and Rogaway proposed a discrete logarithm-based public-key encryp-

tion scheme called the Diffie-Hellman Integrated Encryption Scheme or DHIES, which

CHAPTER 4. A PUBLIC-KEY ENCRYPTION SCHEME CCAZ2-SECURE IN THE ROM 38

they claimed is CCA2-secure in the ROM under the “Computational Diffie-Hellman”
assumption (a standard discrete log-type hardness assumption). However, in [ABRO1b]
Abdalla, Bellare and Rogaway conceded that DHIES is unlikely to be CCA2-secure in the
ROM under the above assumption (see also [ABRO1a]). Instead, they proved that DHIES
is CCA2-secure in the “real world” under a strong, non-standard Diffie-Hellman-type as-
sumption called the “Hash Diffie-Hellman” assumption; their new focus on “real-world”
security (as opposed to security in the ROM) was likely a response to Cramer and Shoup’s
1998 discovery ([CS98]) of a practical public-key encryption scheme which is CCA2-secure
in the “real world” under the non-standard-yet-plausible “Decisional Diffie-Hellman” as-
sumption. Although its security rests on a rather less believable assumption, DHIES is
somewhat more efficient than Cramer and Shoup’s scheme. We now give an informal

description of the DHIES encryption scheme.

Let G be a cyclic multiplicative group of order p — 1, where p is some n-bit prime (n
being the security parameter). For concreteness, think of G'as Z5 = {1,2,...,p—1} (here
the group operation is multiplication mod p). We will need to assume that membership
in G is efficiently testable, which is the case for Z. It will also sometimes be convenient

to treat the elements of G as strings over {0, 1}, say via their binary encoding.

Fix a generator ¢ € G, so that G = {g,¢% ...,9°"'}; g is implicitly given to all
participants, as are p and 1™. Informally, the Computational Diffie-Hellman assumption
(often abbreviated as the CDH assumption) with respect to G says that ¢"* € G is hard
to compute from ¢* € G and ¢* € G. Formally, the CDH assumption holds for G if,
for every probabilistic polynomial-time adversary A who is given g* € G and ¢” € G for
randomly chosen u,v € {1,...,p — 1}, the probability ps(n) that A outputs ¢"* € G is

negligible; here p4(n) is taken over the random bits of A as well as the choice of u and wv.

We will need a secure MAC M = (SIGN,V ER) (see Section 5 of Chapter 2) and a
secure “private-key encryption scheme” &€ = (ENC, DEC) (the latter haven’t actually

been formally defined in this thesis). M must also be “non-malleable” in the following

CHAPTER 4. A PUBLIC-KEY ENCRYPTION SCHEME CCAZ2-SECURE IN THE ROM 39

sense: given a signature o of some message m, it is infeasible to find another signature
o' # o of m. Both secure non-malleable MACs and secure “private-key encryption
schemes” can be implemented using “pseudorandom function generators” ([GGM84b]),

which exist if one-way functions (see Section 2 of Chapter 2) do ([GGM84a], [GGMS6]).

To generate a matching public/private key pair, randomly choose av € {1,...,p—1}
and set pub = g” € G, pri = v.

To encrypt a message m € {0,1}" given a public key ¢*, first randomly choose
u € {l,...,p—1} and compute ¢* € G, (¢")* = ¢** € G. Next, query the random oracle
R on (g*, g"¥) (notice that here we are treating elements of G' as binary strings) to obtain
two keys ki, ky € {0,1}" (here we assume for convenience that R : {0,1}* — {0,1}").
Finally, compute s = ENCy,(m), t = SIGNy,(s) and output e,, = (g%, s,t) as the

encryption of m.

To decrypt a purported ciphertext e = (a, 3,7) given a private key v, proceed as
follows. If a ¢ G, output L, indicating a failure to decrypt. Otherwise, compute o’ € G
and query R on («,a) to obtain ky, ke € {0,1}". If VER,(8,7) = 0, output L.
Otherwise, output DECY, (f) as the decryption of e.

Next, we briefly argue why DHIES is unlikely to be CCA2-secure in the ROM (with-
out actually proving that it isn’t). The standard way to demonstrate that a public-key
encryption scheme is CCA2-secure is to show that it is both semantically secure (see
Chapter 2, Section 7) and “plaintext-aware”. Informally, a public-key encryption scheme
is plaintext-aware if the decryption oracle D is useless to the CCA2 adversary ADV,
meaning that ADV is only able to get D to decrypt ciphertexts he could have decrypted
himself. More formally, we say that a public-key encryption scheme is plaintext-aware in
the ROM if, for every probabilistic polynomial-time adversary ADVP there is a cor-
responding probabilistic polynomial-time adversary A® such that the difference between
the success probabilities of ADV™P and A” is negligible (in n). A” essentially simulates

ADV™®P computing D’s answers himself based on ADV®P’s view. Below, we provide

CHAPTER 4. A PUBLIC-KEY ENCRYPTION SCHEME CCAZ2-SECURE IN THE ROM 40

evidence that DHIES fails to have this property.

Recall that ADV®P is given ¢g° € G, chooses a pair of messages mg,m; € {0,1}"
and then sees an encryption e, = (g%, s = ENCy, (my),t = SIGNy,(s)), where kiky =
R(g", g*) and b € {0,1}, uw € {1,...,p — 1} are chosen randomly. Since ADV™P is not
allowed to query D on ¢;,, he must modify at least one of ¢“, s and t.

If ADVRP queries D on ¢ = (¢g*,s',t'), where either s’ # s or ' # t (or both), A®
can safely respond with L. This is almost certainly the right answer, because in order for
¢’ to be a valid ciphertext ADV™P would need to either sign a new message (if s’ # s),
or come up with another signature of an old message (if s’ = s); the former is infeasible
because M is secure, whereas the latter is infeasible because M is non-malleable. If, on
the other hand, ADV™P queries D on (g*,s,t) for some u’ # u, the correct answer is
again almost certainly L, provided that ¢%* # ¢“*. Although we haven’t done so, we
could ensure that is the case by stipulating that |G| = ¢ for some prime g.

