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Abstract

Naive Bayes classifiers have proven very effective at filtering spam, par-
ticularly when stacked or boosted. We use a public spam corpus called
Ling-Spam to benchmark the generalization performance of ensembles
of Naive Bayes classifiers constructed using AdaBoost.M1, a standard
boosting procedure due to Schapire and Freund, and Arc-x4, an adap-
tive resampling heuristic proposed by Breiman. Both types of ensembles
yield significant performance increases over the base classifier, as ex-
pected. Moreover, Arc-x4 appears to be competitive with AdaBoost.M1,
which is consistent with previous findings by Breiman, Bauer and Ko-
havi.

1 Introduction

In recent years, spam (unsolicited automated email) has gone from being a nuisance to
a serious problem: it wastes untold bandwidth, clogs countless mailboxes and has even
prompted some to abandon email altogether. While regulatory approaches may yet prove
fruitful, spam filtering currently appears to be the most viable solution. From a Machine
Learning standpoint, spam filtering can be viewed as a binary classification problem: a
classifier trained on either a public spam corpus or (preferably) on some representative
sample of the user’s mailbox must categorize incoming email messages as either ’spam’
(which we’ll denote by ’1’) or ’legitimate’ (denoted by ’0’). The use of Naive Bayes
classifiers for spam filtering was first suggested (independently) in [9] and [11], and further
investigated in [1], [2] and [3]. While the base classifier does surprisingly well, stacking
[12] and boosting [8] improve performance significantly. Bagging, on the other hand, is
rendered ineffectual by the stability of the Naive Bayes classifier (see, for example, [4]). In
this paper we use a public spam corpus called Ling-Spam to benchmark the generalization
performance of ensembles of Naive Bayes classifiers constructed using AdaBoost.M1, a
standard boosting procedure due to Shapire and Freund described in [7], and Arc-x4, a
simple adaptive resampling heuristic proposed by Breiman in [5].



2 Background

2.1 The Ling-Spam corpus

Ling-Spam1 is a public spam corpus introduced in [1] to evaluate the performance of Naive
Bayes spam classifiers. It consists of 2412 legitimate messages randomly selected from
Linguist, a moderated linguistics mailing list, and 481 spam messages received by the first
author (2893 messages in total). Ling-Spam has a number of disadvantages which limit
its usefulness: its size is quite small, spam makes up only about 16.6% of the corpus, all
header information has been stripped and the Linguist messages are considerably more ho-
mogeneous than a typical user’s inbox is likely to be in practice. However, its widespread
availability makes it ideal for benchmarking purposes, i.e. for comparing the effective-
ness of various spam filtering methods. Another attractive feature of the corpus is that it
comes pre-partitioned into 10 roughly equal parts containing approximately the same pro-
portion of spam and legitimate messages, making stratified 10-fold cross validation quick
and painless to set up.

2.2 Feature extraction and selection

As noted in [8], Naive Bayes classifiers can easily handle multivalued discrete features such
as term frequencies. However, following [1] and [11], we restrict ourselves to binary feature
vectors~X = (X1, . . . , XM ) whoseith componentXi indicates whether a particular word
occurring in the corpus is present in a given message (Xi = 1) or not (Xi = 0). As in [1],
we rank all available features by their Information Gain (IG) and keep only theM features
that yield the highestIG values, whereM ranges from 50 to 700 in increments of 50. The
Information Gain of featureX was computed as follows:

IG(X,C) =
∑

x ∈ {0,1}, c ∈ {spam, legitimate}
P (x, c) · log

P (x, c)
P (x) · P (c)

As shown in [13], such dimensionality reduction (which may be viewed as a form of reg-
ularization or capacity control) typically leads to greatly improved generalization perfor-
mance. Some authors (see, for example, [1] and [9]) have experimented with various lem-
matizers and stemmers which reduce words to their base form, as well as stop lists that
remove commonly occurring words. These techniques increase preprocessing time and do
not appear to lead to significant performance improvements, so we do not use them.

