1. An Iterative Greatest Common Divisor

Take a look at the following algorithm for finding the gcd (greatest common divisor) of two numbers:

```python
def gcd(a, b):
    # precondition: a, b positive natural numbers
    while b != 0:
        d = abs(b - a)  # a is the minimum of the previous a and b
        a = min(a, b)  # b is the difference between the previous a and b
        b = d
    # postcondition: (a) a is a positive natural number
                   (b) a | a0, b0
                   (c) if k | a0, b0, then k | a
    return a
```

[Recall that | means “divides.”]

Here, a is the final value of a, and a_0 and b_0 are the initial values of a and b, respectively.

First, let’s trace through a couple examples to see how this algorithm works.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
<td>6</td>
<td>15</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that at every step, the greatest common divisor of a and b is the same. Intuitively, this is because if a and b share a divisor, so does their minimum as well as their difference. Justify to yourself that the following is true to get some intuition behind the algorithm:

$k | a, b ⇔ k | a_0, b_0$
$k | a, b ⇔ k | abs(a - b)$

Recall that in order to prove program correctness, we need to prove Partial Correctness and Termination. Proving a loop invariant (something that is true at every iteration) is an essential part of proving partial correctness of iterative programs. We need to formalize the idea that the gcd of a and b never changes.

2. Partial Correctness

Loop Invariant:

(i) a and b are natural numbers [this is easy to prove since abs and min preserve this]
(ii) a is positive [this is also easy, since a is the minimum of two positive numbers]
(iii) $k | a_0, b_0$ iff $k | a, b$ [this is harder to prove, but still not so bad!]

Recall that a_i is the value of the variable a after i iterations. Proving the loop invariant is proving the following lemma:

Lemma 1. $\forall n \in \mathbb{N}$, if the precondition holds and the loop is run for n steps, then:

(i) $a_n, b_n \in \mathbb{N}$
(ii) $a_n > 0$
(iii) $\forall k \in \mathbb{N}, k | a_0, b_0 \leftrightarrow k | a_n, b_n$

Proof. Proof by Induction on n (the number of iterations).

Base case: Assume the precondition holds and the loop is run for 0 iterations. Then (i) and (ii) are true from the precondition. (iii) becomes $\forall k \in \mathbb{N}, k | a_0, b_0 \leftrightarrow k | a_0, b_0$, which is a tautology.

Induction step: Let $n \in \mathbb{N}$. Assume that if the precondition holds and the loop is run for n steps, then (i), (ii) and (iii) hold. [IH]

Now assume that the precondition holds and the loop is run for $n + 1$ steps.

Note that $a_{n+1} = \min(a_n, b_n)$ and $b_{n+1} = |b_n - a_n|$.

1
To prove (i):
\(a_{n+1} \in \mathbb{N}\) since \(a_n, b_n \in \mathbb{N}\) by IH and \(\min\) preserves this.
\(b_{n+1} \in \mathbb{N}\) since \(a_n, b_n \in \mathbb{N}\) by IH and subtraction and absolute value preserves this.

To prove (ii):
\(a_n > 0\) by IH. \(b_n > 0\) since \(b_n \in \mathbb{N}\) by IH and \(b_n \neq 0\) by the while loop condition. Since \(a_{n+1} = \min(a_n, b_n)\), \(a_{n+1} > 0\).

To prove (iii):
We'll prove both directions of the iff statement separately.

Assume \(k | a_0, b_0\). Then \(k | a_n, b_n\) by IH. Our goal is to show that \(k \mid a_{n+1}, b_{n+1}\). By the definition of divides, there are \(a', b' \in \mathbb{N}\) such that \(a_n = ka'\) and \(b_n = kb'\).
\(a_{n+1} = \min(a_n, b_n) = ka'\) or \(kb'\), depending which is smaller. So \(k | a_{n+1}\).
\(b_{n+1} = |b_n - a_n| = |k b' - k a'| = k | b' - a'|.\) So \(k | b_{n+1}\).

Now assume \(k | a_{n+1}, b_{n+1}\). Our goal is to show that \(k | a_0, b_0\). Note that because of IH, it is sufficient to show that \(k | a_n, b_n\). By the definition of divides, there are \(a'', b'' \in \mathbb{N}\) such that \(a_n = ka''\) and \(b_n = kb''\). This direction is a little trickier, so we'll look at cases (not necessary, but it may be easier to think about this way):

Case 1: \(a_n \leq b_n\)
Then \(a_{n+1} = a_n\) and \(b_{n+1} = b_n - a_n\).
\(a_n = \min(a_n, b_n) = a_{n+1} = ka''\). So \(k | a_n\).
\(b_n = (b_n - a_n) + a_n = |b_n - a_n| + \min(a_n, b_n) = b_n + a_n + a_{n+1} = kb'' + ka'' = k(a'' + b'').\) So \(k | b_n\).