However, as we shall now see, D allows ADV?P to determine, given any o, 3 € G,
whether o’ = (3 (recall that ADV™P does not know v). First, ADV™P computes
kiks = R(c, B) and creates an encryption € = («,s' = ENCy, (m),t' = SIGN,(s")) of
some message m € {0,1}", say 0 for definiteness. Next, he queries D on €. It is easy to
show that D(e') = m (as opposed to L) if and only if o’ = . Since it is by no means
clear how A® would emulate such a functionality, a stronger assumption than CDH is

apparently required to ensure that DHIES is CCA2-secure in the ROM.

3 Our modification

We now describe a modified version of DHIES, called DHIES+, which is provably secure
in the ROM under the CDH assumption. Although in what follows we only show how
to encrypt a single bit in order to simplify the presentation, our scheme can be easily

extended to encrypt n-bit messages with the aid of a secure MAC and a secure private-key

CHAPTER 4. A PUBLIC-KEY ENCRYPTION SCHEME CCAZ2-SECURE IN THE ROM 41

encryption scheme.

Let G be a cyclic multiplicative group of order ¢, where ¢ is some n-bit prime (n
being the security parameter). For concreteness, think of G' as a subgroup of Z;, where
p > ¢ is some other prime. Notice that here, unlike in Section 2, |G| is prime. This will
be important in Section 3.2 below. Fix a generator g € G, so that G = {g,4¢%...,9}; g
is once again implicitly given to all participants, as are ¢ and 1".

To generate a matching public/private key pair, randomly choose a v € {1,...,¢}
and set pub = g” € G, pri = v.

To encrypt a bit b given a public key ¢", first randomly choose v € {1,...,¢} and
compute ¢g* € G, (¢")* = ¢"0 € G. Next, query R to obtain sgsi;r = R(g"’), where
S0, 51,7 € {0,1}" (here we assume for convenience that R : {0,1}* — {0,1}?"). Finally,
compute t = u @ r and output e, = (g“, sp,t) as the encryption of b.

To decrypt a purported ciphertext e = (a, 3,7) given a private key v, proceed as

follows:
1. If o ¢ G, output L, indicating a failure to decrypt.
2. Compute o’ € G and query R to obtain sys;r7 = R(a”).
3. Set u =y @ r and compute g* € G. If a # g*, output L.

4. If 5 ¢ {so, s1}, output L. Otherwise, output a b such that § = s, as the decryption

of e.

Remark. Notice that there is a small probability (2%, to be exact) that so = s, in which
case we won’t be able to decrypt e correctly. This unlikely occurrence can be avoided by

making the scheme slightly more complicated, but we won’t go into the details here.

We will prove that DHIES+ is CCA2-secure in the ROM in two stages. First, we’ll show
that it is semantically secure in the ROM under the CDH assumption. Next, we’ll show

that it is plaintext-aware in the ROM.

CHAPTER 4. A PUBLIC-KEY ENCRYPTION SCHEME CCA2-SECURE IN THE ROM 42

3.1 Semantic security

Intuitively, DHIES+ is semantically secure in the ROM under the CDH assumption
because s, provides the adversary with no information about b unless he can compute
g"’ € (G, which is infeasible if the Diffie-Hellman problem is hard for G. More formally,
suppose that ADV™® is a probabilistic polynomial-time adversary who breaks the seman-
tic security (see Chapter 2, Section 7) of DHIES+ in the ROM. Since in this case there
are only two possible plaintexts (namely 0 and 1), there is no need to let ADV™ choose
mo and my. Instead, he simply gets a public key ¢” € G and an encryption e, = (g%, sp, t)
of a randomly chosen bit b, where sgs;7 = R(¢g*’) and t = u@®r. Denote ADV™’s success
probability by papy(n) and the total number of times he queries R during his execution
by ¢(n); papv(n) is taken over ADV®’s random bits, as well as the randomness of R
and the choice of b, u and v. Since ADV™ runs in strict polynomial time, ¢(n) < n¢ for
some c¢. We may assume without loss of generality that ADV® never queries R on the
same string more than once, since R’s response would be identical.

We use ADV™ to construct a probabilistic polynomial-time solver S who, given g* €
G and ¢g¥ € G for randomly chosen u,v € {1,...,q}, outputs ¢** € G with non-negligible
probability. S first randomly chooses i € {1,...,¢(n)} and s,t € {0,1}". He then
simulates ADV™ on (g%, (g%, s,t)), answering all of ADV®’s R queries randomly. As
soon as ADV™ asks his i random oracle query, R(m), S ends the simulation and
outputs m as the value of g** (if ADV® terminates before asking the i query or m ¢ G,
S outputs some dummy value such as g*).

Let A be the event that ADV™ succeeds and B be the event that ADV® queries R

on g"¥ € (G at some point. Observe that

papv(n) = Pr[A] = Pr[A, B] + Pr[A, B|
= Pr[A, B] + P1[A | B] - Pr[B]

< Pr[A, B| + Pr[A | B],

CHAPTER 4. A PUBLIC-KEY ENCRYPTION SCHEME CCAZ2-SECURE IN THE ROM 43

and note that Pr[A | B] = L, because in that case s, yields no information about b. Since

ADV™® breaks the semantic security of DHIES+ in the ROM, papy (n) > %+ -5 for some

n

d and infinitely many n. We therefore have:

— 1
Pr[A, B] 2 papv(n) — Pr[A | B] = papv(n) — 3
1 1 1 1
> 3 + il el for infinitely many n.