2.3 Naive Bayesian classification

According to Bayes’ Theorem, the posterior probability that a message with feature vector
~x belongs to classc is given by

P (C = c | ~X = ~x) =
P (C = c) · P ( ~X = ~x | C = c)

∑
k ∈ {spam, legitimate} P (C = k) · P ( ~X = ~x | C = k)

In Naive Bayesian classification, we make the simplifying assumption that the features~X
are conditionally independent given the classC, i.e. that the class-conditional probabilities
factorizeas

P ( ~X = ~x | C = c) =
M∏

i=1

P (Xi = xi | C = c)

1Available for download at http://www.aueb.gr/users/ion/ publications.html



This allows us to rewrite the posterior probability as

P (C = c | ~X = ~x) =
P (C = c) · ∏M

i=1 P (Xi = xi | C = c)
∑

k ∈ {spam, legitimate} P (C = k) · ∏M
i=1 P (Xi = xi | C = k)

The priorsP (C = c) and class-conditionalsP (Xi = xi | C = c) can now be easily
estimated from the training data using relative frequencies with Laplace smoothing. For
example, the prior probability that a message is legitimate is computed as

P (C = legitimate) =
NL + 1

NL + NS + 2

whereNL denotes the number of legitimate messages in the corpus,NS denotes the number
of spam messages in the corpus (so that the total number of messages isNL +NS), and the
constants are due to two fictitious messages, one spam and one legitimate, introduced for
smoothing purposes. Although the conditional independence assumption isn’t particularly
realistic, Naive Bayes classifiers have been shown to perform extremely well even when it
is violated [6].

In spam classification, false positives, i.e. legitimate messages misclassified as spam, are
generally more undesirable than false negatives, i.e. spam messages misclassified as le-
gitimate, since the latter are merely a nuisance (the user need only delete the errant spam
messages from his or her mailbox) whereas the former could lead to loss of important in-
formation (in case messages classified as spam are deleted immediately rather than saved
for subsequent review). We therefore classify a message with feature vector~x as spam if
and only if

P (C = spam | ~X = ~x)

P (C = legitimate | ~X = ~x)
> λ

whereλ, which we calllegitimate message weight, indicates how much more costly it is to
misclassify a legitimate message as spam than to misclassify a spam message as legitimate.

Finally, note that we uselog probabilities throughout for improved numerical stability,
which becomes an important issue for Naive Bayes classifiers when the number of features
is large [4].

2.4 Performance evaluation measures

The standard performance measure for classification tasks (where by performance we mean
generalization performance, i.e. how well a classifier performs on previously unseen testing
data) isMisclassification Error Rate(MErr), defined in this case as

MErr =
NL→S + NS→L

NL + NS

whereNL andNS denote the number of legitimate and spam messages to be classified,
respectively,NL→S denotes the number of legitimate messages misclassified as spam
andNS→L denotes the number of spam messages misclassified as legitimate. Two other
domain-specific measures introduced in [11] areSpam Precision(SP ) andSpam Recall
(SR), defined as

SR =
NS→S

NS→L + NS→S
SP =

NS→S

NL→S + NS→S



whereNL→S andNS→L are defined as before andNS→S denotes the number of spam
messages classified as spam. Intuitively,SR is the fraction of spam messages that were
classified as spam, whereasSP is the fraction of the messages that were classified as spam
that actually are spam. While ideally bothSR andSP should be high,SP is typically
the more important of the two, since it relates to the number of false positives whereasSR
relates to the number of false negatives. One drawback of usingSR andSP to measure
performance is that it’s not always clear which combination is best. A more serious problem
with all three measures (MErr, SR andSP ) is that they are not cost-sensitive, i.e. they
do not take the fact that false positives are generally more undesirable than false negatives
into account. In other words, they do not depend on thelegitimate message weightλ. An-
droutsopoulos et al. proposed a cost-sensitive performance measure calledTotal Cost Ratio
(TCR) in [1].TCR is defined in terms ofWeighted Misclassification Error(WMErr) and
Weighted Baseline Error(WBErr) as follows:

WMErr =
λ · NL→S + NS→L

λ · NL + NS
WBErr =

NS

λ · NL + NS
TCR =

WBErr

WMErr

Intuitively, WMErr is just a weighted version ofMErr, where each legitimate message
is treated asλ messages. If a legitimate message is misclassified as spam it counts asλ
errors, whereas if it it correctly classified as legitimate it counts asλ successes.WBErr is
a ”baseline” that measures the weighted error rate in the absence of a filter: while no legiti-
mate messages are misclassified as spam, all spam messages are misclassified as legitimate.
The greaterWBErr is thanWMErr the higher theTCR and the more profitable it is to
use the filter. On the other hand, ifTCR < 1 thenWBErr < WMErr and we are better
off not using the filter at all.