Case 2: \(a_n > b_n\)
Then \(a_{n+1} = b_n\) and \(b_{n+1} = a_n - b_n\).
\(a_n = (a_n - b_n) + b_n = |b_n - a_n| + \min(a_n, b_n) = b_n + a_n + a_{n+1} = kb'' + ka'' = k(a'' + b'').\) So \(k | a_n\).
\(b_n = \min(a_n, b_n) = a_{n+1} = ka''\). So \(k | b_n\).

[It’s possible to combine the cases by just noticing that \(a_{n+1} + a_{n+1} = a_n\) and \(b_n\) (not necessarily in that order).] \(\square\)

So now that we have the loop invariant, we can prove Partial Correctness, mainly that the precondition and termination imply the postcondition.

Theorem (Partial Correctness). If the precondition holds and the loop terminates after \(n\) steps, then the postcondition holds:
(a) \(a \in \mathbb{N}\) and \(a > 0\).
(b) \(a(a_0, b_0)\)
(c) \(k | a_0, b_0 \rightarrow k | a\)

Proof. Note that since the loop has terminated, the while loop condition gives us that \(b_n = 0\).

To prove (a):
Just notice that it follows directly from parts (i) and (ii) of Lemma 1 (the loop invariant).

To prove (b):
Let \(k = a_n\). Note that \(k = a_n | a_n\) and \(k | b_n = 0\). By the \(\rightarrow\) direction of (iii) of Lemma 1, \(k | a_0, b_0\).

To prove (c):
Assume \(k | a_0, b_0\). By the \(\rightarrow\) direction of (iii) of Lemma 1, \(k | a_n\) (and also \(k | b_n = 0\)). \(\square\)

3. Termination

Finally, we can prove that the loop terminates.

Note that neither \(a_0, a_1, \ldots\) nor \(b_0, b_1, \ldots\) are sequences of decreasing natural numbers. However, the maximum and also the sum are.

We’ll show that \(a_0 + b_0, a_1 + b_1, a_2 + b_2, \ldots\) is a sequence of decreasing natural numbers until \(b_1 = 0\). We could also show that \(\max(a_0, b_0), \max(a_1, b_1), \max(a_2, b_2), \ldots\) is a sequence of decreasing natural numbers until \(a_i = b_i\).

Recall that to show that the sequence is decreasing, we need to show that \(a_{n+1} + b_{n+1} < a_n + b_n\).

Proof. Assume that the loop is run for \(n + 1\) iterations. Recall that \(a_{n+1} = \min(a_n, b_n)\) and \(b_{n+1} = |b_n - a_n|\).
\(a_{n+1} + b_{n+1} = \min(a_n, b_n) + |b_n - a_n| = \max(a_n, b_n)\)
Since the loop ran through \(n + 1\) iterations, \(b_n \neq 0\) by the while loop condition. Also the loop invariant gives us \(a_n > 0\). Thus \(\max(a_n, b_n) > a_n + b_n\). \(\square\)

4. And now a Recursive GCD

We can similarly define a recursive algorithm for GCD. Note that the algorithm is essentially the same as the iterative one.

def gcd(a, b):
 #precondition: a, b positive natural numbers
 if a == b:
 return a
 if a > b:
 return gcd(b, a - b)
 return gcd(a, b - a)
return a
else:
 return gcd(min(a, b), abs(b-a))

#postcondition: returns c such that:
 (a) c is a positive natural number
 (b) c|a,b
 (c) if k|a,b, then k|c

Proving correctness of recursive programs is very similar to proving correctness of iterative programs. Here, we don’t have a separate partial correctness and termination. We prove them together. Here is the predicate that we’ll prove for all n:

P(n) = if a, b ∈ N and 1 ≤ a, b ≤ n, then gcd(a, b) terminates and returns the gcd of a and b

Theorem. ∀n ∈ N, n ≥ 1 → P(n).

Proof. By induction on n.

 Base case: Let n = 1. So a = b = 1. Then gcd returns 1.
 Induction step: Let n ∈ N such that n ≥ 2.

Case 1: a = b
Then gcd terminates and returns a, which is the gcd of a and b.

Case 2: a ≠ b
Assume that ∀k ∈ N, 1 ≤ k ≤ n → P(k). [IH]
Since a ≠ b and a, b ≤ n, min(a, b) < n. Furthermore, since 1 ≤ a, b ≤ n, abs(b - a) < n.
By IH, gcd(min(a, b), abs(b - a)) terminates and returns the gcd of min(a, b) and abs(b - a).
Therefore, gcd(a, b) terminates and returns the gcd of min(a, b) and abs(b - a).

Now we just need to show that gcd(min(a, b), |b - a|) = gcd(a, b). Let c = gcd(min(a, b), |b - a|). First we need to show that c|a, b. Like what we did above for the iterative algorithm, a and b are min(a, b) and min(a, b) + |b - a| (which is which depends on which of a or b is larger). Since c = gcd(min(a, b), |b - a|), we know that min(a, b) = cx and |b - a| and |b - a| = cy for some x, y ∈ N. So a and b are cx and c(x + y) (not necessarily in that order). Thus c|a, b.
Now assume k|a, b. Then k|min(a, b) and k||b - a|. So k|c.
Thus, gcd(min(a, b), |b - a|) = gcd(a, b). □