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Abstrat
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Vitor Glazer

Master of Siene

Graduate Department of Computer Siene

University of Toronto

2005

The Random Orale Model (ROM) is a setting where all parties, inluding the adversary,

have blak-box aess to a \truly random funtion" (the random orale). In this thesis,

we present two results onerning seurity in the ROM. First, we show that, for every

anonial identi�ation sheme, the orresponding Fiat-Shamir signature sheme is seure

in the ROM. Previously, only \non-trivial" anonial identi�ation shemes were known

to yield Fiat-Shamir signature shemes whih are seure in the ROM. Seond, we show

how to modify a ertain disrete logarithm-based publi-key enryption sheme so that it

beomes CCA2-seure in the ROM. In onlusion, we review several \uninstantiability"

results whih demonstrate that seurity in the ROM does not guarantee \real-world"

seurity, and briey survey a number of signature and publi-key enryption shemes

whih are seure in the \real world".
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Chapter 1

Introdution

Modern ryptography has omputational omplexity at its foundation. In order to

gain on�dene in the seurity of a ryptographi onstrution, we show that every

polynomially-bounded adversary whih sueeds in \breaking" it an be used to solve

a omputational problem widely believed to be \hard on average", say integer fator-

ization ([Len00℄) or the disrete logarithm problem ([Odl00℄). This means that no suh

\breaker" exists, provided the problem in question is indeed \hard".

Cryptographers make two kinds of \hardness" assumptions: ones asserting the diÆ-

ulty of spei� (usually number-theoreti) problems, and ones asserting the existene of

seure ryptographi primitives suh as \one-way funtions" (see Chapter 2, Setion 2)

or \trapdoor permutations" (see Chapter 2, Setion 4). Assumptions of the �rst kind

enable us to prove the seurity of onstrutions whih are eÆient enough to be pratial.

Unfortunately, the partiular problem we assume to be \hard" might later turn out to

be \easy", rendering the protool inseure. Assumptions of the seond kind (often alled

\general assumptions") often lead to onstrutions whih are too ineÆient to be of pra-

tial interest. Although suh onstrutions are in a sense mere \proofs of onept", their

seurity is guaranteed as long as any seure primitives of the relevant kind exist.

Broadly speaking, ryptographi problems fall into two ategories: \publi-key" and

1



Chapter 1. Introdution 2

\private-key". In both ases, two or more people wish to seurely interat over an inseure

hannel, whih is either ontrolled or monitored by the adversary.

In the private-key setting, the partiipants share a ommon seret pri, unknown to

the adversary. The intuition is that they are \friends who trust eah other". In ontrast,

in the publi-key setting eah person has assoiated with him both private information

pri, known only to himself, and publi information pub, known to everyone (inluding

the adversary). Here the intuition is that the partiipants are \mutually mistrustful

strangers". Many important ryptographi problems, inluding \signature shemes" (see

Chapter 2, Setion 5) and \enryption shemes" (see Chapter 2, Setion 7), ome in both

publi-key and private-key avours.

Today we have extremely eÆient private-key onstrutions whih are seure if \blok

iphers" suh as DES ([NIS99℄) and AES ([NIS01℄) are \pseudorandom", as well as

fairly ineÆient private-key onstrutions whih are seure if \one-way funtions" exist

([GGM84a℄, [GGM84b℄, [GGM86℄, [HILL99℄). It ould therefore be argued that private-

key ryptography is now largely \an engineering problem". Unfortunately, that is not

yet the ase for publi-key ryptography.

Beginning in the late eighties, muh work was done on formulating the \right" de�-

nitions of publi-key seurity and showing that onstrutions whih are seure aording

to these de�nitions an be obtained from \trapdoor permutations". Suh onstrutions

were available by the early nineties ([GMR88℄, [Rom90℄, [NY90℄, [RS92℄), but from a

pratial standpoint their eÆieny left a lot to be desired. Numerous attempts were

also made to ome up with eÆient onstrutions whih are seure under some variant

of the popular \RSA" (fatoring-related) and \DiÆe-Hellman" (disrete log-related) as-

sumptions ([Bon99℄,[MW00℄), but they were not suessful. Laking viable alternatives,

pratitioners mostly relied on ad ho approahes of dubious seurity, many of whih were

eventually broken ([Bri85℄, [Ble98℄).

In [BR93℄, Mihir Bellare and Phillip Rogaway introdued the \Random Orale Method-
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ology" in an e�ort to bridge the gap between ryptographi theory and pratie. In-

formally, the Random Orale Model, or ROM for short, is a setting where all parties

(inluding the adversary) have blak-box aess to a \truly random funtion" (the ran-

dom orale). Although it has other appliations in omplexity theory, notably to Miali's

non-interative \CS proofs" ([Mi94℄, [Mi00℄), the ROM is usually enountered in the

ontext of publi-key ryptography.

The Random Orale Methodology is a two-step proedure for obtaining pratial

publi-key onstrutions. In the �rst step, one designs an eÆient onstrution whih is

seure in the ROM under some standard hardness assumption, say the \Computational

DiÆe-Hellman" assumption. Beause of the many nie properties enjoyed by random

orales, this generally isn't too diÆult. In the seond step, one \instantiates" the random

orale R using a \ryptographi hash funtion" h; a reasonable hoie for h might be

SHA-256 ([NIS04℄). Thereafter, whenever R is queried on a string s, the answer is h(s).

A heuristi justi�ation for this step is that good ryptographi hash funtions hopefully

behave \a lot like" random orales. However, as we will see in Chapter 5,R should stritly

speaking be instantiated using an ensemble H = fH

n

g

n2N

of hash funtion families (see

Chapter 2, Setion 3) rather than a single funtion h.

Beause in the �rst step we have the powerful random orale primitive at our disposal,

it is natural to question the need to make any hardness assumptions at all. However, as

shown in [IR89℄, if a \key exhange protool" whih is seure in the ROM exists then

P 6= NP . Sine it is easy to seurely exhange a key using a seure publi-key enryption

sheme, proving that suh a sheme is seure in the ROM without making any additional

assumptions is therefore prohibitively diÆult. But if we are willing to make additional

assumptions, why not simply make one strong enough to eliminate the need for the

random orale altogether? Ronald Cramer and Vitor Shoup developed a fairly eÆient

publi-key enryption sheme ([CS98℄) whih is seure in the \real world" under just

suh a \non-standard-yet-plausible" hardness assumption, namely the \Deisional DiÆe-
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Hellman assumption".

On the other hand, no hardness assumptions are neessary in order to show that

signature shemes whih are seure in the ROM exist. Sine random orales are one-way

(see Chapter 2, Setion 8), we an replae the one-way funtion evaluations in Rompel's

onstrution ([Rom90℄) with R queries. While the resulting onstrution is admittedly

quite ineÆient (in the sense that it requires many random orale queries), it appears

that one an't do muh better without making hardness assumptions.

As for signature shemes whih are seure in the ROM under standard hardness as-

sumptions suh as the \RSA assumption", for example the shemes presented in [BR93℄

and [BR94℄, their bene�ts are less lear today. Although they are onsiderably more

eÆient than both onstrutions whih are seure in the \real world" under standard

assumptions ([DN94℄,[Cr96℄) and onstrutions whih are seure in the ROM unondi-

tionally, we now have onstrutions of omparable eÆieny whih are seure in the \real

world" under \non-standard-yet-plausible" assumptions like the \Strong RSA assump-

tion" ([CS99℄, [GHR99℄, [Fis03℄).

What sort of seurity does the Random Orale Methodology guarantee? Informally,

hash funtions are eÆiently evaluable and thus have a short desription, whih means

that they annot be \truly random". It is therefore unlear why seurity should be

preserved when the random orale is \instantiated" using a hash funtion. Nonetheless,

seurity in the ROM was at �rst believed to provide \strong evidene" of real-world se-

urity. However, in [CGH98℄ Canetti, Goldreih and Halevi exhibited a signature sheme

and a publi-key enryption sheme whih are seure in the ROM yet inseure in the \real

world", no matter what hash funtion is used to \instantiate" the random orale; suh

shemes are said to be \uninstantiable" (see Chapter 5). From a theoretial standpoint,

this result onlusively demonstrated that seurity in the ROM does not imply real-world

seurity. However, sine Canetti et al.'s onstrutions were rather ontrived and quite

ineÆient, pratitioners remained unonvined.
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Several additional uninstantiability results have emerged sine, arguably the most

signi�ant being Goldwasser and Tauman-Kalai's proof ([GTK03℄) that there exist unin-

stantiable \Fiat-Shamir signature shemes" (see Chapter 3, Setion 1 for an overview of

Fiat-Shamir signature shemes). Like Canetti et al.'s, Goldwasser and Tauman-Kalai's

onstrutions are ontrived and ineÆient. Worse still, their atual proof has a somewhat

non-onstrutive avour (see Chapter 5, Setion 4). However, sine Fiat-Shamir signa-

ture shemes are widely used in pratie, Goldwasser and Tauman-Kalai's result an be

viewed as dealing the Random Orale Methodology a more severe blow than Cenetti et

al.'s.

Chapter Outline

Chapter 1 is this introdution.

Chapter 2 ontains de�nitions of the relevant ryptographi primitives, inluding one-

way funtions, signature shemes, identi�ation shemes, trapdoor permutations and

publi-key enryption shemes.

Chapter 3 onerns the seurity of Fiat-Shamir signature shemes in the ROM. We �rst

present an earlier result ([AABN02℄) demonstrating that every \passively seure non-

trivial anonial identi�ation sheme" yields a \Fiat-Shamir signature sheme" whih is

seure in the ROM. We then show that, for \atively seure" shemes, the \non-triviality"

assumption is not neessary. Namely, we prove that, for every \atively seure anoni-

al identi�ation sheme" (non-trivial or not), the orresponding Fiat-Shamir signature

sheme is seure in the ROM.

Chapter 4 desribes a ertain publi-key enryption sheme whih is \CCA2-seure" in

the ROM. We �rst present an earlier version of the sheme, proposed in [BR97℄, whih

was initially laimed to be CCA2-seure in the ROM under the \Computational DiÆe-

Hellman assumption". It was later pointed out in [ABR01a℄ that the original proof
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of seurity was awed. We then show how to modify the sheme so that it is indeed

CCA2-seure in the ROM under the \Computational DiÆe-Hellman" assumption.

Chapter 5 skethes Canetti, Goldreih and Halevi's seminal result that \uninstantiable"

signature and publi-key enryption shemes exist ([CGH98℄) and presents Maurer, Ren-

ner and Holenstein's reent simple proof thereof ([MRH04℄). Goldwasser and Tauman-

Kalai's proof that there exist uninstantiable Fiat-Shamir signature shemes ([GTK03℄)

is also disussed.

Chapter 6 briey surveys a number of pratial signature and publi-key enryption

shemes whih are seure in the \real world" under either standard or non-standard-yet-

quite-plausible hardness assumptions.



Chapter 2

Preliminaries

1 Negligible and non-negligible funtions

A funtion � : N ! R is negligible (in n) if it goes to zero faster than any inverse

polynomial

1

p(n)

in n. In other words, for every  2 N there exists an n

0

2 N suh that

�(n) <

1

n



for all n � n

0

. If � is not negligible it is said to be non-negligible (in n). In

that ase there exists a d 2 N suh that �(n) >

1

n

d

for in�nitely many n (not neessarily

ontiguous).

If de�nitional robustness is desired, negligible and non-negligible funtions are a nat-

ural hoie for formalizing the intuitive notions of \insigni�ant" and \signi�ant" prob-

abilities when dealing with polynomial-time adversaries.

2 One-way funtions

One-way funtions are a ryptographi primitive of fundamental importane. Informally,

a funtion mapping strings to strings is one-way if it is \easy to evaluate" but \hard

to invert on average". Formally, a funtion f : f0; 1g

�

! f0; 1g

�

is one-way if it is

omputable in deterministi polynomial time and, for every probabilisti polynomial-

time \inverter" INV , p

INV

(n) is negligible. Here p

INV

(n) is the probability that, given

7
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1

n

and y = f(x) for a random x 2 f0; 1g

n

, INV outputs an x

0

2 f0; 1g

n

suh that

f(x

0

) = y; p

INV

(n) is taken over the hoie of x 2 f0; 1g

n

and the random bits of INV .

Observe that if P = NP then every funtion f omputable in deterministi polyno-

mial time an be easily inverted by non-deterministially guessing an x

0

2 f0; 1g

n

suh

that f(x

0

) = y. Proving the existene of one-way funtions is therefore no easier than

proving P 6= NP .

3 Hash funtion ensembles

A hash funtion h is simply an eÆiently-evaluable funtion mapping f0; 1g

�

to f0; 1g

n

,

where n is some seurity parameter. \Cryptographi" hash funtions suh as SHA-256

([NIS04℄) are informally believed to \hide all information about their input". More

rigorously, hash funtions are often assumed to be \ollision resistant" or \ollision in-

tratable", meaning that it's infeasible to �nd two domain elements whih have the same

image under h. Formally, however, it doesn't make sense to assert that ollisions in SHA-

256 or any other �xed hash funtion are hard to �nd, sine they an always be built into

the ode of the �nder mahine. Instead, we prefer to talk about hash funtion ensembles.

A hash funtion ensembleH = fH

n

g

n2N

is a olletion of hash funtion familiesH

n

=

fh

s

: f0; 1g

�

! f0; 1g

n

g

s2f0;1g

n

1

. H is eÆiently evaluable in the sense that there exists a

(deterministi) polynomial-time Turing mahine M

H

suh that M

H

(s; x) = h

s

(x) for all

s 2 f0; 1g

n

and x 2 f0; 1g

�

. We say that H is ollision resistant if, for every probabilisti

polynomial time \ollision �nder" F who is given a randomly hosen s 2 f0; 1g

n

, the

probability p

F

(n) that F outputs x

1

; x

2

2 f0; 1g

�

, x

1

6= x

2

suh that h

s

(x

1

) = h

s

(x

2

) is

negligible; here p

F

(n) is taken over the hoie of s and the random bits of F .