2.5 Adaptive resampling and combining (arcing)

Breiman originated the concept of arcing in [5] while investigating the differences and
similarities between bagging and boosting. An arcing algorithm iteratively constructs an
ensemble ofK classifiersC1,. . .,CK as follows: initialize the probabilities{p(n)} to
p(n) = 1/N , whereN = |T |. At the kth step, sample fromT with replacement ac-
cording to{p(n)} to get a new training setT k (note thatT k 6= T , in general), and train
Ck on T k. Then update{p(n)} so that the training cases that are misclassified more fre-
quently have greater weight. The loop terminates afterK iterations, and the classifiers are
combined using either majority or weighted voting at test time.

AdaBoost.M1, described in [7], may be implemented as either a resampling or a reweight-
ing procedure, where the latter requires the base classifier to support weighted training
cases. The two approaches are largely equivalent, although there is some evidence to sup-
port the claim that the reweighting version is superior because it guarantees that all classi-
fiers are trained on all training cases, however weighted (see, for example, [10]). Although
its original motivation and theoretical justification come fromPAC learning theory, the
resampling version of AdaBoost.M1 may be viewed as an arcing algorithm (sometimes
called Arc-fs in this context, after the names of its creators, Freund and Schapire): at the
kth step, train classifierCk on the resampled setT k, then run the original training setT
downCk and letd(n) = 1 if the nth training case was classified correctly andd(n) = 0
otherwise. Set

εk =
∑

n

p(n) · d(n) βk =
(1 − εk)

εk

and update the probabilities{p(n)} for the next step as follows:



p(n) =
p(n) · βd(n)

k∑
n p(n) · βd(n)

k

At test time, combine classifiersC1,. . ., CK using weighted voting, withCk having vote
log(βk).

In [5], Breiman argues that the excellent generalization performance of AdaBoost.M1 is
due primarily to the adaptive resampling aspect of the algorithm, rather than the fact that
the classifiers are combined using weighted voting. He devises an arcing heuristic, dubbed
Arc-x4, which combines the classifiers using majority voting and updates the probabilities
{p(n)} as follows: at the kth step, train classifierCk on the resampled setT k, then run
the original training setT downCk and letm(n) be thetotal number of of times the nth

training case is misclassified byC1, . . . , Ck, the classifiers constructed so far. Then update
the probabilities{p(n)} for the next step as follows:

p(n) =
1 + m(n)4∑
n 1 + m(n)4

Breiman demonstrates in [5] that Arc-x4 is competitive with AdaBoost.M1 for many real
world datasets. In [4], Bauer and Kohavi confirm this to be the case specifically when
Naive Bayes is used as the base classifier.

3 Experiments

3.1 Design

We benchmark the generalization performance of AdaBoost.M1 and Arc-x4 on the Ling-
Spam corpus, using theTotal Cost Ratioor TCR as our performance measure. Two dif-
ferent settings of of thelegitimate message weightλ are used,λ = 1 andλ = 9. The
former is included mostly for comparison, since in that caseWMErr = MErr (refer to
Section 2.4 for the definitions ofTCR, λ, WMErr andMErr). The latter represents a
scenario where messages classified as spam are stored in a special folder for subsequent
review instead of being immediately deleted. Sahami et al. experimented withλ = 999 in
[11], but that setting was shown to be impractical in [1] due to its instability.

Rather than fixing the number of featuresM , we repeat all experiments for values ofM
ranging from 50 to 700 in increments of 50. Although Androutsopoulos et al. have deter-
mined the optimal number of features (with respect to maximizingTCR) for λ = 1 and
λ = 9 in [1], their results concern individual classifiers rather than ensembles.

Following [4] and [10], and in contrast to [5], we restrict ourselves to comparatively small
ensembles of size 15 for both AdaBoost.M1 and Arc-x4. Although larger ensembles may
yield improved performance, the computational burden they impose is prohibitive in a prac-
tical application such as spam filtering.

As in [1], we employ10-fold stratified cross-validationto minimize the effects of random
variation: the corpus is partitioned into 10 sections of size about 290, each containing ap-
proximately 48 spam messages and 242 legitimate messages (the total number of messages
is 2893, which does not divide into 10 evenly). We repeat all experiments 10 times, each
time holding out a different portion of the corpus, training on the remainder and measuring
theTCR on the hold out. The meanTCR is then reported.