Now denote the success probability of S (taken over his random bits, as well as the choice
of u and v) by ps(n), and let C be the event that ADV®’s i"* random oracle query is
R(g"). Since i € {1,...,¢(n)} is chosen uniformly (and independently of the simulation

of A®), where ¢(n) < n¢, we get:

ps(n) = Pr[A, B,C] = Pi[C | A, B]- Pr[A, B] = % Pr[A, B]

1 P
> — - — = v for infinitely many n.

This shows that ps(n) is non-negligible, so that DHIES+ is semantically secure in the
ROM under the CDH assumption. H

3.2 Plaintext awareness

Informally, DHIES+ is plaintext-aware in the ROM because the fact that « (and not
merely g*) is incorporated into the ciphertext e enables the simulator to not only deter-
mine if the adversary knows the decryption of e, but to actually decrypt it himself (albeit
with negligible error).

More formally, let ADV®P be a probabilistic polynomial-time adversary who is given
a public key ¢¥ € G and attempts to break the CCA2 security (see Chapter 2, Section 7)
of DHIES+ in the ROM. Suppose for simplicity that there is no “lunchtime attack”
phase, so that ADV™P gets an encryption e, = (g%, sp,u @ 1) of a random bit b (where
sps17 = R(g™)), queries the decryption oracle D on a bunch of strings ag, a1, ag, . . ., and

finally outputs a bit b'. We may assume that a; € {0,1}>" (so that a; = (i, B;,7:) for

CHAPTER 4. A PUBLIC-KEY ENCRYPTION SCHEME CCAZ2-SECURE IN THE ROM 44

some «;, 3,7 € {0,1}"), since D’s reply would definitely be L otherwise. Let papy(n)
denote the probability that ' = b; papy(n) taken over ADV™P’s random bits and the
randomness of R, as well as the choice of v, v and b. We must exhibit a probabilistic
polynomial-time adversary A%, also given ¢° and e,, such that [papy(n) — pa(n)| is
negligible; here p4(n) is the probability that AR correctly outputs b, taken over his
random bits and the randomness of R, as well as the choice of v, u and b.

Let A® simulate ADV™P | answering his D(a;) queries as follows. A® checks whether
ADV™®P has previously queried the random oracle R on a string w such that (a;, 3;,7;) =
(g%,s" ,u' @1r'), where w = g*?, shsir’ = R(w), ' € {1,...,q} and m is a bit; he is
basically just trying to determine if ADVP already knows the decryption of a;. A®’s
answer is m if such a w exists and L otherwise.

First, observe that whenever A® answers D(a;) with m, so does D, since D(g%, s' , u'®
') = m provided that sjstr’ = R(¢g"") and v’ € {1,...,q}. It remains to show that if

AR’s answer is L, then so is D’s (almost certainly, anyway). We consider the following

two exhaustive cases.

e Case #1: «a; # g
If a; ¢ G then D(a;) = L and we are done. Let us therefore suppose that a; = g*
for some v’ € {1,...,q}, u' # u, so that a; = (g%, B;, 7). Set sysir’ = R(g"").
Since G has prime order, we are guaranteed that ¢%¢ # ¢“*. This matters because
we would otherwise have s = s, ' = r, and ADV™P has information about both

sy and 7 by virtue of having seen e, = (g*, sp,u ® 7).

— Subcase #1a: ADV®P has queried R on g%

Since A®’s answer was L, either 3; ¢ {s{,s|} or 7; # u' @ 7’. In both cases,

— Subcase #1b: ADV?P hasn’t queried R on g%V

In this case sp, s and " are completely random (note that this assertion is

CHAPTER 4. A PUBLIC-KEY ENCRYPTION SCHEME CCA2-SECURE IN THE ROM 45

justified only because ¢ g""). The probability that a; is a valid encryption,

so that D(a;) # L, is therefore

2 12
RS
s or s} r!

which is certainly negligible.
e Case #2: a; = g"

— Subcase #2a: v, =udr
If B; ¢ {so,s1} then D(a;) = L and we are done, so suppose that (; = s;
(recall that ADV™P isn’t allowed to query D on e, = (g%, sp,u @ r)). Since
AR’s answer was L, we know that ADV™P hasn’t queried R on ¢“’, and
consequently has no information about s; (because ADV™P hasn’t seen s;,
we may view it as not having been chosen yet). The probability that a; is
a valid encryption (so that D(a;) # L) is therefore 5 in this case, which is

again negligible.
— Subcase #2b: v, AFudr

In this case D(a;) = L, so we are done.

We can therefore conclude that the difference between pa(n) and papy(n) is negligi-
ble, which means that DHIES+ is plaintext-aware in the ROM. Since we have already
shown in Section 3.1 that DHIES+ is semantically secure in the ROM under the CDH
assumption, this completes our proof that it is CCA2-secure in the ROM under the CDH

assumption. W

Chapter 5

Uninstantiability

1 The random oracle methodology and ‘“uninstan-

tiable” schemes

As originally proposed in [BR93| and applied in practice, the Random Oracle Method-
ology involves taking a construction which is secure in the ROM (usually under a stan-
dard hardness assumption) and “instantiating” the random oracle R using a “cryp-
tographically strong” hash function h : {0,1}* — {0,1}"; whenever R is queried on
m € {0,1}*, the answer is h(m). However, a hash function ensemble H = {H, }nen,
Hy = {hs 1 {0,1} — {0,1}"}scq0,13» (see Chapter 2, Section 3) must strictly speaking
be used instead. The reason is that, as we’ll see shortly, it isn’t hard to come up with
signature and public-key encryption schemes (see sections 5 and 7 of Chapter 2, respec-
tively) which are secure in the ROM yet become hopelessly insecure if R queries are
answered using a fixed function h. We therefore call a signature or public-key encryption
scheme uninstantiable if it is secure in the ROM (possibly under some hardness assump-
tion) yet insecure in the real world, no matter what hash function ensemble # is used to
instantiate the random oracle R.