It is worth pointing out that ollision-resistane implies a kind of one-wayness (see

Setion 2). Suppose that we have a probabilisti polynomial-time inverter INV who,

1

In general, h

s

maps f0; 1g

�

to f0; 1g

`(n)

, where `(n) � n



for some . However, we will usually

assume that `(n) � n to simplify the presentation.
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given a randomly hosen s 2 f0; 1g

n

and y = h

s

(x) 2 f0; 1g

n

for a randomly hosen

x 2 f0; 1g

n+1

, outputs with non-negligible (in n) probability an x

0

2 f0; 1g

n+1

suh

that h

s

(x

0

) = y; here the probability is taken over the hoie of s and x, as well as the

random bits of INV . Notie that, provided x

0

6= x, (x; x

0

) is a ollision in h

s

. Also,

sine

jf0;1g

n+1

j

jf0;1g

n

j

= 2, h

s

maps two domain elements to eah odomain element on average.

We an use INV to onstrut a ollision �nder F as follows. Given a randomly hosen

s 2 f0; 1g

n

, F randomly hooses (say without replaement) x

1

; : : : ; x

n



2 f0; 1g

n+1

and

simulates INV to obtain x

0

i

= INV (s; x

i

), 1 � i � n



. It an be shown that, if  is \large

enough", the probability that there exists an 1 � i � n



suh that h

s

(x

0

i

) = h

s

(x

i

) and

x

0

i

6= x

i

is non-negligible (in n).

4 Trapdoor permutations

Impagliazzo and Rudih show in [IR89℄ that proving seure publi-key enryption shemes

(see Setion 7) exist assuming only that one-way funtions exist is no easier than proving

P 6= NP . On the other hand, if trapdoor permutations exist then so do seure publi-key

enryption shemes ([RS92℄).

Informally, a bijetion mapping n-bit strings to n-bit strings is a trapdoor permutation

if it is \easy to evaluate" and \hard to invert on average", yet \easy to invert" given

some additional information.

Formally, a trapdoor permutation F onsists of three polynomial-time algorithms: a

key generator G and two funtion evaluators, f and f

0

. G is probabilisti, whereas f

and f

0

are both deterministi. Given 1

n

and some random bits, G outputs a pair of

keys (k; k

0

). Assoiated with every pair of keys (k; k

0

) is a pair of funtions (f

k

; f

0

k

0

),

eah mapping n-bit strings to n-bit strings; f

k

and f

0

k

0

are both injetive (and therefore

surjetive), and f

0

k

0

= f

�1

k

.

For every pair of keys (k; k

0

) generated by running G on 1

n

(together with some
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random bits) and every x 2 f0; 1g

n

, f(k; x) = f

k

(x) and f

0

(k

0

; x) = f

0

k

0

(x). Moreover,

f

k

is a one-way funtion in the following sense. For every probabilisti polynomial-time

\inverter" INV , p

INV

(n) is negligible in n. Here p

INV

(n) is the probability that, given

a key k (generated by running G on 1

n

and some random bits) and y = f

k

(x) 2 f0; 1g

n

for a random x 2 f0; 1g

n

, INV outputs x = f

0

k

0

(y); p

INV

(n) is taken over the hoie of

s 2 f0; 1g

n

, as well as the random bits of INV and G (that is, the hoie of k).

5 Signature shemes and message authenti�ation

odes (MACs)

A signature sheme SIG onsists of three polynomial-time algorithms: a key generator

GEN , a signer SIGN and a veri�er V ER. Although in general all three may be proba-

bilisti, we will assume for onveniene that GEN and SIGN are probabilisti, whereas

V ER is deterministi (this is nearly always the ase in pratie).

GEN , SIGN and V ER work as follows.

� Given 1

n

and some random bits, GEN outputs a pair of keys (pub; pri), where pub

is the publi key and pri is the private key. Although in general jprij � n



for some

, we will usually assume that jprij = n to simplify the presentation.

� Given 1

n

, pri, a message m 2 f0; 1g

�

and some random bits, SIGN outputs a

signature �

m

2 f0; 1g

p(n)

of m, where p(�) is some polynomial.

� Given 1

n

, pub, a message m and a supposed signature � 2 f0; 1g

p(n)

or m, V ER

outputs either 1, indiating he thinks � is a valid signature of m, or 0, indiating

he thinks it is not.

Denote the output of SIGN given 1

n

, pri, a message m and some random bits by

SIGN

pri

(m), and the output of V ER given 1

n

, pub, m and a supposed signature � of
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m by V ER

pub

(m;�). We require that V ER aept all signatures output by SIGN , so

that for all n, all key pairs (pub; pri) generated by running GEN on 1

n

and some random

bits, all messages m and all signatures �

m

= SIGN

pri

(m), V ER

pub

(m; �

m

) = 1.

Informally, SIG is seure if no probabilisti polynomial-time \forger" F who knows

pub has a signi�ant probability of oming up with a valid signature �

�

of a new message

m

�

2 f0; 1g

�

, even after being shown the signatures of polynomially many messages of his

hoie. Sine F adaptively hooses the messages whose signatures he is shown and wins

if he suessfully signs any new message (even a \silly" one suh as the empty string �),

this sort of seurity for signature shemes is sometimes alled \seurity against existential

forgery under adaptive hosen-message attak".

Formally, F is equipped with a \signature orale" S; given a message m 2 f0; 1g

�

,

S outputs a signature �

m

= SIGN

pri

(m) of m. SIG is seure if, for every probabilisti

polynomial-time forger F

S

, p

F

(n) is negligible in n. Here p

F

(n) is the probability that,

given 1

n

and a publi key pub (generated by running GEN on 1

n

and some random bits),

F

S

outputs a pair (m

�

; �

�

) suh that S has not been queried on m

�

and V ER

pub

(m

�

; �

�

) =

1; p

F

(n) is taken over the random bits of GEN (that is, the hoie of (pub; pri)), F

S

pub

and V ER

pub

, as well as the randomness of S (that is, the random bits of SIGN).

Building on the results of [GMR88℄, [BM88℄ and [NY89℄, Rompel showed in [Rom90℄

that if one-way funtions exist, then so do seure signature shemes. It's not hard to

show that the onverse also holds, namely that if seure signature shemes exist, then

so do one-way funtions. Notie that if SIG is a seure signature sheme, then the

funtion f

GEN

mapping the random bits r of GEN to the publi key pub is one-way.

Sine GEN runs in polynomial time, f

GEN

is eÆiently evaluable. If f

GEN

were easy

to invert on average, then a forger F who is given pub ould ompute pri with high

probability, thereby ompletely breaking the seurity of SIG. Thus f

GEN

is a one-way

funtion. Notie that this means that if one-way funtions do not exist, then neither do

seure signatures shemes.
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Message authenti�ation odes or MACs, as they are ommonly referred to, are es-

sentially private-key signature shemes. This time there is only one (private) key, k,

whih is hosen randomly and given to both the signer and the veri�er. As with signa-

ture shemes, the standard notion of seurity for MACs is \seurity against existential

forgery under adaptive hosen-message attak". Although the forger still has aess to a

signature orale S, this time he is obviously not given the private key k (whih is built

into S); the forger's suess probability is taken over his random bits and the hoie of

k.

6 Identi�ation shemes

An identi�ation sheme ID onsists of three probabilisti polynomial-time algorithms: a

key generator G, a prover P and a veri�er V . P and V are \linked interative mahines",

meaning that they an \interat" by sending messages bak and forth between eah other.

Informally, P 's goal is to onvine V that he knows some seret, for example the private

key generated by G. Although identi�ation shemes are interesting in their own right,

our interest in them stems from the fat that they are a soure of signature shemes

seure in the ROM ([AABN02℄).

Eah message exhanged between P and V is alled a round. If V 's messages onsist

solely of random bits, then ID is said to be publi-oin. Three-round, publi-oin identi-

�ation shemes are alled anonial. This thesis only deals with anonial identi�ation

shemes, so let ID be anonial. Observe that the prover always goes last, beause oth-

erwise he wouldn't be able to respond to the veri�er's last hallenge. Sine the prover

and the veri�er alternate rounds, this means that P �rst sends a message to V , then V

hallenges P , and �nally P responds to V 's hallenge.

Formally, ID works as follows. First, G is run on 1

n

and some random bits to obtain

a pair of keys (PK; SK), where PK is the publi key and SK is the private key. Let P

SK
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denote the behaviour of P when given 1

n

, SK and some random bits, and V

PK

denote

the behaviour of V when given 1

n

and PK. P

SK

�rst sends a ommitment Cmt to V

PK

,

to whih V

PK

replies with a hallenge Ch onsisting of the entire ontents of his random

tape. P

SK

then sends a response Rsp to V

PK

, at whih point V

PK

makes a deterministi

deision to either aept or rejet (see Figure 2.1). For reasons whih will beome lear

later, it is onvenient to assume that all of P

SK

's ommitments are of length `(n), where

` is some polytime-omputable funtion of the seurity parameter n. This is always the

ase in pratie.

(1^n, SK) (1^n, PK)

PSfrag replaements

P V

Cmt

Ch

Rsp

Figure 2.1: The interation between P and V

Sine the behaviour of V

PK

is ompletely determined one his random tapeCh is �xed,

we may think of V

PK

as a deterministi funtion aepting or rejeting \transripts" of

the form (m

1

;Ch; m

2

), where m

1

and m

2

are the �rst and seond messages reeived by

V

PK

, respetively; V

PK

may interat with an adversary who is not P

SK

, so these need

not equal Cmt and Rsp. We require that P

SK

always onvine V

PK

to aept, so that

V

PK

(Cmt;Ch;Rsp) = 1 for all Cmt and Rsp produed by P

SK

.

We are interested in two notions of seurity for identi�ation shemes: passive seurity

and ative seurity.

Informally, ID is passively seure if no probabilisti polynomial-time \impersonator"

I who knows PK (but not SK) has a signi�ant probability of onvining V

PK

to a-

ept when interating with him in the role of P

SK

, even after seeing polynomially many

transripts of onversations between P

SK

and V

PK

. This weak type of seurity for iden-

ti�ation shemes is alled \passive" beause I

PK

passively monitors the onversation

between P

SK

and V

PK

without interfering with it.
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Formally, I is equipped with a \transript orale" T . Every time T is queried, it

generates a transript (Cmt;Ch;Rsp) by running P

SK

and V

PK

on some random bits.

I

T

PK

is given 1

n

and a publi key PK (generated by running G on 1

n

and some random

bits), together with some random bits. I

T

PK

�rst obtains polynomially many transripts

by repeatedly querying T . Next, I

T

PK

sends a ommitment Cmt

0

to V

PK

, reeiving a

hallenge Ch in reply. I

T

PK

then responds to the hallenge by sending Rsp

0

to V

PK

. ID

is passively seure if, for every passive probabilisti polynomial-time impersonator I

T

PK

,

the probability p

I

(n) that V

PK

(Cmt

0

;Ch;Rsp

0

) = 1 is negligible in n; p

I

(n) is taken over

the random bits of G (that is, the hoie of (PK; SK)), I

T

PK

and V

PK

(that is, the hoie

of Ch), as well as the randomness of T (that is, the random bits of P

SK

and V

PK

).

Informally, ID is atively seure, or simply seure, if no probabilisti polynomial-

time \impersonator" I who knows PK (but not SK) has a signi�ant probability of

onvining V

PK

to aept when interating with him in the role of P

SK

, even after

arbitrarily interating with P

SK

in the role of V

PK

polynomially many times. This

strong type of seurity for identi�ation shemes is alled \ative" beause I

PK

atively

interats with P

SK

rather than merely monitoring P

SK

's onversation with V

PK

.

Formally, we think of I

PK

, who is given 1

n

and a publi key PK (generated by running

G on 1

n

and some random bits), together with some random bits, as operating in two

\phases". In the �rst phase, I

PK

interats with P

SK

(in the role of V

PK

) by sending

him polynomially many adaptively hosen hallenges; note that I

PK

is not onstrained

to hoose his hallenges randomly. In the seond phase, I

PK

interats with V

PK

(in

the role of P

SK

) as follows. I

PK

�rst sends a ommitment Cmt

00

to V

PK

, reeiving a

random hallenge Ch in reply. I

PK

then responds to the hallenge by sending Rsp

00

to

V

PK

. ID is seure if, for every ative probabilisti polynomial-time impersonator I

PK

,

the probability p

I

(n) that V

PK

(Cmt

00

;Ch;Rsp

00

) = 1 is negligible in n; p

I

(n) is taken

over the random bits of G (that is, the hoie of (PK; SK)), I

PK

, V

PK

(that is, the hoie

of Ch) and P

SK

.
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Note that if V

PK

's hallenge Ch is too short, jChj = log

2

(n) say, then the size of the

hallenge spae is only 2

jChj

= n. An impersonator I

PK

in possession of even a single valid

transript (Cmt;Ch;Rsp), obtained through either interating with P

SK

or querying T ,

an in this ase break the seurity of ID as follows. I

PK

sends Cmt to V

PK

, reeives a

hallenge Ch

0

from V

PK

and sends Rsp to V

PK

in response. Sine V

PK

aepts whenever

Ch

0

= Ch, whih happens with probability

1

n

(and possibly even if Ch

0

6= Ch), I

PK

's

suess probability is non-negligible. In order for ID to hope to satisfy either of the above

two de�nitions of seurity, the hallenge spae must therefore be of size super-polynomial

in n, meaning that jChj = !(logn).