Table 1: BestTCR values attained by a single Naive Bayes classifier and by ensembles
constructed using the Arc-x4 and AdaBoost.M1 algorithms, over all settings ofλ and num-
bers of features

CLASSIFIER TYPE λ NUMBER OF FEATURES TCR

A single Naive Bayes classifier 1 50 5.43
Arc-x4 ensemble 1 450 31.87
AdaBoost.M1 ensemble 1 650 28.12
A single Naive Bayes classifier 9 50 2.83
Arc-x4 ensemble 9 550 8.69
AdaBoost.M1 ensemble 9 550 7.13

3.2 Results

Consulting Table 1, we see that forλ = 1 ensembles constructed using both AdaBoost.M1
and Arc-x4 yield significant increases inTCR compared to individual Naive Bayes classi-
fiers (486.92% and 417.86%, respectively), with Arc-x4 having an edge over AdaBoost.M1
(see Section 2.4 for the definitions ofλ andTCR). The large percentage increases are a
little misleading however, sinceTCR is a cost-sensitive performance measure that is more
informative whenλ > 1. In particular, the corresponding changes inSR andSP need
not be commensurate (see Section 2.4 for the definitions ofSR andSP ). Note also that
although a single Naive Bayes classifier ”peaks early”, attaining its bestTCR value (5.43)
when the number of features is only 50 (as in [1]), the Arc-x4 ensemble attains its best
TCR value (31.87) at 450 features, and the AdaBoost.M1 ensemble requires as many as
650 features to attain its bestTCR value (28.12).

The settingλ = 9 corresponds more closely to a real world spam-filtering scenario (see
Section 3.1). Consulting Table 1 we see that once again both AdaBoost.M1 and Arc-x4
ensembles yield significant performance increases (151.94% and 207.07%, respectively),
though not quite as dramatic as forλ = 1. As before, AdaBoost.M1 trails Arc-x4 some-
what. Although the number of features at which a single classifier attains its bestTCR
(2.83) is unchanged at 50, this time both Arc-x4 and AdaBoost.M1 ensembles attain their
bestTCRs (8.69 and 7.13, respectively) at 550 features. This, together with the analo-
gous result forλ = 1 above suggests that these types of ensembles require a significantly
larger number of features to achieve optimal performance than the base classifiers they are
composed of.

In terms of the bestTCR value attained over all numbers of features, then, Arc-x4 seems
to outperform AdaBoost.M1 somewhat. However, consulting Figure 2, which depicts the
TCRs attained by the two algorithms as functions of the number of features used, for both
settings ofλ, we note that theTCR of the AdaBoost.M1 ensemble is a lot ”smoother” than
theTCR of the Arc-x4 ensemble, which is quite ”jagged”. Such smoothness presumably
indicates that AdaBoost.M1 is a more well-behaved algorithm, in some sense. Moreover,
while Arc-x4 yields a higherTCR value overall, it lags behind AdaBoost.M1 for many
numbers of features. Figure 1, which depicts theTCRs attained by a single Naive Bayes
classifier as a function of the number of features used, for both settings ofλ, is included
primarily for comparison – due to the difference in scale, the particulars of those curves are
difficult to discern in Figure 2.
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Figure 1: TCR values attained by a single Naive Bayes classifier as a function of the
number of features, used for bothλ = 1 andλ = 9
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Figure 2:TCR values attained by classifier ensembles constructed using Arc-x4 (red) and
AdaBoost.M1 (black) as a function of the number of features used, for bothλ = 1 and
λ = 9. For comparison,TCR values attained by a single Naive Bayes classifier (blue)
have also been plotted



4 Conclusion

Our results indicate that classifier ensembles constructed using both AdaBoost.M1 and
Arc-x4 yield significant increases in generalization performance (as measured byTCR),
even if we restrict our attention to comparatively small ensembles containing only about
15 classifiers. The advantage of such small ensembles is that they can be trained fairly
quickly and function reasonably fast at test time, which is crucial in a practical application
such as spam filtering. Moreover, Arc-x4 appears to be competitive with AdaBoost.M1,
outperforming it in a number of cases and attaining a higherTCR value overall. While
this might seem surprising in light of Arc-x4’s simplicity and lack of formal justification,
our results are consistent with previous findings by Breiman [5] and Bauer & Kohavi [4].
Based on the above, the arcing approach to Naive Bayesian spam filtering, whether using
AdaBoost.M1 or Arc-x4, seems quite promising and worthy of further investigation.
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