Since random oracles are one-way (see Chapter 2, Section 8), the results of [Rom90]

46

CHAPTER 5. UNINSTANTIABILITY 47

imply that signature schemes which are secure in the ROM exist unconditionally!. Given
a hash function h, we can obtain a signature scheme which is secure in the ROM but
cannot be instantiated using h by modifying any signature scheme which is secure in the
ROM as follows. Given a message m € {0, 1}*, the new signer computes a signature o of
m as before and then checks whether R(0) = h(0). If so, he outputs (pri,o); otherwise,
he outputs (0,0). Given a message m and a purported signature « of m, the new verifier
parses « as (f3,7), where |3| = n, and then checks whether + is a valid signature of m as
before. Observe that our modification does not violate the correctness of the scheme, since
every signature output by the signer is accepted by the verifier, whether R(0) = h(0) or
not. The modified scheme also remains secure in the ROM, because the probability that
R(0) = h(0) (taken over the randomness of R) is 5. However, once R is instantiated

using h, all the forger has to do to learn pri — thereby completely breaking the scheme’s

security — is query his signature oracle on some string (say A for concreteness).

The above approach can be readily adapted to yield a public-key encryption scheme
which is secure in the ROM, but cannot be instantiated using h. To obtain such a scheme,
simply take any public-key encryption scheme which is secure in the ROM (as noted in
Chapter 1, in light of the results of [[R89] a hardness assumption of some sort will almost
certainly be necessary here) and modify it as follows. Given a message m € {0,1}",
the new encryptor computes an encryption e of m as before and then checks whether
R(0) = h(0). If so, he outputs (m,e); otherwise, he outputs (0,¢). Given a purported
encryption «, the new decryptor first parses a as ((3,7), where |3| = n, then decrypts
v as before. Observe that our modification once again doesn’t violate the correctness
of the scheme, since every encryption output by the encryptor is correctly decrypted by
the decryptor, whether R(0) = h(0) or not. It is easy to see that the modified scheme

remains secure in the ROM, but becomes completely insecure if R is instantiated using h.

LA subtle but important technical point to note here is that both Rompel’s construction and his proof
are of the “black-box” variety.

CHAPTER 5. UNINSTANTIABILITY 48
2 The first uninstantiability result

Canetti, Goldreich and Halevi first showed that uninstantiable signature and public-key
encryption schemes exist in [CGH98]. Their key insight was that, for every hash function
ensemble H = {H,}nen, Hn = {hs : {0,1} — {0,1}"}cq0,13n, there exists a binary

relation R* = J, .{ (s, hs(8)) }seqo,1yn with the following two properties:

(i) There is a (deterministic) polynomial-time machine My which, given any s €

{0,1}", outputs an x € {0,1}* such that (z,hs(x)) € R™.

(ii) For every probabilistic polynomial-time “finder” F® who is given 1", the probability
(taken over the random bits of F® and the randomness of R) that F® outputs an

z € {0,1}* such that (z, R(x)) € R* is negligible in n.

R™ obviously satisfies property (i), since M3 can simply output s itself as z. To see that
R™ satisfies property (ii), observe that (z, R(z)) € R" < R(z) = h,(x). F®’s success
probability is therefore at most £%, where gz is the (polynomially bounded) number of
times he queries R. Notice that R* is also polynomial-time decidable in the following
sense: to determine whether (z,y) € R*, one need only compute y' = h,(x) (this can be
done in polynomial time, because H is efficiently evaluable) and check if y = 3/

Given any hash function ensemble #H, we can use R’ to obtain a signature scheme
which is secure in the ROM yet becomes insecure when the random oracle R is instan-
tiated using H. The idea is to take a signature scheme which is secure in the ROM (as
pointed out in Section 1, such schemes exist unconditionally) and modify it as follows.
Given a message m € {0,1}*, the new signer computes a signature o of m as before and
then checks whether (m,R(m)) € R* (this can be done in polynomial time, since R
is polynomial-time decidable). If so, he outputs (pri,o); otherwise, he outputs (0, 0).
Given a message m and a purported signature a of m, the new verifier parses « as

(B,7), where |3| = n, and then checks whether v is a valid signature of m as before.

Observe that our modification does not violate the correctness of the scheme, since every

CHAPTER 5. UNINSTANTIABILITY 49

signature output by the signer is accepted by the verifier, whether (m,R(m)) € R™ or
not. The modified scheme also remains secure in the ROM, since property (ii) above
guarantees that any forger has only a negligible probability of finding an m such that
(m,R(m)) € R*. However, once R is instantiated using #, the forger, who is given s,

need only query his signature oracle S on s to obtain pri.

We next use diagonalization to go from schemes which cannot be instantiated using
some specific ensemble H to schemes which cannot be instantiated using any ensem-
ble. Recall from Section 3 of Chapter 2 that every hash function ensemble H can be
identified with its polynomial-time “evaluator” Turing machine Mjz,. We can therefore
effectively enumerate all hash function ensembles by enumerating all polynomial-time
Turing machines and padding or truncating their output as necessary. Let M;, be the
universal Turing machine doing the enumerating, and denote the corresponding “univer-
sal” ensemble by U = {U,, }nen. Since the running time of every polynomial-time ma-
chine cannot be upper-bounded by a single polynomial, M;; will need to run in “slightly
super-polynomial” time, say O(n'°¢") for concreteness. It is easy to see that when U
is substituted for A in the above construction, the resulting signature scheme is unin-
stantiable. However, the signer no longer runs in polynomial time, since to determine

whether (m, R(m)) € R he must effectively simulate My,.

Fortunately, the above difficulty can be overcome with the aid of Micali’s non-interactive
CS proofs ([Mic94], [Mic00]). Let M, be a decider for RY. Instead of running M, di-
rectly to determine whether (m,R(m)) € RY, the new signer parses m as (s,7) and
checks if 7 is a valid CS proof that M], accepts (s, R(s)) within O(n'°6™) steps, where
n = |s|+|R(s)]. Since CS proofs can be verified very efficiently, this only takes polynomial
time. In the ROM, the scheme remains secure because CS proofs are “computationally

sound”?, meaning that it is infeasible to find a valid proof of a false statement. However,

2Interestingly, it is not known whether non-interactive CS proofs are computationally sound in the
“real world” under some reasonable complexity assumption.