Observe that passive seurity is stritly weaker than ative seurity, sine every a-

tively seure ID is also passively seure, but not vie versa. Ative seurity implies

passive seurity beause, for every (passive) impersonator I

T

PK

who breaks the passive

seurity of ID, there is a orresponding (ative) impersonator I

PK

who breaks the ative

seurity of ID: I

PK

simply simulates I

T

PK

, taking are to aumulate enough valid tran-

sripts during the �rst phase (by hoosing the hallenges he sends to P

SK

randomly) to

answer all of I

T

PK

's T queries; I

PK

's suess probability is idential to that of I

T

PK

.

To see that passive seurity does not imply ative seurity, onsider the following (ad-

mittedly rather ontrived) modi�ation ID

0

of an arbitrary passively seure identi�ation

sheme ID (suh identi�ation shemes exist if one-way funtions do, as we'll see below);

we may assume without loss of generality that jChj = n. ID

0

is idential to ID, exept

that whenever the new prover P

0

SK

reeives the hallenge

�

0 = 0

n

, he responds by reveal-

ing the private key SK. ID

0

remains passively seure, sine a passive impersonator I

T

PK

whose running time is bounded above by some polynomial p(�) in the seurity parameter

n will see a transript ontaining SK with probability at most

p(n)

2

n

, whih is negligible.

However, it is ompletely trivial for an ative impersonator I

PK

to break the (ative)

seurity of ID

0

: I

PK

sends

�

0 to P

0

SK

to obtain the seret key SK in the �rst phase, then

simulates P

0

SK

in order to orretly respond to V

0

PK

's hallenge in the seond phase.
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Finally, observe that seure identi�ation shemes exist if and only if one-way fun-

tions do. To see that if seure identi�ation shemes exist then so do one-way funtions,

let ID = (G;P; V ) be an arbitrary seure anonial identi�ation sheme. The funtion

f

G

mapping the random bits r of G to the publi key PK must be one-way, sine oth-

erwise an impersonator ould ompletely break the seurity of ID (see Setion 5). To

see that seure anonial identi�ation shemes exist if one-way funtions do, we need

only show how to onvert an arbitrary seure signature sheme into a seure anonial

identi�ation sheme (reall that seure signature shemes exist if one-way funtions do).

We an easily obtain a anonial identi�ation sheme ID = (G;P; V ) from any

signature sheme SIG = (GEN; SIGN; V ER); V simply hallenges P to sign a random

n-bit message Ch and aepts only if Rsp is a valid signature of Ch. Spei�ally, G is

the same as GEN (so that (pub; pri) = (PK; SK)), Cmt = �, Rsp = SIGN

SK

(Ch)

and V

PK

(�;Ch;Rsp) = V ER

PK

(Ch;Rsp).

It's not too hard to see that if SIG is seure (as a signature sheme) then ID is

seure (as an identi�ation sheme). An ative impersonator I whih suessfully breaks

the seurity of ID �rst gets to see the signatures of polynomially many messages of his

hoie and then suessfully signs a random message Ch, whose signature he almost

ertainly hasn't already seen (beause the hallenge spae is of super-polynomial size);

a polynomial-time forger F

S

with aess to a signature orale S an easily simulate I,

thereby breaking the seurity of SIG.

7 Publi-key enryption shemes

A publi-key enryption sheme PKE onsists of three polynomial-time algorithms: a

key generator GEN , an enryptor ENC and a deryptor DEC. GEN and ENC are

probabilisti (our de�nition of seurity will ruially depend on the fat that ENC is

probabilisti), whereas DEC is deterministi.
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Informally, the setup is that a person A wants to seurely ommuniate with some

stranger B he knows nothing about, exept for his name and address. To this end,

A generates a pair of keys (pub; pri) using GEN , sends the publi key pub to B and

keeps the private key pri for himself. To ommuniate a message m to A, B obtains an

enryption e

m

of m using ENC and sends e

m

to A; A then derypts e

m

using DEC.

For reasons of modularity and eÆieny, publi-key enryption shemes are in pratie

almost always used solely to seurely exhange a \short" private key k, whose length we'll

assume to be equal to the seurity parameter n for onveniene. One both A and B

are in possession of k, they an seurely ommuniate using highly eÆient \private-key

enryption". Thus, unlike in the ase of signature shemes, where we insisted that SIGN

be able to sign messages of arbitrary length, here we will only require ENC to be able

to enrypt n-bit messages.

Formally, GEN , ENC and DEC work as follows.

� Given 1

n

and some random bits, GEN outputs a pair of keys (pub; pri), where pub

is the publi key and pri is the private key.

� Given 1

n

, pub, a message m 2 f0; 1g

n

and some random bits, ENC outputs an

enryption e

m

2 f0; 1g

p(n)

of m, where p(�) is some polynomial.

� Given 1

n

, pri and a supposed enryption �, DEC either outputs a message m 2

f0; 1g

n

or a speial symbol ? indiating a failure to derypt.

Denote the output of ENC given 1

n

, pub, m 2 f0; 1g

n

and some random bits by

ENC

pub

(m), and the output of DEC given 1

n

, pri and � 2 f0; 1g

p(n)

by DEC

pri

(�).

We require that DEC orretly derypt all enryptions produed by ENC, so that for

all n, all key pairs (pub; pri) generated by running GEN on 1

n

and some random bits,

all messages m 2 f0; 1g

n

and all enryptions e

m

= ENC

pub

(m), DEC

pri

(e

m

) = m.

We are interested in two notions of seurity for publi-key enryption shemes: se-

manti seurity and hosen-iphertext seurity.
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Informally, PKE is semantially seure ([GM84℄) if no probabilisti polynomial-time

\eavesdropper" E who knows pub (but not pri) and passively monitors the hannel

between A and B an \learn" even a single bit of information about a message m through

seeing its enryption e

m

.

Formally, E is given 1

n

and a publi key pub (generated by running GEN on 1

n

and

some random bits) and hooses two distint n-bit messages, m

0

and m

1

. A bit b is then

hosen randomly (but not shown to E), and E is given an enryption e

b

= ENC

pub

(m

b

)

of m

b

. E next omputes for a while, �nally outputting a bit b

0

. Let p

E

(n) be the

probability that b

0

= b, meaning that E orretly determined b; p

E

(n) is taken over the

random bits of E and GEN (that is, the hoie of (pub; pri)), as well as the hoie of b.

PKE is semantially seure if, for every probabilisti polynomial-time eavesdropper E,

j

1

2

� p

E

(n)j is negligible in n (in other words, p

E

(n) doesn't signi�antly di�er from

1

2

,

the probability of randomly guessing b).

Note that PKE annot be semantially seure if ENC is deterministi. In order

to break the semanti seurity of PKE, an eavesdropper E (who knows pub) simply

omputes �

0

= ENC

pub

(

�

0) and �

1

= ENC

pub

(

�

1), where

�

0 = 0

n

and

�

1 = 0

n�1

1, then

sets m

0

=

�

0 and m

1

=

�

1. One E reeives e

b

, he outputs 0 if e

b

= �

0

and 1 if e

b

= �

1

(these are the only two possibilities beause ENC is deterministi). Sine E always

outputs b orretly (so that b

0

= b with probability 1), j

1

2

�p

E

(n)j =

1

2

, whih is ertainly

non-negligible.

Informally, PKE is seure against (adaptive) hosen-iphertext attak or CCA2-seure

([RS92℄) if no probabilisti polynomial-time adversary ADV who knows pub (but not pri)

and has omplete ontrol over the hannel between A and B an \learn" even a single bit

of information about a message m through seeing its enryption e

m

. What does it mean

for ADV to have \omplete ontrol" over the hannel between A and B? Intuitively,

ADV interepts all enryptions or \iphertexts" sent by A to B and sends B whatever

he likes instead.
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Formally, ADV is given 1

n

and a publi key pub (generated by running GEN on

1

n

and some random bits) and equipped with a \deryption orale" D, whih outputs

DEC

pri

(�) when queried on a iphertext � 2 f0; 1g

p(n)

. D is meant to apture the

intuition that ADV an e�etively fore B to derypt any iphertext of his hoosing (of

ourse the answer may well be ?; we think of \iphertexts" that derypt to ? as being

malformed).

ADV

D

queries D on �

0

and reeives DEC

pri

(�

0

), queries D on �

1

and reeives

DEC

pri

(�

1

), and so on. Sine ADV

D

may in general hoose his queries based on D's

previous answers, this is an adaptive attak. Eventually, ADV

D

hooses two distint

n-bit messages, m

0

and m

1

. A bit b is then hosen randomly (but not shown to ADV

D

),

and ADV

D

is given an enryption e

b

= ENC

pub

(m

b

) of m

b

.

ADV

D

now gets to query D on some additional iphertexts, whose hoie may in

general depend on e

b

. Naturally, we don't allow ADV

D

to query D on e

b

itself, sine

DEC

pri

(e

b

) uniquely determines b (beause m

0

6= m

1

). Alternatively, one ADV

D

re-

eives e

b

we ould forbid him from querying D altogether; seurity against this type of

\lunhtime attak" is alled CCA1 seurity ([NY90℄). However, that would arguably be

too restritive, sine in pratie CCA2 seurity is almost always broken by querying D

on iphertexts \related to" (though not the same as) e

b

.

ADV

D

next omputes for a while, �nally outputting a bit b

0

. Let p

ADV

(n) be the

probability that b

0

= b, meaning that ADV

D

orretly determined b; p

ADV

(n) is taken

over the random bits of ADV

D

and GEN (that is, the hoie of (pub; pri)), as well as

the hoie of b (the deryption orale D is deterministi). PKE is CCA2 seure if, for

every probabilisti polynomial-time adversary ADV

D

, j

1

2

� p

ADV

(n)j is negligible in n

(in other words, p

ADV

(n) doesn't signi�antly di�er from

1

2

, the probability of randomly

guessing b).

Observe that semanti seurity is stritly weaker than CCA2 seurity, sine every

CCA2-seure PKE is also semantially seure, but not vie versa. CCA2 seurity implies
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semanti seurity beause, for every eavesdropper E who breaks the semanti seurity

of PKE, there is a orresponding adversary ADV

D

who breaks the CCA2 seurity of

PKE: ADV

D

simply simulates E, ignoring the deryption orale D; ADV

D

's suess

probability is idential to that of E. This implies that PKE annot be CCA2-seure if

ENC is deterministi | we already know that suh a PKE is not semantially seure,

and we just showed every CCA2-seure publi-key enryption sheme is.

To see that semanti seurity does not imply CCA2 seurity, onsider the following

(admittedly rather ontrived) modi�ation PKE

0

of an arbitrary semantially seure

publi-key enryption sheme PKE. PKE

0

is idential to PKE, exept that the new

enryptor ENC

0

appends an additional bit, say 0 for onreteness, to every enryption;

this bit is ignored by the new deryptor DEC

0

. PKE

0

remains semantially seure,

sine, for every eavesdropper E

0

who breaks the semanti seurity of PKE

0

, there is a

orresponding eavesdropper E who breaks the semanti seurity of PKE: E simulates

E

0

to obtain a pair of messages (m

0

; m

1

), reeives an enryption e

b

and gives e

b

0 to E

0

,

aepting if and only if E

0

aepts; E's suess probability is idential to that of E

0

.

However, it is ompletely trivial for an adversary ADV

D

to break the CCA2 seurity

of PKE

0

: ADV

D

sets m

0

=

�

0 and m

1

=

�

1, reeives e

b

= ENC

0

pub

(m

b

), and queries D on

e

b

1 to obtain a deryption m

0

. He then outputs 0 if m

0

=

�

0 and 1 if m

0

=

�

1 (these are the

only two possibilities, sine DEC

0

ignores the trailing bit). Sine ADV

D

always outputs

b orretly (so that b

0

= b with probability 1), j1� p

ADV

(n)j =

1

2

, whih is ertainly non-

negligible. Although our highly arti�ial modi�ation of PKE may seem like a heat,

in pratie publi-key enryption shemes fail to be CCA2-seure for the same reason as

PKE

0

. Namely, they are \malleable", whih informally means that an adversary ADV

D

an \malleate" (that is, modify) e

b

into some related enryption e

0

b

suh that b an be

omputed from D(e

0

b

) (ADV

D

is allowed to query D on e

0

b

sine e

0

b

6= e

b

).
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8 The Random Orale Model (ROM)

The Random Orale Model, or ROM for short, is a setting where all parties have aess to

a \random orale" R. The ROM was formally introdued in the ontext of ryptography

in [BR93℄.

One way to think of R is as a randomly hosen funtion mapping f0; 1g

�

to f0; 1g

ny

.

However, the set of all suh funtions is (ountably) in�nite, and we prefer not to talk

about sampling suh sets. Instead, we view R as hoosing his answers \on-line". When

queried on q 2 f0; 1g

�

, R �rst heks whether q is a \new query", meaning that he hasn't

been queried on q before. If so, he randomly hooses a response ans 2 f0; 1g

n

to q,

writes ans down somewhere and then outputs it. Otherwise (namely in the ase that R

has been queried on q already), he looks up and outputs his previous response to q; this

ensures that idential queries reeive an idential response (whih is the ase when R is

viewed as a funtion).

We next show that, in some appropriate sense at least, random orales are one-way

(see Setion 2 for a de�nition of one-wayness). Let p

INV

(n) denote the probability that

a probabilisti polynomial-time inverter INV

R

who is given y = R(x) 2 f0; 1g

n

for a

randomly hosen x 2 f0; 1g

n

outputs an x

0

2 f0; 1g

n

suh that R(x

0

) = y; p

INV

(n)

is taken over the hoie of x, the random bits of INV

R

and the randomness of R.

