1. Correctness of Binary Search con’t

Recall the algorithm for Binary Search:

```python
def BINSEARCH(A, x):
    #Precondition: A is a sorted array of length at least 1,
    #indexed from 0 to length(A)-1
    #Postcondition: Return an integer t such that 0 <= t <= length(A)-1,
    #and A[t]=x if such a t exists, and -1 otherwise.
    f = 0 #f is the first index of the subarray that you are looking for x in
    l = length(A) - 1 #l is the last index of the subarray
    while f != l:
        m = (f+l)/2 #middle element (this is integer division, i.e. rounding down)
        if A[m] >= x: #x is in the first half
            l = m
        else:
            f = m+1
    if A[f] = x:
        return f
    else:
        return -1
```

Before we get into the proof, here’s a useful fact:

Lemma 1.
\[\forall f, l \in \mathbb{N}, f < l \rightarrow f \leq \left\lfloor \frac{f+l}{2} \right\rfloor < l \]

Proof.
\[
\left\lfloor \frac{f+l}{2} \right\rfloor \geq \left\lfloor \frac{f+f}{2} \right\rfloor = \left\lfloor \frac{2f}{2} \right\rfloor = [f] = f
\]
\[
\left\lfloor \frac{f+l}{2} \right\rfloor \leq \frac{f+l}{2} < \frac{l+l}{2} = \frac{2l}{2} = l
\]

A little bit of notation: In programming, variables can change their values. But in math, things are simpler: a variable never changes. To refer to variables in the code, we will index them. So \(f_0 \) is the initial value of \(f \) and \(f_i \) is the value of \(f \) after \(i \) iterations (i.e. after going through the loop \(i \) times).

Here, \(A[a \ldots b] \) is the subarray of \(A \) from index \(a \) to index \(b \), inclusive.

2. Partial Correctness

The bulk of the difficulty in proving that a program is correct is proving the loop invariant. Recall that a loop invariant is something that is true in every iteration.

Lemma 2. Suppose the precondition of BINSEARCH holds before the program starts. For each \(i \in \mathbb{N} \), if the loop is executed \(i \) times, then:

(i) \(0 \leq f_i \leq l_i \leq length(A) - 1 \)
(ii) if \(x \) is in \(A \), then \(x \) is in \(A[f_i \ldots l_i] \)

The proof will be by Induction. Our predicate is:

\(P(i) \): if the loop is executed \(i \) times, then (i) and (ii) hold.,

and we are trying to prove:

\(\text{Precondition } \rightarrow \forall i \in \mathbb{N}, P(i) \) (equivalently \(\forall i \in \mathbb{N}, \text{Precondition } \rightarrow P(i) \)).
Proof. By Induction on i.

Base case: $i = 0$.
$f_0 = 0$ and $l_0 = \text{length}(A) - 1$.

(i) is true since $\text{length}(A) \geq 1$ from the precondition.

(ii) is just a tautology.

Induction step: Let $i \in \mathbb{N}$. Assume that if the loop is executed i times, then both (i) and (ii) hold. [IH] Assume the loop is executed $i + 1$ times.

Note that by the loop condition, $f \neq l$ (more specifically, $f < l$), so we can use Lemma 1.

Case 1: $A[m_{i+1}] \geq x$

$f_{i+1} = f_i$ and $l_{i+1} = m_{i+1} = \left\lfloor \frac{f_i + l_i}{2} \right\rfloor$.

Let’s prove (i) first:

$f_{i+1} = f_i \geq 0$ by IH.

$l_{i+1} = \left\lfloor \frac{f_i + l_i}{2} \right\rfloor = m_{i+1} = l_{i+1}$ by Lemma 1.

Thus, $0 \leq f_{i+1} \leq l_{i+1} \leq \text{length}(A) - 1$.

Now, to prove (ii), suppose $x \in A$. Then x is in $A[f_i \ldots l_i]$ by IH. Since A is sorted, $A[t] > x$ for all $t \in \mathbb{N}$ such that $m_{i+1} < t \leq l_i$. Since x is in $A[f_i \ldots l_i]$ but not in $A[f_i \ldots m_{i+1}]$, x must be in $A[f_i \ldots m_{i+1}]$. Recall that $f_{i+1} = f_i$ and $m_{i+1} = l_{i+1}$, and thus x is in $A[f_i \ldots l_i]$. The second case is quite similar:

Case 2: $A[m_{i+1}] < x$

$f_{i+1} = m_{i+1} + 1 = \left\lfloor \frac{f_i + l_i}{2} \right\rfloor + 1$ and $l_{i+1} = l_i$.