CHAPTER 5. UNINSTANTIABILITY 50

once R is instantiated using some ensemble H, the “perfect completeness” property of
CS proofs guarantees that a forger can compute a valid 7 in polynomial time.
Just as in Section 1, the above approach can be readily adapted to yield an uninstan-

tiable public-key encryption scheme.

3 A simple proof of the first result

In [MRHO04], Maurer, Renner and Holenstein introduced a new type of reducibility, based
on the concept of indifferentiability. To motivate their definitions, they gave a simple
proof of the existence of uninstantiable signature and public-key encryption schemes. We
present, a further simplified version of their argument below.

To obtain an uninstantiable signature scheme, modify any signature scheme which is
secure in the ROM (as pointed out in Section 1, such schemes exist unconditionally) as
follows. Given a message m € {0,1}*, the new signer first computes a signature o of m
as before. He then parses m as ((M), 1Y), where (M) describes a (deterministic) Turing
machine M under some reasonable encoding, and simulates M on (M) for at most ¢ steps.
If M outputs R({M)), the signer outputs (pri,c); otherwise, he outputs (0,0). Given a
message m and a purported signature o of m, the new verifier parses a as (3, 7), where
|B| = n, and then checks whether 7 is a valid signature of m as before. Observe that our
modification does not violate the correctness of the scheme, since every signature output
by the signer is accepted by the verifier, whether M outputs R((M)) within ¢ steps or
not. Also note that the new signer runs in polynomial time, since simulating M takes
time O(t) and ¢t < |m].

To convince yourself that the modified scheme remains secure in the ROM, consider
a function family F = {f; }sen where each f; : {0,1}* — {0,1}* is defined by

M((M)) if M halts within ¢ steps
fl((M)) =

A otherwise

CHAPTER 5. UNINSTANTIABILITY 51

To learn pre using the “trapdoor” we have built into the scheme, a forger would effectively
need to find at € Nand an « € {0, 1}* such that f;(x) = R(x). His probability of finding
such a pair (,z) is at most 2% (where gz is the number of times he queries R), which is
negligible in n.

Once R is instantiated using a hash function ensemble H, however, it becomes trivial
to completely break the scheme’s security. Recall that, because H is efficiently evaluable,
there exists a (deterministic) polynomial-time Turing machine My such that My (s, z) =
hs(z) for all s € {0,1}" and = € {0,1}* (see Chapter 2, Section 3). Let M, denote
M3, with some particular s “hard-coded” into it, so that M (x) = My(s,z) for all
x € {0, 1}*, and suppose that n¢ is an upper bound on the running time of M;_ . When
given input (Mp,,), My, halts within n¢ steps and outputs hg((Mj,)). The forger, who is
given s, need therefore only query his signature oracle on ((Mj,), 1) to learn pri. B

Just as in Section 1, the above approach can be readily adapted to yield an uninstan-

tiable public-key encryption scheme.

4 An uninstantiability result for Fiat-Shamir signa-
ture schemes

The artificiality of [CGH98]’s constructions left open the possibility that “reasonable”
signature schemes which are secure in the ROM, and in particular Fiat-Shamir signature
schemes, can in fact be instantiated using appropriate hash function ensembles. However,
in [GTKO03] Goldwasser and Tauman-Kalai showed that there exist uninstantiable Fiat-
Shamir signature schemes. It must be remarked that Goldwasser and Tauman-Kalai’s
construction is, if anything, even more contrived than those of [CGH98]. Barak and
Goldreich’s Universal Arguments ([BG02]) are used in place of Micali’s CS proofs, and
Merkle trees ([Mer90]) also make an appearance. Most distressingly, the proof itself has a

highly non-constructive, tree-like structure: rather than demonstrate that a single (albeit

CHAPTER 5. UNINSTANTIABILITY 52

unnatural) Fiat-Shamir scheme is uninstantiable, Goldwasser and Tauman-Kalai exhibit
three such schemes, one of which must be uninstantiable. Nonetheless, from a purely
theoretical standpoint, Goldwasser and Tauman-Kalai’s result deals a severe blow to the

validity of the so-called Fiat-Shamir paradigm (see Chapter 3, Section 1).

Chapter 6

A taste of “real-word” security

In the following two sections, we briefly survey a number of practical signature schemes
and public-key encryption schemes which are secure in the “real world” (as opposed to
in the ROM) under either standard or nonstandard-yet-quite-plausible hardness assump-

tions.

1 Signature schemes

e In [DN94], Dwork and Naor proposed a practical signature scheme which is secure
— that is, secure against existential forgery under adaptive chosen-message attack
(see Chapter 2, Section 5) — under the standard “RSA assumption”. Informally,
the RSA assumption says that the following problem is hard: given a modulus n =
pq where p and ¢ are random primes, a random y € Z! and a random exponent e
relatively prime to (p—1)(¢—1), find an x € Z; such that ¢ =y mod n. Although
it can be shown that this problem would be easy if p and ¢ were given explicitly,
it is not known whether factoring n can be reduced to finding . While their
construction is conceptually similar to the “authentification trees” of [GMRS8S8],
Dwork and Naor’s use of “bushy trees” of high degree and small depth rather than

binary trees significantly improves efficiency: for some reasonable settings of the

23

CHAPTER 6. A TASTE OF “REAL-WORD” SECURITY 54

security parameters, signing requires only four tree authentications. A significant
drawback of their construction is that all signers and verifiers must share two lists,

one consisting of random integers and the other of random primes.

e In [Cr96], Cramer and Damgard described an improved version of Dwork and Naor’s
signature scheme ([DN94]), secure under the same assumptions. In this new version,

signers and verifiers need only share a single list consisting of random primes.