Observe that y yields no information about x, sine it is distributed uniformly over

f0; 1g

n

no matter what x is. Denote the strings INV

R

queries R on by x

1

; : : : ; x

q

R

, and

set y

i

= R(x

i

) for 1 � i � q

R

; notie that q

R

� n



for some , beause INV

R

runs in

(strit) polynomial time. INV

R

wins if there is an 1 � i � q

R

suh that either x

i

= x

or x

i

6= x but y

i

= y anyway. Applying the union bound, we see that this happens with

probability at most

2q

R

2

n

�

2n



2

n

, whih is negligible.

y

In general, R maps f0; 1g

�

to f0; 1g

`(n)

, where `(n) � n



for some . However, we will usually

assume that `(n) � n to simplify the presentation.



Chapter 3

On the seurity of Fiat-Shamir

signature shemes in the ROM

1 Fiat-Shamir signature shemes: an overview

In their seminal 1986 paper ([FS87℄), Amos Fiat and Adi Shamir proposed a new, highly

eÆient signature sheme based on a ertain anonial identi�ation sheme losely re-

lated to the protools presented in [GMR85℄ and [FMR96℄ (for de�nitions of signature

shemes and anonial identi�ation shemes, see Setions 5 and 6 of Chapter 2). Suh

signature shemes are now alled \Fiat-Shamir signature shemes", whereas Fiat and

Shamir's approah itself is referred to as the \Fiat-Shamir paradigm". Essentially, their

idea was as follows. In order to sign a message m, simply simulate the prover, replaing

the veri�er's random hallenge with h(m), where h is some \ryptographi hash funtion"

(atually, this isn't quite right, as we'll see below). The resulting transript then serves

as a signature of m.

Fiat and Shamir showed that the signature sheme in question is seure if h is \truly

random", provided that taking square roots modulo N = pq, where p and q are unknown

\large" primes, is hard (a standard hardness assumption). In modern terminology, Fiat

22
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and Shamir e�etively showed that the signature sheme is seure in the Random Orale

Model, or ROM (see Chapter 2, Setion 8 for a disussion of the ROM), under a standard

hardness assumption. Although this may strike one as a rather weak seurity guarantee,

no pratial signature shemes provably seure under standard hardness assumptions

were known at the time. Today, a number of highly eÆient signature shemes provably

seure under suh \non-standard-yet-plausible" hardness assumptions as the \strong RSA

assumption" and the \strong Computational DiÆe-Hellman assumption" are available

([GHR99℄, [CS99℄, [Fis03℄, [BB04℄).

Various other Fiat-Shamir signature shemes whih are provably seure in the ROM

under standard hardness assumptions have been desribed over the years ([MS90℄, [Oka93℄,

[Sho96℄, [GaJ03℄), but until fairly reently it was not known whether every (atively) se-

ure anonial identi�ation sheme yields a Fiat-Shamir signature sheme seure in the

ROM. While Abdalla et al. showed in [AABN02℄ that seure \non-trivial" anonial iden-

ti�ation shemes yield Fiat-Shamir signature shemes seure in the ROM (informally, a

anonial identi�ation sheme is \non-trivial" if the prover's ommitment distribution

has \high entropy"), they left open the question of whether seure \trivial" anonial

identi�ation shemes do. In Setion 5, we prove that every seure anonial identi�a-

tion sheme, trivial or not, does indeed yield a Fiat-Shamir signature sheme seure in

the ROM.

However, as we will see in Chapter 5, seurity in the ROM is no guarantee of real-

world seurity. In [GTK03℄, Goldwasser and Tauman show that there exist Fiat-Shamir

signature shemes whih, although seure in the ROM, are \uninstantiable" (see Chap-

ter 5, Setion 4). Suh shemes are not seure in the \real world", no matter what hash

funtion ensemble is used to \instantiate" the random orale.
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2 The Fiat-Shamir transform

Let ID = (G;P; V ) be a anonial identi�ation sheme and h be a \ryptographi hash

funtion". The funtion mapping ID and h to the orresponding Fiat-Shamir signature

sheme SIG

h

(ID) is sometimes alled the \Fiat-Shamir transform". Sine this thesis

is primarily onerned with seurity in the ROM, we will only present the transform's

ROM version, whih maps ID to SIG(ID) = (G; SIGN

R

; V ER

R

).

Given 1

n

, a private key SK (generated by running G on 1

n

together with some

random bits), a message m 2 f0; 1g

�

and some random bits, the signer SIGN

R

proeeds

as follows. He �rst simulates P

SK

to obtain a ommitmentCmt and omputes a hallenge

Ch

m

= R(Cmt; m) by querying R; note that the hallenge depends on the message to

be signed. SIGN

R

then simulates P

SK

on Ch

m

to obtain a response Rsp and outputs

�

m

= (Cmt;Rsp) as the signature of m. (Reall that P

SK

denotes the behaviour of P

when given 1

n

, SK and some random bits r. Spei�ally, P omputes a ommitment

Cmt as a funtion of 1

n

, SK and r, reeives a hallenge Ch, and then omputes a

response Rsp as a funtion of 1

n

, SK, r and Ch).

Given 1

n

, a publi key PK (generated by running G on 1

n

together with some random

bits), a message m 2 f0; 1g

�

and a supposed signature (�; ) of m, the veri�er V ER

R

simply omputes � = R(�;m) by querying R and outputs V

PK

(�; �; ) (Reall that V

PK

is a deterministi funtion of (�; �; )).

Our goal is to show that if ID is seure then SIG(ID) is seure in the ROM. By

seurity in this setting we mean the ordinary seurity for signature shemes (that is,

seurity against existential forgery under adaptive hosen-message attak), exept that

the forger F now has aess to the random orale R in addition to the signature orale

S, and his suess probability is also taken over the randomness of R.
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3 An earlier result

Abdalla, An, Bellare and Namprempre present several results onerning the Fiat-Shamir

transform in [AABN02℄, inluding a randomized version of the transform and appliations

to \forward-seure signature shemes". However, we are only interested in the following

result of theirs: for every passively seure \non-trivial" anonial identi�ation sheme

ID, the orresponding Fiat-Shamir signature sheme SIG(ID) is seure in the ROM.

Sine ative seurity implies passive seurity for identi�ation shemes, this means that

every seure \non-trivial" anonial identi�ation sheme yields a Fiat-Shamir signature

sheme seure in the ROM.

Informally, ID is \non-trivial" if the prover's ommitment distribution has \high

entropy". Formally, let P

SK

= fp

i

g

k

i=0

denote P

SK

's ommitment distribution and de�ne

the min-entropy of P

SK

by H

min

(P

SK

) = � log

2

(p

max

), where p

max

= maxfp

i

g

k

i=0

is the

largest probability mass in P

SK

. ID is non-trivial if minfH

min

(P

SK

) : SK  G(1

n

)g =

!(logn), meaning that the minimum min-entropy of P

SK

, taken over all private keys

SK (generated by running G on 1

n

and some random bits), is super-logarithmi in the

seurity parameter n. It an be shown that in this ase the probability of seeing the same

ommitment more than one in polynomially many trials is negligible, so that, for all

pratial purposes, P

SK

's ommitments don't repeat. Canonial identi�ation shemes

whih are not non-trivial are said to be trivial.

Let ID be a non-trivial anonial identi�ation sheme. Suppose that F

R;S

is a

polynomial-time forger who breaks the seurity of SIG(ID) in the ROM, and denote his

(non-negligible) suess probability by p

F

(n). F

R;S

PK

is given 1

n

, PK and some random

bits, and his goal is to output a new message m

�

(i.e. one he hasn't queried S on)

together with a valid signature �

�

= (Cmt

�

;Rsp

�

) of m

�

.

We may assume, without loss of generality, that F

R;S

PK

doesn't query R on any string

more than one, sine that would yield no new information (beause R's responses would

all be idential). We may additionally assume, again wlog, that F

R;S

PK

doesn't query R on
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strings whose length is less than `(n); reall that all of P

SK

's ommitments are of length

`(n). R queries involving suh \short strings" an safely be answered randomly, sine

there is no interplay between them and S queries (more on this interplay later). This

assumption ensures that every s 2 f0; 1g

�

F

R;S

PK

queries R on an be parsed as (Cmt; m),

where Cmt 2 f0; 1g

`(n)

and m 2 f0; 1g

�

. Finally, it will be onvenient for us to assume

that F

R;S

PK

queries R on (Cmt

�

; m

�

) at some point during his exeution; following the

terminology of [AABN02℄, we refer to this speial R query as the \ruial query". There

is no loss of generality in assuming that the forger makes the ruial query, sine every

F

R;S

who doesn't an easily be onverted into a orresponding forger

^

F

R;S

who does:

^

F

R;S

PK

obtains m

�

and �

�

= (Cmt

�

;Rsp

�

) by simulating F

R;S

PK

, queries R on (Cmt

�

; m

�

)

and then outputs (m

�

; �

�

). Sine the additional R query doesn't a�et the hoie of m

�

and �

�

,

^

F

R;S

's suess probability is idential to that of F

R;S

.

We now desribe a polynomial-time impersonator I

T

who, given 1

n

, PK and some

random bits, breaks the passive seurity of ID (in the real world) by simulating F

R;S

PK

. Let

q

R

(n) denote the number of times F

R;S

PK

queries R. Sine F

R;S

PK

runs in (strit) polynomial

time, q

R

(n) � n



for some  (in the worst ase, F

R;S

PK

does nothing but query R, eah

query taking a single step).

I

T

PK

begins by randomly hoosing an index i 2 f1; : : : ; q

R

(n)g; as we'll see later, i

is not revealed to F

R;S

PK

in the ourse of the simulation. Sine we've assumed both that

F

R;S

PK

makes the ruial query and that he never queries R on the same string more

than one, i is the index of the ruial query with probability

1

q

R

(n)

�

1

n



. A tehnial

but important point is that the distribution of F

R;S

's views (namely what he \sees"

during the simulation, inluding his random bits and the answers to his orale queries)

is independent of the hoie of i, so that he gets no information about i. If that were

not the ase, F

R;S

PK

ould exploit his knowledge of i to ensure that I

T

PK

never guesses the

index of the ruial query orretly.

During the simulation, I

T

PK

responds to all of F

R;S

PK

's random orale queries but the i

th
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with a randomly hosen n-bit string (sine F

R;S

PK

never queries R on the same string more

than one, there is no risk of giving inonsistent answers). The i

th

query is handled as

follows. Suppose that, for his i

th

random orale query, F

R;S

PK

queriesR on some s 2 f0; 1g

�

(reall that jsj � `(n), sine F

R;S

PK

doesn't query R on \short strings"). I

T

PK

parses s as

(Cmt

�

; m

�

), sends Cmt

�

2 f0; 1g

`(n)

to V

PK

, and reeives a hallenge Ch

�

2 f0; 1g

n

in

reply. He then gives Ch

�

to F

R;S

PK

as the answer to R(s) and ontinues his simulation.

This ensures that Rsp

�

is a orret answer to Ch

�

, so that (Cmt

�

;Ch

�

;Rsp

�

) is a valid

transript.

Whenever F

R;S

PK

asks to see a signature of a message m, I

T

PK

queries T to obtain a

valid transript (Cmt;Ch;Rsp) and gives (Cmt;Rsp) to F

R;S

PK

. To ensure that future

R queries are answered onsistently, I

T

then sets R(Cmt; m) to Ch. Observe that if

(Cmt;Rsp) is to be a legitimate signature of m, we must have R(Cmt; m) = Ch, so

that every S query e�etively involves an impliit R query. But what if R has been

queried on (Cmt; m) already? Unless we are very luky and Ch mathes the value pre-

viously assigned to R(Cmt; m) (whih happens with probability

1

2

n

, sine Ch 2 f0; 1g

n

is hosen randomly), this prevents R from being well-de�ned. We may thus view a new

ommitment Cmt as being added to the (notional) set of \forbidden ommitments" ev-

ery time R is queried on s 2 f0; 1g

�

| simply parse s as (Cmt; m). Notie that the size

of this \forbidden ommitment set" is polynomial in the seurity parameter n, beause

q

R

(n) � n



. Sine ID is non-trivial (whih informally means that the number of om-

mitments is super-polynomial in n), the probability that a randomly hosen ommitment

belongs to the \forbidden ommitment set" is therefore negligible in n, so this event an

be safely ignored for the purposes of our analysis.

Eventually, F

R;S

PK

outputs a message m

�

together with a purportedly valid signature

�

�

= (Cmt

�

;Rsp

�

) of m

�

. I

T

PK

then sends Rsp

�

to V

PK

as the answer to the hallenge

Ch

�

. Sine p

F

(n) is non-negligible, there is a d suh that p

F

(n) >

1

n

d

for in�nitely

many n. What is the probability that I

T

PK

breaks the seurity of ID, namely that
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V

PK

(Cmt

�

;Ch

�

;Rsp

�

) = 1? If I

T

PK

orretly guesses the index of the ruial query

and there are no \ommitment ollisions" (reall that these only our with negligible

probability), then his simulation of F

R;S

PK

is perfet; in that ase his suess probability

is just p

F

(n). Sine the hoie of i is independent of the simulation, we get:

Pr[V

PK

(Cmt

�

;Ch

�

;Rsp

�

) = 1℄ �

1

q

R

(n)

� p

F

(n) �

1

n



� p

F

(n)

>

1

n



�

1

n

d

=

1

n

+d

for in�nitely many n:

I

T

PK

therefore breaks the passive seurity of ID, so that SIG(ID) is seure in the ROM

if ID is passively seure. �

4 The non-triviality assumption

It's not hard to show that passive seurity of ID is a neessary ondition for SID(ID) to

be seure in the ROM, meaning that ID is passively seure whenever SIG(ID) is seure

in the ROM; Abdalla et al. laim that non-triviality is also neessary. To support this

laim, they show that, subjet to an assumption, there exists a passively seure trivial

identi�ation sheme whih yields a Fiat-Shamir signature sheme that is not seure in

the ROM. However, below we show that, subjet to a di�erent assumption, there exists a

passively seure trivial anonial identi�ation sheme ID

0

suh that SIG(ID

0

) is seure

in the ROM. Thus, in some sense at least, the non-triviality assumption is not neessary.