Once again, let’s prove (i) first:

$f_{i+1} = \left\lfloor \frac{f_i + l_i}{2} \right\rfloor + 1 \geq f_i + 1 > f_i \geq 0$ by Lemma 1 and IH.

$l_{i+1} = \left\lfloor \frac{f_i + l_i}{2} \right\rfloor + 1 \leq l_i = l_{i+1}$ by Lemma 1.

Thus, $0 \leq f_{i+1} \leq l_{i+1} \leq \text{length}(A) - 1$.

Now, to prove (ii), suppose $x \in A$. Then x is in $A[f_i \ldots l_i]$ by IH. Since A is sorted, $A[t] < x$ for all $t \in \mathbb{N}$ such that $f_{i+1} \leq t \leq m_{i+1}$. Since x is in $A[f_i \ldots l_i]$ but not in $A[f_i \ldots m_{i+1}]$, x must be in $A[m_{i+1} + 1 \ldots l_i]$. Recall that $l_i = l_{i+1}$ and $m_{i+1} + 1 = f_{i+1}$, and thus x is in $A[f_i \ldots l_i]$.

Theorem (Partial Correctness). If the precondition of BINSEARCH holds and it terminates, then the postcondition holds after execution.

Proof. Say the loop exits after i iterations. By Lemma 2, we know that $P(i)$ is true, i.e., (i) and (ii) hold. By the while loop condition, $f_i = l_i$. Furthermore, from (i), $0 \leq f_i \leq \text{length}(A) - 1$.

Case 1: x is in A. i.e., $\exists t \in \mathbb{N}, 1 \leq t \leq \text{length}(A) - 1$ and $A[t] = x$.

By part (ii), x is in $A[f_i \ldots l_i]$. Since $f_i = l_i$, this is just a one element array, and thus $x = A[f_i]$, and the program correctly returns f_i.

Case 2: x is not in A. i.e., $\forall t \in \mathbb{N}, 1 \leq t \leq \text{length}(A) \to A[t] \neq x$. So $A[f_i] \neq x$, and the program returns -1.

3. **Termination**

In order to complete the proof that the Binary Search algorithm is correct, we need to prove termination. We’ll use the following theorem:

Theorem. Every decreasing sequence of natural numbers is finite.

Why is this true? Well, if a_0, a_1, a_2, \ldots is a decreasing sequence of natural numbers (i.e., $a_0 > a_1 > \ldots$), then $a_i \leq a_0$ for all $i \in \mathbb{N}$. Since the a_i are unique and there are only a finite number of natural numbers from 0 to a_i, the sequence must be finite.

In this case, we’ll show that the size of the subarray $A[f \ldots l]$ is decreasing. We already know from Lemma 1 that $f \leq l$. Thus $f_0 - l_0, f_1 - l_1, f_2, l_2, \ldots$ is a sequence of natural numbers. If we show that the sequence is decreasing, the above theorem will give us that this sequence is finite, and thus the loop is finite.

Theorem (Termination). $\forall i \in \mathbb{N}$, if the loop is run for $i + 1$ steps, then $l_{i+1} = f_{i+1} < l_i - f_i$.

Proof. Since the loop is run for $i + 1$ iterations, $f_i \neq l_i$ by the while loop condition. Thus $f_i < l_i$, so we can apply Lemma 1: $f_i \leq \left\lfloor \frac{l_i + f_i}{2} \right\rfloor = m_{i+1} < l_i$.

Case 1: $A[m_{i+1}] \geq x$

$f_{i+1} = f_i$ and $l_{i+1} = m_{i+1}$.

$l_{i+1} - f_{i+1} = m_{i+1} - f_i < l_i - f_i$ by Lemma 1.
Case 2: $A[m_{i+1}] < x$
$f_{i+1} = m_{i+1} + 1$ and $l_{i+1} = l_i$.
$l_{i+1} - f_{i+1} = l_i - (m_{i+1} + 1) < l_i - m_{i+1} \leq l_i - f_i$ by Lemma 1.