e In [GHRY9|, Gennaro, Halevi and Rabin presented a rather efficient “hash-and-
invert” signature scheme secure under the nonstandard-yet-quite-plausible “strong
RSA assumption”. Informally, the strong RSA assumption says that the following
problem is hard: given a modulus n = pq where p and ¢ are random primes and
a random y € Z¥, find an x € Z and an exponent 1 < e < n relatively prime to
(p —1)(¢ — 1) such that ¢ = y mod n; notice that, unlike in the RSA problem,
here e is allowed to depend on y. Gennaro, Halevi and Rabin’s scheme makes use
of “collision-resistant chameleon hash functions”, which exist if factoring is hard.
For typical settings of the security parameters, it is more than twice as efficient as

Cramer and Damgard’s scheme ([Cr96]).

e In [CS99], Cramer and Shoup presented another efficient “hash-and-invert” sig-
nature scheme secure under the “strong RSA assumption”. Their scheme builds
on that of Cramer and Damgard ([Cr96]) and is considerably simpler and po-
tentially more efficient than Gennaro, Halevi and Rabin’s ([GHR99]). Instead of
“collision-resistant chameleon hash functions”, it makes use of “universal one-way
hash functions” ([NY89]), which exist if one-way functions do. Interestingly, a
slight modification of the scheme can be shown to be secure in the ROM under the

ordinary RSA assumption.

e In [Fis03], Fischlin described an improved version of Cramer and Shoup’s signature

scheme ([CS99]), again secure under the “strong RSA assumption”. Signing is

CHAPTER 6. A TASTE OF “REAL-WORD” SECURITY 55

about thirty percent faster in this new version, and verification is somewhat faster

as well. Also, the length of the signatures is nearly halved.

2 Public-key encryption schemes

e In [CS98|, Ronald Cramer and Victor Shoup proposed the first practical public-
key encryption scheme which is secure — that is, secure against adaptive chosen-
ciphertext attack or CCA2-secure (see Chapter 2, Section 7) — under a fairly stan-
dard hardness assumption, namely the “Decisional Diffie-Hellman assumption”. In-
formally, the Decisional Diffie-Hellman assumption (often abbreviated as the DDH
assumption) holds for a cyclic multiplicative group G of prime order ¢ (say a sub-
group of Z7, where p > ¢ is some prime) if, given ¢* € G and ¢ € G for randomly
chosen u,v € {1,...,¢q} (where ¢ € G is some fixed generator of G), it is hard
to distinguish ¢"* € G from ¢" € G for a randomly chosen r € {1,...,¢}. While
the Computational Diffie-Hellman or CDH assumption (see Chapter 4, Section 2)
asserts that it is hard to compute all of g*¥, the DDH assumption effectively asserts

that it is hard to compute any bit of g“*.

e In [Sho00], Victor Shoup presented a “hybrid” encryption scheme which makes
use of a “pseudorandom number generator”, a collision-resistant hash function (see
Chapter 2, Section 3) and a “key encapsulation scheme”; the latter is based on
the Cramer-Shoup encryption scheme ([CS98]). A key encapsulation scheme is
essentially just a public-key encryption scheme whose security is only guaranteed
when the messages being encrypted are random (private keys, for example). The
new scheme is somewhat more efficient than [CS98] and is secure under the fairly
standard DDH assumption. Interestingly, it is also secure in the ROM under the

standard CDH assumption.

e In [KD04], Kurosawa and Desmedt described a new hybrid encryption scheme based

CHAPTER 6. A TASTE OF “REAL-WORD” SECURITY 56

on [Sho00]. The scheme is somewhat more efficient (it saves one exponentiation
and produces shorter encryptions) and is again secure under the DDH assumption.
Kurosawa and Desmedt’s key insight was to notice that the underlying key encap-
sulation scheme need not be CCA2-secure in order for the overall hybrid scheme
to be CCA2-secure. However, their proof requires the additional assumption that
both the “key derivation function” and the MAC used by the hybrid scheme are
secure in a strong, information-theoretic sense. In particular, the key to be ex-
changed must be statistically close to random, precluding the use of pseudorandom

number generators.

e In [GS04], Shoup and Gennaro used the technique of “deferred analysis” to demon-
strate that Kurosawa and Desmedt’s hybrid scheme ([KDO04)) is in fact secure un-
der the DDH assumption provided that both the “key derivation function” and the

MAC are secure in the ordinary, computational sense.

Bibliography

[AABNO02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre.

[ABRO1a]

[ABRO1b]

[BBO4]

From identification to signatures via the Fiat-Shamir transform: Minimizing
assumptions for security and forward-security. In Proceedings of the Inter-
national Conference on the Theory and Applications of Cryptographic Tech-

niques, pages 418-433. Springer-Verlag, 2002.

Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHIES: An encryption
scheme based on the Diffie-Hellman problem. Available online at http://

www.cs.ucsd.edu/users/mihir/papers/dhies.html, 2001.

Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-
Hellman assumptions and an analysis of DHIES. In Proceedings of Topics
in Cryptology - CT-RSA 2001, The Cryptographer’s Track at RSA Confer-
ence, volume 2020 of Lecture Notes in Computer Science, pages 143-158.

Springer-Verlag, 2001.

Dan Boneh and Xavier Boyen. Short signatures without random oracles.
In Proceedings of Advances in Cryptology — EUROCRYPT 2004, Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, volume 3027 of Lecture Notes in Computer Science, pages 56-73.

Springer-Verlag, 2004.

o7

BIBLIOGRAPHY 58

[BG02]

[Ble9s]

[BMSS]

[Bon99)]

[Bon01]

[BR93]

[BRO4]

Boaz Barak and Oded Goldreich. Universal arguments and their applica-
tions. In Proceedings of the 17th IEEE Annual Conference on Computational

Complexity—CCC 02, pages 162—-171. IEEE Computer Society, 2002.

Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS #1. In Proceedings of Advances in
Cryptology—-CRYPTO °98, 18th Annual International Cryptology Conference,
volume 1462 of Lecture Notes in Computer Science, pages 1-12. Springer-

Verlag, 1998.