Let F = (G; f; f

0

) be a trapdoor permutation (see Chapter 2, Setion 4 for the

relevant de�nitions), and onsider the following identi�ation sheme ID

0

= (G;P

0

; V

0

).

ID

0

's key generator G is idential to that of F , so PK = k and SK = k

0

. Informally, we

think of ID

0

as a two-round sheme: the veri�er V

0

hallenges the prover P

0

to invert f

k

on a random string Ch, aepting if and only if P

0

does so suessfully. Formally, ID

0

is a anonial (three-round) sheme where P

0

's ommitment Cmt is �xed, say Cmt = �

for onreteness. The veri�er V

0

, who knows k, aepts a transript (Ch;Rsp) if and



Chapter 3. On the seurity of Fiat-Shamir signature shemes in the ROM29

only if f

k

(Rsp) = Ch (sine the ommitment � is �xed, it may be omitted from the

transript). We refer to suh shemes as \hyper-trivial", sine not only is the entropy of

their ommitment distribution \low", it's atually zero.

First, we show that ID

0

is passively seure. Observe that, although for omplete-

ness we establish it diretly, the passive seurity of ID

0

also follows from the fat that

SIG(ID

0

) is seure in the ROM (as shown below). Suppose that I

T

is a polynomial-time

passive impersonator who breaks the seurity of ID

0

, and denote his (non-negligible)

suess probability by p

I

(n). We use I

T

to onstrut a polynomial-time inverter INV

who breaks the one-wayness of f

k

.

Reall that INV is given 1

n

, k, y 2 f0; 1g

n

and some random bits, and his goal is

to output an x 2 f0; 1g

n

suh that f

k

(x) = y. INV

k

simulates I

T

k

as follows. Whenever

I

T

k

queries the transript orale T , INV

k

randomly hooses x

0

2 f0; 1g

n

, omputes y

0

=

f

k

(x

0

) 2 f0; 1g

n

and gives (y

0

; x

0

) to I

T

k

. Sine f

k

is a bijetion, setting y

0

to f

k

(x

0

) for

a random x

0

is equivalent to setting x

0

to f

0

k

0

(y

0

) for a random y

0

, so (y

0

; x

0

) has exatly

the right distribution. One I

T

k

outputs � to signal he is ready to be hallenged, INV

k

gives him y, reeiving Rsp

0

in reply. INV

k

then outputs Rsp

0

as his guess at f

0

k

0

(y).

Sine INV

k

's simulation of I

T

k

is perfet, f

k

(Rsp

0

) = y with probability p

I

(n), whih is

non-negligible. INV

k

therefore breaks the one-wayness of f

k

, so that ID

0

is passively

seure.

Next, we show that SIG(ID

0

) is seure in the ROM. Suppose that F

R;S

is a polynomial-

time forger who breaks the seurity of SIG(ID

0

) in the ROM, and denote his (non-

negligible) suess probability by p

F

(n). We use F

R;S

to onstrut a polynomial-time

inverter INV who breaks the one-wayness of f

k

.

Reall that F

R;S

is given 1

n

, k and some random bits, and his goal is to output a new

message m

�

together with a signature Rsp

�

suh that f

k

(Rsp

�

) = R(m

�

). Whenever

F

R;S

k

queries S on a message m 2 f0; 1g

�

, he is given f

0

k

0

(R(m)). As in Setion 3, we

assume, without loss of generality, that F

R;S

k

doesn't query R on \short strings" (i.e.
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strings whose length is less than `(n)), doesn't query R on the same string more than

one, and makes the \ruial query" R(m

�

). We additionally assume that F

R;S

k

doesn't

query S on the same message more than one. There is no loss of generality in making

this assumption, beause signing in SIG(ID

0

) is deterministi (sine P

0

is deterministi).

Let q

R

(n) and q

S

(n) denote the number of times F

R;S

k

queries R and S, respetively,

and suppose that the running time of F

R;S

k

is bounded above by n



; suh a  must exist

beause F

R;S

k

runs in strit polynomial time. Observe that q

R

(n) + q

S

(n) � n



, sine in

the worst ase F

R;S

k

queries an orale at every step of his exeution.

Reall that INV is given 1

n

, k, y 2 f0; 1g

n

and some random bits, and his goal is to

output an x 2 f0; 1g

n

suh that f

k

(x) = y. As in Setion 3, INV

k

�rst randomly hooses

an index i 2 f1; : : : ; q

R

(n)g; i represents INV

k

's guess at the index of the ruial query,

and won't be revealed to F

R;S

k

in the ourse of the simulation. Sine F

R;S

k

gets no infor-

mation about i, INV

k

guesses the index of the ruial query orretly with probability

1

q

R

(n)

�

1

n



.

Before beginning the simulation proper, INV

k

generates n



\transripts" (y

1

; x

1

); : : : ;

(y

n



; x

n



) by randomly hoosing x

j

2 f0; 1g

n

and setting y

j

= f

k

(x

j

) for 1 � j � n



; sine

f

k

is a bijetion, this is equivalent to randomly hoosing y

j

and setting x

j

to f

0

k

0

(y

j

).

The idea of generating transripts ahead of time is key, sine it later enables INV

k

to onsistently answer F

R;S

k

's orale queries; reall from Setion 3 that every S query

e�etively involves an impliit R query, and this time we an't rely on the non-triviality

assumption to bail us out. A similar tehnique is used to prove our main result in

Setion 5.

INV

k

now begins his simulation of F

R;S

k

. As in Setion 3, the i

th

random orale query

is treated speially. Sine in this ase the ommitment � is �xed, INV

k

simply answers

the query with y (the string he is trying to invert f

k

on). The rest of F

R;S

k

's orale queries

are handled as follows. Eah time F

R;S

k

queries an orale on a new message m 2 f0; 1g

�

,

INV

k

assoiates an unused transript (y

j

; x

j

) with m; all orale queries regarding m are
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answered using (y

j

; x

j

). Spei�ally, INV

k

sets R(m) to y

j

and S(m) to x

j

. Note that

INV

k

won't run out of transripts, beause F

R;S

k

queries his orales on at most n



distint

messages.

F

R;S

k

eventually outputs Rsp

�

(purportedly a signature of m

�

), whih INV

k

then

outputs as his guess at f

0

k

0

(y). Sine INV

k

's simulation of F

R;S

k

is perfet and the hoie

of i is independent of it, INV

k

sueeds with probability at least

1

n



� p

F

(n), whih is

non-negligible. INV

k

therefore breaks the one-wayness of f

k

, so that SIG(ID

0

) is seure

in the ROM.

Here we have only shown that ID

0

, whih is hyper-trivial, yields a Fiat-Shamir sig-

nature sheme that is seure in the ROM. However, a similar argument demonstrates

that every passively seure anonial identi�ation sheme whose prover is deterministi

(trivial or not) does.

5 Our result

In this setion, we prove the following theorem.

Theorem. For every (atively) seure anonial identi�ation sheme ID = (G;P; V ),

the orresponding Fiat-Shamir signature sheme, SIG(ID) = (G; SIGN

R

; V ER

R

), is

seure in the ROM.

Proof. Suppose that F

R;S

is a polynomial-time forger who breaks the seurity of SIG(ID)

in the ROM, and denote his (non-negligible) suess probability by p

F

(n). We use F

R;S

to onstrut an ative impersonator I who breaks the seurity of ID.

Reall that F

R;S

is given 1

n

, PK and some random bits, and his goal is to output

a new message m

�

together with a valid signature (Cmt

�

;Rsp

�

) of m

�

. As in previous

setions, we make a number of \regularity assumptions" about F

R;S

PK

, without loss of

generality: F

R;S

PK

doesn't query R on \short strings" (i.e. strings whose length is less

than `(n)), doesn't query R on the same string more than one, and makes the \ruial
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query" R(Cmt

�

; m

�

) at some point during his exeution. Note, however, that F

R;S

PK

may

query S on the same message more than one. Sine signing in SIG(ID) is probabilisti,

this makes perfet sense and ould yield useful information.

Reall that I is given 1

n

, PK and some random bits. As per the de�nition of ative

seurity (see Chapter 2, Setion 6), I

PK

�rst gets to interat with P

SK

polynomially

many times in the role of V

PK

. Eah time, I

PK

reeives a ommitment Cmt 2 f0; 1g

`(n)

from P

SK

, sends a (not neessarily random) hallenge Ch 2 f0; 1g

n

to P

SK

, and then

reeives a response Rsp from P

SK

. Next, I

PK

sends a ommitment Cmt

0

to V

PK

| this

marks the end of his \interative" phase | reeiving a random hallenge Ch

0

in reply.

His goal is to output a response Rsp

0

suh that V

PK

(Cmt

0

;Ch

0

;Rsp

0

) = 1.

Let q

R

(n) and q

S

(n) denote the number of times F

R;S

PK

queries R and S, respetively,

and set q(n) = q

R

(n) + q

S

(n). Also, suppose that the running time of F

R;S

PK

is bounded

above by n



; suh a  must exist sine F

R;S

PK

runs in strit polynomial time. Observe that

q(n) � n



, sine in the worst ase F

R;S

PK

queries an orale at every step of his exeution.

Before beginning his simulation of F

R;S

PK

, our impersonator I

PK

obtains q(n) \tran-

sript bloks" B

1

; : : : ;B

q(n)

, eah onsisting of q

S

(n) transripts, by interating with P

SK

.

A new transript is added to a given blok B

k

as follows. I

PK

�rst reeives a ommit-

ment Cmt 2 f0; 1g

`(n)

from P

SK

(it's hosen aording to P

SK

's ommitment distribu-

tion, P

SK

). I

PK

next needs to deide what hallenge Ch 2 f0; 1g

`(n)

to send to P

SK

.

If Cmt does not appear in any of the transripts already ontained in B

k

, I

PK

hooses

Ch randomly. Otherwise, he sets Ch to the hallenge assoiated with Cmt (sine Ch

repeats whenever Cmt does, every ommitment in B

k

is assoiated with some partiu-

lar hallenge). After sending Ch to P

SK

, I

PK

reeives a response Rsp; the transript

(Cmt;Ch;Rsp) is then added to B

k

. One the transript bloks have been generated,

I

PK

randomly hooses an index i 2 f1; : : : ; q

R

(n)g; i represents I

PK

's guess at the index

of the ruial query, and won't be revealed to F

R;S

PK

in the ourse of the simulation.

I

PK

now begins his simulation of F

R;S

PK

. Notie that, thanks to our \regularity as-
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sumptions" above, every orale query made by F

R;S

PK

an be unambiguously assoiated

with some message m 2 f0; 1g

�

. Let m

1

; m

2

; m

3

; : : : be the distint messages assoiated

with F

R;S

PK

's orale queries (there are at most q(n) suh messages). I

PK

answers R and

S queries assoiated with the k

th

distint message m

k

using transripts ontained in the

k

th

blok B

k

. The idea is to ensure that I

PK

an answer as many S(m

k

) queries as ne-

essary | there will be at most q

S

(n) | in a way that is onsistent with his answers to

queries of the form R(Cmt; m

k

), Cmt 2 f0; 1g

`(n)

. Spei�ally, I

PK

answers F

R;S

PK

's j

th

S(m

k

) query with (Cmt;Rsp), where (Cmt;Ch;Rsp) is the j

th

transript ontained in

B

k

. His answer to queries of the form R(Cmt; m

k

) depends on whether the ommitment

Cmt 2 f0; 1g

`(n)

appears in any of the transripts in B

k

. If so, I

PK

sets R(Cmt; m

k

) to

Ch 2 f0; 1g

n

, the hallenge assoiated with Cmt. Otherwise, he randomly hooses an

r 2 f0; 1g

n

and sets R(Cmt; m

k

) to r.

As in previous setions, the i

th

random orale query is handled speially. Suppose

that, for his i

th

random orale query, F

R;S

PK

queries R on some s 2 f0; 1g

�

(reall that

jsj � `(n), sine F

R;S

PK

doesn't query R on \short strings"). I

T

PK

parses s as (Cmt

0

; m

0

),

sends Cmt

0

2 f0; 1g

`(n)

to V

PK

, and reeives a hallenge Ch

0

2 f0; 1g

n

in reply. He then

gives Ch

0

to F

R;S

PK

as the answer to R(s) and ontinues his simulation.

Eventually, F

R;S

PK

outputs a message m

�

together with a purported signature (Cmt

�

;

Rsp

�

) of m

�

. I

PK

then sends Rsp

�

to V

PK

as the answer to the hallenge Ch

0

. If I

PK

guessed the index of the ruial query orretly, then m

�

= m

0

and Cmt

�

= Cmt

0

, so

thatR(Cmt

�

; m

�

) = Ch

0

. In that ase, I

PK

's simulation of F

R;S

PK

is perfet. Let A denote

the event that V

PK

(Cmt

0

;Ch

0

;Rsp

�

) = 1 and B denote the event that i = i

�

, where i

�

is the true index of the ruial query. Sine p

F

(n) >

1

n

d

for some d and in�nitely many

n (beause F

R;S

breaks the seurity of SIG(ID) in the ROM), we get:

Pr[A℄ � Pr[A;B℄ = Pr[A j B℄ � Pr[B℄

= p

F

(n) �

1

q

R

(n)

�

p

F

(n)

n



>

1

n

+d

for in�nitely many n:
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I

PK

therefore breaks the seurity of ID, so that SIG(ID) is seure in the ROM. �



Chapter 4

A publi-key enryption sheme

CCA2-seure in the ROM

1 Publi-key enryption in the ROM: an overview

In [BR93℄, Bellare and Rogaway proposed the following publi-key enryption sheme,

whih they showed to be CCA2-seure in the ROM (see Setions 7 and 8 of Chapter 2

for the relevant de�nitions). Let (G; f; f

0

) be a trapdoor permutation (see Setion 4

of Chapter 2). The key generator GEN

R

simulates G to obtain a pair of keys (k; k

0

)

and sets pub = k, pri = k

0

. Let n be the seurity parameter. To enrypt a message

m 2 f0; 1g

n

, ENC

R

k

hooses r 2 f0; 1g

n

randomly, omputes y = f

k

(r) and sets e

m

to

(y;R(r) � m;R(r;m)). Given a purported enryption e = (�; �; ), DEC

R

k

0

omputes

r = f

0

k

0

(�) and sets m = � � R(r). If  6= R(r;m), he outputs ?, indiating a failure

to derypt; otherwise, he outputs m as the deryption of e. Intuitively, r is hard to

�nd beause f

k

is hard to invert. Together with the randomness of R, this implies

that R(r)�m yields no information about m, whih guarantees semanti seurity. The

\authenti�ation ode" R(r;m) ensures that enryptions are diÆult to \malleate".

One drawbak of the above sheme is that enryptions are of length about 3n, or

35
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roughly three times the length of the message being enrypted. To address this issue,

Bellare and Rogaway introdued the highly inuential Optimal Asymmetri Enryption

Padding or OAEP sheme in [BR94℄, a simpli�ed version

1

of whih is desribed next. Let

F = (G; f; f

0

) be a trapdoor permutation. As before, the key generator GEN

R

simulates

G to obtain a pair of keys (k; k

0

) and sets pub = k, pri = k

0

. Let n be the seurity

parameter. To simplify the presentation, it will be onvenient to assume that f

k

and f

0

k

0

map 2n bits to 2n bits (as opposed to n bits to n bits). To enrypt a message m 2 f0; 1g

n

,

ENC

R

k

hooses r 2 f0; 1g

n

randomly, omputes �(m) = (m � R(r); r � R(m � R(r)))

and sets e

m

= f

k

(�(m)); � is sometimes alled the padding funtion. Given a purported

enryption � 2 f0; 1g

2n

, DEC

R

k

0

omputes (�; ) = f

0

k

0

(�), where j�j = jj = n, and sets

r =  � R(�). He then outputs m = � � R(r) 2 f0; 1g

n

as the deryption of �; notie

that every � is a valid enryption of some m, so that DEC

R

k

0

never outputs ?. This

sheme was shown to be \plaintext aware" in [BR94℄, where it was also laimed (without

proof) that plaintext awareness implies \seurity against hosen-iphertext attak" (it's

not entirely lear whether the authors had CCA1 or CCA2 seurity in mind).

After Bleihenbaher showed in [Ble98℄ that version 1.5 of RSA Seurity's PKCS #1

standard ([RSA93℄) is vulnerable to hosen-iphertext attak, RSA-OAEP (a onrete

implementation of the OAEP sheme where the role of F is played by the RSA funtion)

served as the basis for version 2.0 of the standard ([RSA98℄). RSA-OAEP was subse-

quently also inorporated into IEEE's publi-key ryptography standard, IEEE P1363-

2000 ([IEE00℄). However, in [Sho01℄ Shoup pointed out that, although OAEP is indeed

CCA1-seure, there is an (additional, not random) orale relative to whih F remains

one-way but OAEP fails to be CCA2-seure. Sine standard \blak-box" seurity redu-

tions relativize | that is, hold relative to every orale | any redution from inverting

F to breaking the CCA2 seurity of OAEP would therefore have to be \non-blak-box",

1

The real sheme makes use of two independent random orales, G and H, and has three seurity

parameters.
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meaning that it would need to somehow depend on the spei�s of F . Shoup also pro-

posed a modi�ation of OAEP, alled OAEP+, whih he proved to be CCA2-seure in

the ROM. In [FOPS01℄, Fujisaki, Okamoto, Pointheval and Stern proved that OAEP

is CCA2-seure under the stronger assumption that F is \partial domain one-way", as

opposed to \full domain one-way" or simply one-way (also see [FOPS04℄ for the journal

version). Sine RSA is \random self-reduible" | loosely, this means that being able

to invert it on a large fration of the inputs allows one to invert it on every single in-

put | it is \partial domain one-way" if and only if it is one-way. Thus, Shoup's result

notwithstanding, RSA-OAEP is in fat CCA2-seure under the RSA assumption.

In [Bon01℄, Boneh observed that the OAEP padding funtion � may be viewed as

two rounds of a \Feistel network" and proposed two simpler, more elegant single-round

padding funtions. When used in onjuntion with either RSA or Rabin's modular

squaring funtion, these new paddings yield enryption shemes whih are CCA2-seure

in the ROM (under the assumption that RSA is hard to invert and fatoring is hard,

respetively). Interestingly, Boneh reommends using the Rabin funtion in preferene

to RSA where his paddings are onerned, sine it has better \redution eÆieny".

In [CS98℄, Cramer and Shoup desribed an eÆient, pratial publi-key enryp-

tion sheme (its eÆieny is omparable to that of RSA-OAEP) whih is CCA2-seure

in the \real world" (and hene also in the ROM) under the non-standard-yet-highly-

plausible \Deisional DiÆe-Hellman" assumption. This important result is perhaps the

main reason why there hasn't been a great deal of work done on disrete logarithm-based

publi-key enryption shemes whih are CCA2-seure in the ROM.

2 The original sheme

In [BR97℄, Bellare and Rogaway proposed a disrete logarithm-based publi-key enryp-

tion sheme alled the DiÆe-Hellman Integrated Enryption Sheme or DHIES, whih
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they laimed is CCA2-seure in the ROM under the \Computational DiÆe-Hellman"

assumption (a standard disrete log-type hardness assumption). However, in [ABR01b℄

Abdalla, Bellare and Rogaway oneded that DHIES is unlikely to be CCA2-seure in the

ROM under the above assumption (see also [ABR01a℄). Instead, they proved that DHIES

is CCA2-seure in the \real world" under a strong, non-standard DiÆe-Hellman-type as-

sumption alled the \Hash DiÆe-Hellman" assumption; their new fous on \real-world"

seurity (as opposed to seurity in the ROM) was likely a response to Cramer and Shoup's

1998 disovery ([CS98℄) of a pratial publi-key enryption sheme whih is CCA2-seure

in the \real world" under the non-standard-yet-plausible \Deisional DiÆe-Hellman" as-

sumption. Although its seurity rests on a rather less believable assumption, DHIES is

somewhat more eÆient than Cramer and Shoup's sheme. We now give an informal

desription of the DHIES enryption sheme.

Let G be a yli multipliative group of order p� 1, where p is some n-bit prime (n

being the seurity parameter). For onreteness, think of G as Z

�

p

= f1; 2; : : : ; p�1g (here

the group operation is multipliation mod p). We will need to assume that membership

in G is eÆiently testable, whih is the ase for Z

�

p

. It will also sometimes be onvenient

to treat the elements of G as strings over f0; 1g, say via their binary enoding.

Fix a generator g 2 G, so that G = fg; g

2

; : : : ; g

p�1

g; g is impliitly given to all

partiipants, as are p and 1

n

. Informally, the Computational DiÆe-Hellman assumption

(often abbreviated as the CDH assumption) with respet to G says that g

uv

2 G is hard

to ompute from g

u

2 G and g

v

2 G. Formally, the CDH assumption holds for G if,

for every probabilisti polynomial-time adversary A who is given g

u

2 G and g

v

2 G for

randomly hosen u; v 2 f1; : : : ; p � 1g, the probability p

A

(n) that A outputs g

uv

2 G is

negligible; here p

A

(n) is taken over the random bits of A as well as the hoie of u and v.

We will need a seure MAC M = (SIGN; V ER) (see Setion 5 of Chapter 2) and a

seure \private-key enryption sheme" E = (ENC;DEC) (the latter haven't atually

been formally de�ned in this thesis). M must also be \non-malleable" in the following
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sense: given a signature � of some message m, it is infeasible to �nd another signature

�

0

6= � of m. Both seure non-malleable MACs and seure \private-key enryption

shemes" an be implemented using \pseudorandom funtion generators" ([GGM84b℄),

whih exist if one-way funtions (see Setion 2 of Chapter 2) do ([GGM84a℄, [GGM86℄).

To generate a mathing publi/private key pair, randomly hoose a v 2 f1; : : : ; p�1g

and set pub = g

v

2 G, pri = v.

To enrypt a message m 2 f0; 1g

n

given a publi key g

v

, �rst randomly hoose

u 2 f1; : : : ; p� 1g and ompute g

u

2 G, (g

v

)

u

= g

uv

2 G. Next, query the random orale

R on (g

u

; g

uv

) (notie that here we are treating elements of G as binary strings) to obtain

two keys k

1

; k

2

2 f0; 1g

n

(here we assume for onveniene that R : f0; 1g

�

! f0; 1g

2n

).

Finally, ompute s = ENC

k

1

(m), t = SIGN

k

2

(s) and output e

m

= (g

u

; s; t) as the

enryption of m.

To derypt a purported iphertext e = (�; �; ) given a private key v, proeed as

follows. If � =2 G, output ?, indiating a failure to derypt. Otherwise, ompute �

v

2 G

and query R on (�; �

v

) to obtain k

1

; k

2

2 f0; 1g

n

. If V ER

k

2

(�; ) = 0, output ?.

Otherwise, output DEC

k

1

(�) as the deryption of e.

Next, we briey argue why DHIES is unlikely to be CCA2-seure in the ROM (with-

out atually proving that it isn't). The standard way to demonstrate that a publi-key

enryption sheme is CCA2-seure is to show that it is both semantially seure (see

Chapter 2, Setion 7) and \plaintext-aware". Informally, a publi-key enryption sheme

is plaintext-aware if the deryption orale D is useless to the CCA2 adversary ADV ,

meaning that ADV is only able to get D to derypt iphertexts he ould have derypted

himself. More formally, we say that a publi-key enryption sheme is plaintext-aware in

the ROM if, for every probabilisti polynomial-time adversary ADV

R;D

, there is a or-

responding probabilisti polynomial-time adversary A

R

suh that the di�erene between

the suess probabilities of ADV

R;D

and A

R

is negligible (in n). A

R

essentially simulates

ADV

R;D

, omputing D's answers himself based on ADV

R;D

's view. Below, we provide
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evidene that DHIES fails to have this property.

Reall that ADV

R;D

is given g

v

2 G, hooses a pair of messages m

0

; m

1

2 f0; 1g

n

and then sees an enryption e

b

= (g

u

; s = ENC

k

1

(m

b

); t = SIGN

k

2

(s)), where k

1

k

2

=

R(g

u

; g

uv

) and b 2 f0; 1g, u 2 f1; : : : ; p� 1g are hosen randomly. Sine ADV

R;D

is not

allowed to query D on e

b

, he must modify at least one of g

u

, s and t.

If ADV

R;D

queries D on e

0

= (g

u

0

; s

0

; t

0

), where either s

0

6= s or t

0

6= t (or both), A

R

an safely respond with ?. This is almost ertainly the right answer, beause in order for

e

0

to be a valid iphertext ADV

R;D

would need to either sign a new message (if s

0

6= s),

or ome up with another signature of an old message (if s

0

= s); the former is infeasible

beause M is seure, whereas the latter is infeasible beause M is non-malleable. If, on

the other hand, ADV

R;D

queries D on (g

u

0

; s; t) for some u

0

6= u, the orret answer is

again almost ertainly ?, provided that g

u

0

v

6= g

uv

. Although we haven't done so, we

ould ensure that is the ase by stipulating that jGj = q for some prime q.

However, as we shall now see, D allows ADV

R;D

to determine, given any �; � 2 G,

whether �

v

= � (reall that ADV

R;D

does not know v). First, ADV

R;D

omputes

k

1

k

2

= R(�; �) and reates an enryption e

0

= (�; s

0

= ENC

k

1

(m); t

0

= SIGN

k

2

(s

0

)) of

some message m 2 f0; 1g

n

, say

�

0 for de�niteness. Next, he queries D on e

0

. It is easy to

show that D(e

0

) = m (as opposed to ?) if and only if �

v

= �. Sine it is by no means

lear how A

R

would emulate suh a funtionality, a stronger assumption than CDH is

apparently required to ensure that DHIES is CCA2-seure in the ROM.

3 Our modi�ation

We now desribe a modi�ed version of DHIES, alled DHIES+, whih is provably seure

in the ROM under the CDH assumption. Although in what follows we only show how

to enrypt a single bit in order to simplify the presentation, our sheme an be easily

extended to enrypt n-bit messages with the aid of a seure MAC and a seure private-key
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enryption sheme.

Let G be a yli multipliative group of order q, where q is some n-bit prime (n

being the seurity parameter). For onreteness, think of G as a subgroup of Z

�

p

, where

p > q is some other prime. Notie that here, unlike in Setion 2, jGj is prime. This will

be important in Setion 3.2 below. Fix a generator g 2 G, so that G = fg; g

2

; : : : ; g

q

g; g

is one again impliitly given to all partiipants, as are q and 1

n

.

To generate a mathing publi/private key pair, randomly hoose a v 2 f1; : : : ; qg

and set pub = g

v

2 G, pri = v.

To enrypt a bit b given a publi key g

v

, �rst randomly hoose u 2 f1; : : : ; qg and

ompute g

u

2 G, (g

v

)

u

= g

uv

2 G. Next, query R to obtain s

0

s

1

r = R(g

uv

), where

s

0

; s

1

; r 2 f0; 1g

n

(here we assume for onveniene that R : f0; 1g

�

! f0; 1g

3n

). Finally,

ompute t = u� r and output e

b

= (g

u

; s

b

; t) as the enryption of b.