Mihir Bellare and Silvio Micali. How to sign given any trapdoor function. In
Proceedings of STOC ’88: Twentieth Annual ACM Symposium on Theory of

computing, pages 32-42. ACM Press, 1988.

Dan Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of
the American Mathematical Society (AMS), 46(2):203-213, 1999.

Dan Boneh. Simplified OAEP for the RSA and Rabin functions. In CRYPTO
"01: Proceedings of the 21st Annual International Cryptology Conference on
Advances in Cryptology, volume 2139 of Lecture Notes in Computer Science,

pages 275-291. Springer-Verlag, 2001.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm
for designing efficient protocols. In Proceedings of the 1st ACM conference on
Computer and communications security—CCS "93, pages 62-73. ACM Press,
1993.

Mihir Bellare and Phillip Rogaway. Optimal assymetric encryption. In Pro-
ceedings of Advances in Cryptology—FEUROCRYPT ’94, Workshop on the
Theory and Application of Cryptographic Techniques, volume 950 of Lecture

Notes in Computer Science, pages 92-111. Springer-Verlag, 1994.

BIBLIOGRAPHY 59

[BRO7]

[Brigs]

[CGHOS]

[Cro6|

[CSO8]

[CS99]

[DN94]

Mihir Bellare and Phillip Rogaway. Minimizing the use of random oracles in
authenticated encryption schemes. In ICICS ’97: International Conference
on Information and Communications Security, volume 1334 of Lecture Notes

in Computer Science, pages 1-16. Springer-Verlag, 1997.

Ernest F. Brickell. Breaking iterated knapsacks. In Proceedings of Advances in
Cryptology—CRYPTO ’84, volume 196 of Lecture Notes in Computer Science,

pages 342-358. Springer-Verlag, 1985.

Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited (preliminary version). In Proceedings of STOC °98: Thirtieth
Annual ACM Symposium on Theory of Computing, pages 209-218. ACM

Press, 1998.

Ronald Cramer and Ivan Damgard. New generation of secure and practical
RSA-based signatures. In Proceedings of the 16th Annual International Cryp-
tology Conference on Advances in Cryptology—CRYPTQO ’96, volume 1109

of Lecture Notes in Computer Science, pages 173-185. Springer-Verlag, 1996.

Ronald Cramer and Victor Shoup. A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack. In Proceedings
of the 18th Annual International Cryptology Conference on Advances in
Cryptology—CRYPTO ’98, volume 1462 of Lecture Notes in Computer Sci-

ence, pages 13-25. Springer-Verlag, 1998.

Ronald Cramer and Victor Shoup. Signature schemes based on the strong
RSA assumption. In Proceedings of the 6th ACM conference on Computer
and Communications Cecurity—CCS 99, pages 46-51. ACM Press, 1999.

Cynthia Dwork and Moni Naor. An efficient existentially unforgeable sig-

nature scheme and its applications. In CRYPTO ’9j: Proceedings of the

BIBLIOGRAPHY 60

[Fis03)]

[FMR96]

[FOPS01]

[FOPS04]

[FS87]

[GaJ03]

14th Annual International Cryptology Conference on Advances in Cryptology,
volume 839 of Lecture Notes in Computer Science, pages 234-246. Springer-
Verlag, 1994.

Marc Fischlin. The cramer-shoup strong-RSA signature scheme revisited.
In Proceedings of Public Key Cryptography - PKC 2003, 6th International
Workshop on Theory and Practice in Public Key Cryptography, volume 2567

of Lecture Notes in Computer Science, pages 116—129. Springer-Verlag, 2003.

Michael J. Fischer, Silvio Micali, and Charles Rackoff. A secure protocol for
the oblivious transfer (extended abstract). Journal of Cryptology, 9(3):191—
195, 1996.

Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern.
RSA-OAEP is secure under the RSA assumption. In CRYPTO ’01: Proceed-
ings of the 21st Annual International Cryptology Conference on Advances in
Cryptology, volume 2139 of Lecture Notes in Computer Science, pages 260
274. Springer-Verlag, 2001.

Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern.
RSA-OAEP is secure under the RSA assumption. Journal of Cryptology,
17(2):81-104, 2004.

Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to iden-
tification and signature problems. In Proceedings of Advances in cryptology—
CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages 186—
194. Springer-Verlag, 1987.

Eu-Jin Goh and Stanistaw Jarecki. A signature scheme as secure as the
Diffie-Hellman problem. In Furocrypt 2003: Proceedings of the International

Conference on the Theory and Applications of Cryptographic Techniques’,

BIBLIOGRAPHY 61

[GGM84a]

[GGMS4b)

[GGMS6]

[GHR99]

[GMS84]

[GMRS5]

[GMRSS)]

volume 2656 of Lecture Notes in Computer Science, pages 401-415. Springer-
Verlag, 2003.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct ran-
dom functions. In Proceedings of FOCS ’84: 25th Annual IEEE Symposium

on Foundations of Computer Science. IEEE Computer Society, 1984.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic
applications of random functions. In Proceedings of CRYPTO ’8/: Advances

in Cryptology, volume 196 of Lecture Notes in Computer Science, pages 276—
288. Springer-Verlag, 1984.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct ran-

dom functions. Journal of the ACM, 33(4):792-807, 1986.

Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signa-
tures without the random oracle. In Proceedings of Advances in Cryptology—
EUROCRYPT’99: International Conference on the Theory and Application
of Cryptographic Techniques, volume 1592 of Lecture Notes in Computer Sci-

ence, pages 123-139. Springer-Verlag, 1999.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of

Computer and System Sciences, 28(2):270-299, 1984.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems. In Proceedings of STOC ’'85: Seven-

teenth annual ACM Symposium on Theory of computing, pages 291-304.
ACM Press, 1985.

Shafi Goldwasser, Silvio Micali, and Ron L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. STAM Journal on Comput-

ing, 17(2):281-308, 1988.