To derypt a purported iphertext e = (�; �; ) given a private key v, proeed as

follows:

1. If � =2 G, output ?, indiating a failure to derypt.

2. Compute �

v

2 G and query R to obtain s

0

s

1

r = R(�

v

).

3. Set u =  � r and ompute g

u

2 G. If � 6= g

u

, output ?.

4. If � =2 fs

0

; s

1

g, output ?. Otherwise, output a b suh that � = s

b

as the deryption

of e.

Remark. Notie that there is a small probability (

1

2

n

, to be exat) that s

0

= s

1

, in whih

ase we won't be able to derypt e orretly. This unlikely ourrene an be avoided by

making the sheme slightly more ompliated, but we won't go into the details here.

We will prove that DHIES+ is CCA2-seure in the ROM in two stages. First, we'll show

that it is semantially seure in the ROM under the CDH assumption. Next, we'll show

that it is plaintext-aware in the ROM.
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3.1 Semanti seurity

Intuitively, DHIES+ is semantially seure in the ROM under the CDH assumption

beause s

b

provides the adversary with no information about b unless he an ompute

g

uv

2 G, whih is infeasible if the DiÆe-Hellman problem is hard for G. More formally,

suppose that ADV

R

is a probabilisti polynomial-time adversary who breaks the seman-

ti seurity (see Chapter 2, Setion 7) of DHIES+ in the ROM. Sine in this ase there

are only two possible plaintexts (namely 0 and 1), there is no need to let ADV

R

hoose

m

0

and m

1

. Instead, he simply gets a publi key g

v

2 G and an enryption e

b

= (g

u

; s

b

; t)

of a randomly hosen bit b, where s

0

s

1

r = R(g

uv

) and t = u�r. Denote ADV

R

's suess

probability by p

ADV

(n) and the total number of times he queries R during his exeution

by (n); p

ADV

(n) is taken over ADV

R

's random bits, as well as the randomness of R

and the hoie of b, u and v. Sine ADV

R

runs in strit polynomial time, (n) � n



for

some . We may assume without loss of generality that ADV

R

never queries R on the

same string more than one, sine R's response would be idential.

We use ADV

R

to onstrut a probabilisti polynomial-time solver S who, given g

u

2

G and g

v

2 G for randomly hosen u; v 2 f1; : : : ; qg, outputs g

uv

2 G with non-negligible

probability. S �rst randomly hooses i 2 f1; : : : ; (n)g and s; t 2 f0; 1g

n

. He then

simulates ADV

R

on (g

v

; (g

u

; s; t)), answering all of ADV

R

's R queries randomly. As

soon as ADV

R

asks his i

th

random orale query, R(m), S ends the simulation and

outputs m as the value of g

uv

(if ADV

R

terminates before asking the i

th

query or m =2 G,

S outputs some dummy value suh as g

u

).

Let A be the event that ADV

R

sueeds and B be the event that ADV

R

queries R

on g

uv

2 G at some point. Observe that

p

ADV

(n) = Pr[A℄ = Pr[A;B℄ + Pr[A;B℄

= Pr[A;B℄ + Pr[A j B℄ � Pr[B℄

� Pr[A;B℄ + Pr[A j B℄;
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and note that Pr[A j B℄ =

1

2

, beause in that ase s

b

yields no information about b. Sine

ADV

R

breaks the semanti seurity of DHIES+ in the ROM, p

ADV

(n) >

1

2

+

1

n

d

for some

d and in�nitely many n. We therefore have:

Pr[A;B℄ � p

ADV

(n)� Pr[A j B℄ = p

ADV

(n)�

1

2

>

1

2

+

1

n

d

�

1

2

=

1

n

d

for in�nitely many n:

Now denote the suess probability of S (taken over his random bits, as well as the hoie

of u and v) by p

S

(n), and let C be the event that ADV

R

's i

th

random orale query is

R(g

uv

). Sine i 2 f1; : : : ; (n)g is hosen uniformly (and independently of the simulation

of A

R

), where (n) � n



, we get:

p

S

(n) = Pr[A;B;C℄ = Pr[C j A;B℄ � Pr[A;B℄ =

1

(n)

� Pr[A;B℄

>

1

(n)

�

1

n

d

�

1

n



�

1

n

d

=

1

n

+d

for in�nitely many n:

This shows that p

S

(n) is non-negligible, so that DHIES+ is semantially seure in the

ROM under the CDH assumption. �

3.2 Plaintext awareness

Informally, DHIES+ is plaintext-aware in the ROM beause the fat that u (and not

merely g

u

) is inorporated into the iphertext e enables the simulator to not only deter-

mine if the adversary knows the deryption of e, but to atually derypt it himself (albeit

with negligible error).

More formally, let ADV

R;D

be a probabilisti polynomial-time adversary who is given

a publi key g

v

2 G and attempts to break the CCA2 seurity (see Chapter 2, Setion 7)

of DHIES+ in the ROM. Suppose for simpliity that there is no \lunhtime attak"

phase, so that ADV

R;D

gets an enryption e

b

= (g

u

; s

b

; u� r) of a random bit b (where

s

0

s

1

r = R(g

uv

)), queries the deryption orale D on a bunh of strings a

0

; a

1

; a

2

; : : :, and

�nally outputs a bit b

0

. We may assume that a

i

2 f0; 1g

3n

(so that a

i

= (�

i

; �

i

; 

i

) for
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some �

i

; �

i

; 

i

2 f0; 1g

n

), sine D's reply would de�nitely be ? otherwise. Let p

ADV

(n)

denote the probability that b

0

= b; p

ADV

(n) taken over ADV

R;D

's random bits and the

randomness of R, as well as the hoie of v, u and b. We must exhibit a probabilisti

polynomial-time adversary A

R

, also given g

v

and e

b

, suh that jp

ADV

(n) � p

A

(n)j is

negligible; here p

A

(n) is the probability that A

R

orretly outputs b, taken over his

random bits and the randomness of R, as well as the hoie of v, u and b.

Let A

R

simulate ADV

R;D

, answering his D(a

i

) queries as follows. A

R

heks whether

ADV

R;D

has previously queried the random oraleR on a string w suh that (�

i

; �

i

; 

i

) =

(g

u

0

; s

0

m

; u

0

� r

0

), where w = g

u

0

v

, s

0

0

s

0

1

r

0

= R(w), u

0

2 f1; : : : ; qg and m is a bit; he is

basially just trying to determine if ADV

R;D

already knows the deryption of a

i

. A

R

's

answer is m if suh a w exists and ? otherwise.

First, observe that whenever A

R

answers D(a

i

) with m, so doesD, sineD(g

u

0

; s

0

m

; u

0

�

r

0

) = m provided that s

0

0

s

0

1

r

0

= R(g

u

0

v

) and u

0

2 f1; : : : ; qg. It remains to show that if

A

R

's answer is ?, then so is D's (almost ertainly, anyway). We onsider the following

two exhaustive ases.

� Case #1: �

i

6= g

u

If �

i

=2 G then D(a

i

) = ? and we are done. Let us therefore suppose that �

i

= g

u

0

for some u

0

2 f1; : : : ; qg, u

0

6= u, so that a

i

= (g

u

0

; �

i

; 

i

). Set s

0

0

s

0

1

r

0

= R(g

u

0

v

).

Sine G has prime order, we are guaranteed that g

u

0

v

6= g

uv

. This matters beause

we would otherwise have s

0

b

= s

b

, r

0

= r, and ADV

R;D

has information about both

s

b

and r by virtue of having seen e

b

= (g

u

; s

b

; u� r).

{ Subase #1a: ADV

R;D

has queried R on g

u

0

v

Sine A

R

's answer was ?, either �

i

=2 fs

0

0

; s

0

1

g or 

i

6= u

0

� r

0

. In both ases,

D(a

i

) = ?.

{ Subase #1b: ADV

R;D

hasn't queried R on g

u

0

v

In this ase s

0

0

, s

0

1

and r

0

are ompletely random (note that this assertion is
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justi�ed only beause g

u

0

v

6= g

uv

). The probability that a

i

is a valid enryption,

so that D(a

i

) 6= ?, is therefore

2

2

n

|{z}

s

0

0

or s

0

1

�

1

2

n

|{z}

r

0

=

2

4

n

;

whih is ertainly negligible.

� Case #2: �

i

= g

u

{ Subase #2a: 

i

= u� r

If �

i

=2 fs

0

; s

1

g then D(a

i

) = ? and we are done, so suppose that �

i

= s

�

b

(reall that ADV

R;D

isn't allowed to query D on e

b

= (g

u

; s

b

; u � r)). Sine

A

R

's answer was ?, we know that ADV

R;D

hasn't queried R on g

uv

, and

onsequently has no information about s

�

b

(beause ADV

R;D

hasn't seen s

�

b

,

we may view it as not having been hosen yet). The probability that a

i

is

a valid enryption (so that D(a

i

) 6= ?) is therefore

1

2

n

in this ase, whih is

again negligible.

{ Subase #2b: 

i

6= u� r

In this ase D(a

i

) = ?, so we are done.

We an therefore onlude that the di�erene between p

A

(n) and p

ADV

(n) is negligi-

ble, whih means that DHIES+ is plaintext-aware in the ROM. Sine we have already

shown in Setion 3.1 that DHIES+ is semantially seure in the ROM under the CDH

assumption, this ompletes our proof that it is CCA2-seure in the ROM under the CDH

assumption. �



Chapter 5

Uninstantiability

1 The random orale methodology and \uninstan-

tiable" shemes

As originally proposed in [BR93℄ and applied in pratie, the Random Orale Method-

ology involves taking a onstrution whih is seure in the ROM (usually under a stan-

dard hardness assumption) and \instantiating" the random orale R using a \ryp-

tographially strong" hash funtion h : f0; 1g

�

! f0; 1g

n

; whenever R is queried on

m 2 f0; 1g

�

, the answer is h(m). However, a hash funtion ensemble H = fH

n

g

n2N

,

H

n

= fh

s

: f0; 1g

�

! f0; 1g

n

g

s2f0;1g

n

(see Chapter 2, Setion 3) must stritly speaking

be used instead. The reason is that, as we'll see shortly, it isn't hard to ome up with

signature and publi-key enryption shemes (see setions 5 and 7 of Chapter 2, respe-

tively) whih are seure in the ROM yet beome hopelessly inseure if R queries are

answered using a �xed funtion h. We therefore all a signature or publi-key enryption

sheme uninstantiable if it is seure in the ROM (possibly under some hardness assump-

tion) yet inseure in the real world, no matter what hash funtion ensemble H is used to

instantiate the random orale R.

Sine random orales are one-way (see Chapter 2, Setion 8), the results of [Rom90℄

46
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imply that signature shemes whih are seure in the ROM exist unonditionally

1

. Given

a hash funtion h, we an obtain a signature sheme whih is seure in the ROM but

annot be instantiated using h by modifying any signature sheme whih is seure in the

ROM as follows. Given a message m 2 f0; 1g

�

, the new signer omputes a signature � of

m as before and then heks whether R(

�

0) = h(

�

0). If so, he outputs (pri; �); otherwise,

he outputs (

�

0; �). Given a message m and a purported signature � of m, the new veri�er

parses � as (�; ), where j�j = n, and then heks whether  is a valid signature of m as

before. Observe that our modi�ation does not violate the orretness of the sheme, sine

every signature output by the signer is aepted by the veri�er, whether R(

�

0) = h(

�

0) or

not. The modi�ed sheme also remains seure in the ROM, beause the probability that

R(

�

0) = h(

�

0) (taken over the randomness of R) is

1

2

n

. However, one R is instantiated

using h, all the forger has to do to learn pri | thereby ompletely breaking the sheme's

seurity | is query his signature orale on some string (say � for onreteness).

The above approah an be readily adapted to yield a publi-key enryption sheme

whih is seure in the ROM, but annot be instantiated using h. To obtain suh a sheme,

simply take any publi-key enryption sheme whih is seure in the ROM (as noted in

Chapter 1, in light of the results of [IR89℄ a hardness assumption of some sort will almost

ertainly be neessary here) and modify it as follows. Given a message m 2 f0; 1g

n

,

the new enryptor omputes an enryption e of m as before and then heks whether

R(

�

0) = h(

�

0). If so, he outputs (m; e); otherwise, he outputs (

�

0; e). Given a purported

enryption �, the new deryptor �rst parses � as (�; ), where j�j = n, then derypts

 as before. Observe that our modi�ation one again doesn't violate the orretness

of the sheme, sine every enryption output by the enryptor is orretly derypted by

the deryptor, whether R(

�

0) = h(

�

0) or not. It is easy to see that the modi�ed sheme

remains seure in the ROM, but beomes ompletely inseure ifR is instantiated using h.

1

A subtle but important tehnial point to note here is that both Rompel's onstrution and his proof

are of the \blak-box" variety.
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2 The �rst uninstantiability result

Canetti, Goldreih and Halevi �rst showed that uninstantiable signature and publi-key

enryption shemes exist in [CGH98℄. Their key insight was that, for every hash funtion

ensemble H = fH

n

g

n2N

, H

n

= fh

s

: f0; 1g

�

! f0; 1g

n

g

s2f0;1g

n

, there exists a binary

relation R

H

=

S

n2N

f(s; h

s

(s))g

s2f0;1g

n

with the following two properties:

(i) There is a (deterministi) polynomial-time mahine M

H

whih, given any s 2

f0; 1g

n

, outputs an x 2 f0; 1g

�

suh that (x; h

s

(x)) 2 R

H

.

(ii) For every probabilisti polynomial-time \�nder" F

R

who is given 1

n

, the probability

(taken over the random bits of F

R

and the randomness of R) that F

R

outputs an

x 2 f0; 1g

�

suh that (x;R(x)) 2 R

H

is negligible in n.

R

H

obviously satis�es property (i), sine M

H

an simply output s itself as x. To see that

R

H

satis�es property (ii), observe that (x;R(x)) 2 R

H

, R(x) = h

x

(x). F

R

's suess

probability is therefore at most

q

R

2

n

, where q

R

is the (polynomially bounded) number of

times he queries R. Notie that R

H

is also polynomial-time deidable in the following

sense: to determine whether (x; y) 2 R

H

, one need only ompute y

0

= h

x

(x) (this an be

done in polynomial time, beause H is eÆiently evaluable) and hek if y = y

0

.

Given any hash funtion ensemble H, we an use R

H

to obtain a signature sheme

whih is seure in the ROM yet beomes inseure when the random orale R is instan-

tiated using H. The idea is to take a signature sheme whih is seure in the ROM (as

pointed out in Setion 1, suh shemes exist unonditionally) and modify it as follows.

Given a message m 2 f0; 1g

�

, the new signer omputes a signature � of m as before and

then heks whether (m;R(m)) 2 R

H

(this an be done in polynomial time, sine R

H

is polynomial-time deidable). If so, he outputs (pri; �); otherwise, he outputs (

�

0; �).

Given a message m and a purported signature � of m, the new veri�er parses � as

(�; ), where j�j = n, and then heks whether  is a valid signature of m as before.

Observe that our modi�ation does not violate the orretness of the sheme, sine every
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signature output by the signer is aepted by the veri�er, whether (m;R(m)) 2 R

H

or

not. The modi�ed sheme also remains seure in the ROM, sine property (ii) above

guarantees that any forger has only a negligible probability of �nding an m suh that

(m;R(m)) 2 R

H

. However, one R is instantiated using H, the forger, who is given s,

need only query his signature orale S on s to obtain pri.

We next use diagonalization to go from shemes whih annot be instantiated using

some spei� ensemble H to shemes whih annot be instantiated using any ensem-

ble. Reall from Setion 3 of Chapter 2 that every hash funtion ensemble H an be

identi�ed with its polynomial-time \evaluator" Turing mahine M

H

. We an therefore

e�etively enumerate all hash funtion ensembles by enumerating all polynomial-time

Turing mahines and padding or trunating their output as neessary. Let M

U

be the

universal Turing mahine doing the enumerating, and denote the orresponding \univer-

sal" ensemble by U = fU

n

g

n2N

. Sine the running time of every polynomial-time ma-

hine annot be upper-bounded by a single polynomial, M

U

will need to run in \slightly

super-polynomial" time, say O(n

log n

) for onreteness. It is easy to see that when U

is substituted for H in the above onstrution, the resulting signature sheme is unin-

stantiable. However, the signer no longer runs in polynomial time, sine to determine

whether (m;R(m)) 2 R

U

he must e�etively simulate M

U

.

Fortunately, the above diÆulty an be overome with the aid of Miali's non-interative

CS proofs ([Mi94℄, [Mi00℄). Let M

0

U

be a deider for R

U

. Instead of running M

0

U

di-

retly to determine whether (m;R(m)) 2 R

U

, the new signer parses m as (s; �) and

heks if � is a valid CS proof that M

0

U

aepts (s;R(s)) within O(n

log n

) steps, where

n = jsj+jR(s)j. Sine CS proofs an be veri�ed very eÆiently, this only takes polynomial

time. In the ROM, the sheme remains seure beause CS proofs are \omputationally

sound"

2

, meaning that it is infeasible to �nd a valid proof of a false statement. However,

2

Interestingly, it is not known whether non-interative CS proofs are omputationally sound in the

\real world" under some reasonable omplexity assumption.
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one R is instantiated using some ensemble H, the \perfet ompleteness" property of

CS proofs guarantees that a forger an ompute a valid � in polynomial time.

Just as in Setion 1, the above approah an be readily adapted to yield an uninstan-

tiable publi-key enryption sheme.

3 A simple proof of the �rst result

In [MRH04℄, Maurer, Renner and Holenstein introdued a new type of reduibility, based

on the onept of indi�erentiability. To motivate their de�nitions, they gave a simple

proof of the existene of uninstantiable signature and publi-key enryption shemes. We

present a further simpli�ed version of their argument below.

To obtain an uninstantiable signature sheme, modify any signature sheme whih is

seure in the ROM (as pointed out in Setion 1, suh shemes exist unonditionally) as

follows. Given a message m 2 f0; 1g

�

, the new signer �rst omputes a signature � of m

as before. He then parses m as (hMi; 1

t

), where hMi desribes a (deterministi) Turing

mahine M under some reasonable enoding, and simulates M on hMi for at most t steps.

If M outputs R(hMi), the signer outputs (pri; �); otherwise, he outputs (

�

0; �). Given a

message m and a purported signature � of m, the new veri�er parses � as (�; ), where

j�j = n, and then heks whether  is a valid signature of m as before. Observe that our

modi�ation does not violate the orretness of the sheme, sine every signature output

by the signer is aepted by the veri�er, whether M outputs R(hMi) within t steps or

not. Also note that the new signer runs in polynomial time, sine simulating M takes

time O(t) and t � jmj.

To onvine yourself that the modi�ed sheme remains seure in the ROM, onsider

a funtion family F = ff

t

g

t2N

where eah f

t

: f0; 1g

�

! f0; 1g

�

is de�ned by

f

t

(hMi) =

8

>

>

<

>

>

:

M(hMi) if M halts within t steps

� otherwise
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To learn pri using the \trapdoor" we have built into the sheme, a forger would e�etively

need to �nd a t 2 N and an x 2 f0; 1g

�

suh that f

t

(x) = R(x). His probability of �nding

suh a pair (t; x) is at most

q

R

2

n

(where q

R

is the number of times he queries R), whih is

negligible in n.

One R is instantiated using a hash funtion ensemble H, however, it beomes trivial

to ompletely break the sheme's seurity. Reall that, beause H is eÆiently evaluable,

there exists a (deterministi) polynomial-time Turing mahine M

H

suh that M

H

(s; x) =

h

s

(x) for all s 2 f0; 1g

n

and x 2 f0; 1g

�

(see Chapter 2, Setion 3). Let M

h

s

denote

M

H

with some partiular s \hard-oded" into it, so that M

h

s

(x) = M

H

(s; x) for all

x 2 f0; 1g

�

, and suppose that n



is an upper bound on the running time of M

h

s

. When

given input hM

h

s

i, M

h

s

halts within n



steps and outputs h

s

(hM

h

s

i). The forger, who is

given s, need therefore only query his signature orale on (hM

h

s

i; 1

n



) to learn pri. �

Just as in Setion 1, the above approah an be readily adapted to yield an uninstan-

tiable publi-key enryption sheme.

4 An uninstantiability result for Fiat-Shamir signa-

ture shemes

The arti�iality of [CGH98℄'s onstrutions left open the possibility that \reasonable"

signature shemes whih are seure in the ROM, and in partiular Fiat-Shamir signature

shemes, an in fat be instantiated using appropriate hash funtion ensembles. However,

in [GTK03℄ Goldwasser and Tauman-Kalai showed that there exist uninstantiable Fiat-

Shamir signature shemes. It must be remarked that Goldwasser and Tauman-Kalai's

onstrution is, if anything, even more ontrived than those of [CGH98℄. Barak and

Goldreih's Universal Arguments ([BG02℄) are used in plae of Miali's CS proofs, and

Merkle trees ([Mer90℄) also make an appearane. Most distressingly, the proof itself has a

highly non-onstrutive, tree-like struture: rather than demonstrate that a single (albeit
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unnatural) Fiat-Shamir sheme is uninstantiable, Goldwasser and Tauman-Kalai exhibit

three suh shemes, one of whih must be uninstantiable. Nonetheless, from a purely

theoretial standpoint, Goldwasser and Tauman-Kalai's result deals a severe blow to the

validity of the so-alled Fiat-Shamir paradigm (see Chapter 3, Setion 1).



Chapter 6

A taste of \real-word" seurity

In the following two setions, we briey survey a number of pratial signature shemes

and publi-key enryption shemes whih are seure in the \real world" (as opposed to

in the ROM) under either standard or nonstandard-yet-quite-plausible hardness assump-

tions.

1 Signature shemes

� In [DN94℄, Dwork and Naor proposed a pratial signature sheme whih is seure

| that is, seure against existential forgery under adaptive hosen-message attak

(see Chapter 2, Setion 5) | under the standard \RSA assumption". Informally,

the RSA assumption says that the following problem is hard: given a modulus n =

pq where p and q are random primes, a random y 2 Z

�

n

and a random exponent e

relatively prime to (p�1)(q�1), �nd an x 2 Z

�

n

suh that x

e

� y mod n. Although

it an be shown that this problem would be easy if p and q were given expliitly,

it is not known whether fatoring n an be redued to �nding x. While their

onstrution is oneptually similar to the \authenti�ation trees" of [GMR88℄,

Dwork and Naor's use of \bushy trees" of high degree and small depth rather than

binary trees signi�antly improves eÆieny: for some reasonable settings of the

53
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seurity parameters, signing requires only four tree authentiations. A signi�ant

drawbak of their onstrution is that all signers and veri�ers must share two lists,

one onsisting of random integers and the other of random primes.

� In [Cr96℄, Cramer and Damg�ard desribed an improved version of Dwork and Naor's

signature sheme ([DN94℄), seure under the same assumptions. In this new version,

signers and veri�ers need only share a single list onsisting of random primes.

� In [GHR99℄, Gennaro, Halevi and Rabin presented a rather eÆient \hash-and-

invert" signature sheme seure under the nonstandard-yet-quite-plausible \strong

RSA assumption". Informally, the strong RSA assumption says that the following

problem is hard: given a modulus n = pq where p and q are random primes and

a random y 2 Z

�

n

, �nd an x 2 Z

�

n

and an exponent 1 < e < n relatively prime to

(p � 1)(q � 1) suh that x

e

� y mod n; notie that, unlike in the RSA problem,

here e is allowed to depend on y. Gennaro, Halevi and Rabin's sheme makes use

of \ollision-resistant hameleon hash funtions", whih exist if fatoring is hard.

For typial settings of the seurity parameters, it is more than twie as eÆient as

Cramer and Damg�ard's sheme ([Cr96℄).

� In [CS99℄, Cramer and Shoup presented another eÆient \hash-and-invert" sig-

nature sheme seure under the \strong RSA assumption". Their sheme builds

on that of Cramer and Damg�ard ([Cr96℄) and is onsiderably simpler and po-

tentially more eÆient than Gennaro, Halevi and Rabin's ([GHR99℄). Instead of

\ollision-resistant hameleon hash funtions", it makes use of \universal one-way

hash funtions" ([NY89℄), whih exist if one-way funtions do. Interestingly, a

slight modi�ation of the sheme an be shown to be seure in the ROM under the

ordinary RSA assumption.

� In [Fis03℄, Fishlin desribed an improved version of Cramer and Shoup's signature

sheme ([CS99℄), again seure under the \strong RSA assumption". Signing is
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about thirty perent faster in this new version, and veri�ation is somewhat faster

as well. Also, the length of the signatures is nearly halved.

2 Publi-key enryption shemes

� In [CS98℄, Ronald Cramer and Vitor Shoup proposed the �rst pratial publi-

key enryption sheme whih is seure | that is, seure against adaptive hosen-

iphertext attak or CCA2-seure (see Chapter 2, Setion 7) | under a fairly stan-

dard hardness assumption, namely the \Deisional DiÆe-Hellman assumption". In-

formally, the Deisional DiÆe-Hellman assumption (often abbreviated as the DDH

assumption) holds for a yli multipliative group G of prime order q (say a sub-

group of Z

�

p

, where p > q is some prime) if, given g

u

2 G and g

v

2 G for randomly

hosen u; v 2 f1; : : : ; qg (where g 2 G is some �xed generator of G), it is hard

to distinguish g

uv

2 G from g

r

2 G for a randomly hosen r 2 f1; : : : ; qg. While

the Computational DiÆe-Hellman or CDH assumption (see Chapter 4, Setion 2)

asserts that it is hard to ompute all of g

uv

, the DDH assumption e�etively asserts

that it is hard to ompute any bit of g

uv

.

� In [Sho00℄, Vitor Shoup presented a \hybrid" enryption sheme whih makes

use of a \pseudorandom number generator", a ollision-resistant hash funtion (see

Chapter 2, Setion 3) and a \key enapsulation sheme"; the latter is based on

the Cramer-Shoup enryption sheme ([CS98℄). A key enapsulation sheme is

essentially just a publi-key enryption sheme whose seurity is only guaranteed

when the messages being enrypted are random (private keys, for example). The

new sheme is somewhat more eÆient than [CS98℄ and is seure under the fairly

standard DDH assumption. Interestingly, it is also seure in the ROM under the

standard CDH assumption.

� In [KD04℄, Kurosawa and Desmedt desribed a new hybrid enryption sheme based
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on [Sho00℄. The sheme is somewhat more eÆient (it saves one exponentiation

and produes shorter enryptions) and is again seure under the DDH assumption.

Kurosawa and Desmedt's key insight was to notie that the underlying key enap-

sulation sheme need not be CCA2-seure in order for the overall hybrid sheme

to be CCA2-seure. However, their proof requires the additional assumption that

both the \key derivation funtion" and the MAC used by the hybrid sheme are

seure in a strong, information-theoreti sense. In partiular, the key to be ex-

hanged must be statistially lose to random, preluding the use of pseudorandom

number generators.

� In [GS04℄, Shoup and Gennaro used the tehnique of \deferred analysis" to demon-

strate that Kurosawa and Desmedt's hybrid sheme ([KD04℄) is in fat seure un-

der the DDH assumption provided that both the \key derivation funtion" and the

MAC are seure in the ordinary, omputational sense.
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