BIBLIOGRAPHY 62

[GSO04]

[GTKO3]

[HILL9Y]

[IEE00]

[IR89)

[KD04]

[Len00]

[Mer90]

Rosario Gennaro and Victor Shoup. A note on an encryption scheme of
Kurosawa and Desmedt. Unpublished manuscript, 2004. Available online at

http://shoup.net/papers/kdnote.pdf.

Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-
Shamir paradigm. In Proceedings of FOCS °03: /4th Annual IEEE Sympo-
stum on Foundations of Computer Science, pages 102-113. IEEE Computer

Society, 2003.

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM Journal on Com-

puting, 28(4):1364-1396, 1999.

IEEE. Standard specifications for public-key cryptography, 2000. Available

online at http://grouper.ieee.org/groups/1363/P1363/index.html.

Russel Impagliazzo and S. Rudich. Limits on the provable consequences of
one-way permutations. In Proceedings of STOC ’89: Twenty-first Annual

ACM Symposium on Theory of Computing, pages 44-61. ACM Press, 1989.

Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption
scheme. In Proceedings of Advances in Cryptology — CRYPTO 2004: 24th
Annual International Cryptology Conference, volume 3152 of Lecture Notes

in Computer Science, pages 426—442. Springer-Verlag, 2004.

Arjen K. Lenstra. Integer factoring. Designs, Codes and Cryptography,
19(2/3):101-128, 2000.

Ralph C. Merkle. A certified digital signature: That antique paper from 1979.
In Proceedings of Advances in Cryptology—CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, volume 435 of Lecture Notes in Computer

Science, pages 218-238. Springer-Verlag, 1990.

BIBLIOGRAPHY 63

[Mic94|

[Mic00]

[MRHO04]

[MS90]

[MWOO]

[NIS99)]

[NISO1]

[NIS04]

Silvio Micali. CS proofs. In Proceedings of FOCS ’94: 35th Annual IEEE
Symposium on Foundations of Computer Science, pages 436-453. IEEE Com-

puter Society, 1994.

Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253-1298, 2000.

Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiabil-
ity, impossibility results on reductions, and applications to the random oracle
methodology. In Proceedings of TCC °04: Theory of Cryptography, First The-
ory of Cryptography Conference, volume 2951 of Lecture Notes in Computer

Science, pages 21-39. Springer-Verlag, 2004.

Silvio Micali and Adi Shamir. An improvement of the Fiat-Shamir identi-
fication and signature scheme. In Proceedings of Advances in Cryptology -
CRYPTO 88, 8th Annual International Cryptology Conference, volume 403

of Lecture Notes in Computer Science, pages 244—247. Springer-Verlag, 1990.

Ueli M. Maurer and Stefan Wolf. The Diffie-Hellman protocol. Designs,
Codes and Cryptography, 19(2/3):147-171, 2000.

NIST. FIPS 46-3, Data Encryption Standard (DES), 1999. Available online

at http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

NIST. FIPS 197, Advanced Encryption Standard (AES), 2001. Available

online at http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

NIST. FIPS 180-2, Secure Hash Standard (SHS), 2004. Avail-
able online at http://csrc.nist.gov/publications/fips/fips180-2/
fips180-2withchangenotice.pdf; also see http://csrc.nist.gov/

hash_standards_comments.pdf.

BIBLIOGRAPHY 64

[NY89)

[NY90]

[0d100]

[Oka93]

[Rom90)]

[RS92]

[RSA93]

M. Naor and M. Yung. Universal one-way hash functions and their crypto-
graphic applications. In Proceedings of STOC ’89: Twenty-first Annual ACM

Symposium on Theory of Computing, pages 33-43. ACM Press, 1989.

M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In Proceedings of STOC '90: Twenty-second An-
nual ACM Symposium on Theory of Computing, pages 427-437. ACM Press,
1990.

Andrew M. Odlyzko. Discrete logarithms: The past and the future. Designs,
Codes and Cryptography, 19(2/3):129-145, 2000.

Tatsuaki Okamoto. Provably secure and practical identification schemes and
corresponding signature schemes. In Proceedings of the 12th Annual Inter-
national Cryptology Conference on Advances in Cryptology—CRYPTO 92,
volume 740 of Lecture Notes in Computer Science, pages 31-53. Springer-

Verlag, 1993.

J. Rompel. One-way functions are necessary and sufficient for secure signa-
tures. In Proceedings of STOC ’90: Twenty-second Annual ACM Symposium
on Theory of Computing, pages 387-394. ACM Press, 1990.

Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof
of knowledge and chosen ciphertext attack. In Proceedings of the 11th
Annual International Cryptology Conference on Advances in Cryptology—
CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 433—
444. Springer-Verlag, 1992.

RSA Security Inc. PKCS#1 RSA cryptography standard, version 2.0, 1993.

Available online at ftp://ftp.rsasecurity.com/pub/pkcs/ps/pkcs-1.ps.

BIBLIOGRAPHY 65

[RSAQS]

[Sho96]

[Sho00)]

[Sho01]

RSA Security Inc. PKCS#1 RSA encryption standard, version 1.5, 1998.
Available online at ftp://ftp.rsasecurity.com/pub/pkcs/ascii/pkcs-1v2.

asc.

Victor Shoup. On the security of a practical identification scheme. In Proceed-
ings of Advances in Cryptology - EUROCRYPT 96, International Conference
on the Theory and Application of Cryptographic Techniques, volume 1070 of

Lecture Notes in Computer Science, pages 344-353. Springer-Verlag, 1996.

Victor Shoup. Using hash functions as a hedge against chosen ciphertext
attack. In EUROCRYPT ’00-Proceedings of the International Conference
on the Theory and Application of Cryptographic Techniques, volume 1807 of

Lecture Notes in Computer Science, pages 275-288. Springer-Verlag, 2000.

Victor Shoup. OAEP reconsidered. In CRYPTO ’01: Proceedings of the
21st Annual International Cryptology Conference on Advances in Cryptology,
volume 2139 of Lecture Notes in Computer Science, pages 239-259. Springer-
Verlag, 2001.

