
Making Semantic Interpretation

Parser-Independent

Ulrich Germann

USC Information Sciences Institute,
Marina del Rey, CA
germann@isi.edu

in
:
D
av
id
F
arw
ell,
L
au
rie
G
erb
er,
an
d
E
d
u
ard
H
ov
y
(E
d
s.).
M
a
ch
in
e
T
ra
n
sla
tio
n
a
n
d
th
e
In
fo
rm
a
tio
n
S
o
u
p
.
T
h
ird
C
o
n
feren
ce
o
f
th
e

A
ssocia
tio
n
fo
r
M
a
ch
in
e
T
ra
n
sla
tio
n
in
th
e
A
m
erica
s,
A
M
T
A
'9
8
,
L
a
n
gh
o
rn
e,
P
A
,
U
S
A
,
O
cto
ber
2
8
-3
1
,
1
9
9
8
,
P
roceed
in
gs.
L
ectu
re

N
otes
in
A
rti�
cial
In
telligen
ce
V
ol.
1529.
S
p
rin
ger:
1998,
p
p
.286-299.
c

1
9
9
8
S
p
r
in
g
e
r
-V
e
r
la
g

Abstract. We present an approach to semantic interpretation of syntac-
tically parsed Japanese sentences that works largely parser-independent.
The approach relies on a standardized parse tree format that restricts the
number of syntactic con�gurations that the semantic interpretation rules
have to anticipate. All parse trees are converted to this format prior to
semantic interpretation. This setup allows us not only to apply the same
set of semantic interpretation rules to output from di�erent parsers, but
also to independently develop parsers and semantic interpretation rules.

1 Introduction

Most machine translation systems currently available employmore or less sophis-
ticated glossing techniques: The words and phrases of a source text are replaced
by their translations into the target language and rearranged according to syn-
tactic correspondences between the source and the target language. In many
cases, this approach leads to acceptable results. For a number of European lan-
guages, there are now systems which provide su�cient coverage and quality of
translation for applications such as indicative translations and gisting. However,
when dealing with languages that show signi�cant di�erences in their structure,
such as Japanese and English, a deeper analysis of the source texts is necessary.

Consider, for example, the following two noun phrases:

(1) N

N

N

N
tyokkei

÷5

\diameter"

N
zyuumeetoru

Í�¸��Â

\10 meters"

=p
no

G

[particle]

N
suisha

H�

\water wheel"

\a water wheel with a diameter of 10 meters"

(2) N

N

N

N
toukyou

�µ

\Tokyo"

N
orimpikku

�ÁÊ«��

\Olympics"

=p
no

G

[particle]

N
kaisai

¦R

\opening"

\the opening of the Olympics in Tokyo"

While the syntactic structures of the two noun phrases in Japanese are almost
identical, their English translations are quite di�erent in structure. Clearly, the
information provided by a syntactic and morphological analysis of the Japanese
phrases is not su�cient for accurate translations. However, if we consider the
meaning of the constituents, we can, with the help of an ontology such as the
Sensus ontology (Hovy and Knight 1993, Knight and Luk 1994), achieve ac-
curate translations into English. For example, Sensus tells us that Tokyo is a
location, and the Olympics are an event. With this knowledge, we can design
a special rule that handles all combinations of locations and events. Similarly,
knowing that `diameter' is an attribute, and `10 meters' is a measurement, we
can map a structure of the type [attribute A] + [measurement M] G X into
a structure that expresses that X has the attribute A and A measures M (e.g.,
that the water wheel has a diameter, and that the diametermeasures 10 meters).

At the USC Information Sciences Institute, we are currently developing a
system that tries to exploit such knowledge. The Gazelle machine translation
system aims at providing English translations with reasonable quality for unre-
stricted Japanese newspaper texts via semantic interpretation and subsequent
text generation (Knight et al. 1995). At this stage, the system translates texts
on a sentence-by-sentence basis. Figure 1 sketches the system. After some pre-
processing, which ensures the correct character encoding of the input, etc., the
input sentence is �rst segmented and tagged with morphological information,
using the Juman segmenter/tagger developed at Kyoto University (Kyoto Uni-
versity 1997a). The Juman output is then parsed1 and subsequently interpreted
semantically (Knight and Hatzivassiloglou 1995b). The resulting intermediate
representation is fed into a text generator, which produces a vast number of po-
tential English renderings of the semantic content of the input sentence (Lang-
kilde and Knight 1998a, 1998b). A statistical extractor picks the most likely
rendering based on bigram and trigram models of English (Knight and Hatzi-
vassiloglou 1995a).

1 For parsing, we have used both a bottom-up chart parser with hand-crafted rules and
a trainable shift-reduce parser (Hermjakob and Mooney 1997). Originally developed
for English, the trainable parser was adapted to Japanese by Ulf Hermjakob, and
trained on the Kyoto University Corpus (Kyoto University 1997c), a corpus of 10,000
parsed and annotated sentences from the Mainichi newspaper.

text
submission preprocessing segmentation

and tagging parsing

semantic
interpretation

text
generation

solution
extraction and
postediting

result
presentation

Fig. 1. The machine translation process.

A modular system architecture such as the one above allows us to use and
evaluate di�erent engines and strategies for solving particular aspects of the
translation task while preserving and reusing as many of the remaining resources
of the system as possible. Particularly in the areas of parsing and semantic in-
terpretation, a modular approach is well justi�ed: With more and more raw and
annotated data such as corpora, annotated corpora, and treebanks becoming
available (Marcus et al. 1993, Kyoto University 1997c), trainable parsers (e.g.,
Collins 1997, Hermjakob and Mooney 1997) have become a feasible and powerful
alternative to hand-crafted systems. In contrast, semantically annotated data is
still very rare and by no means su�cient as a basis for statistical approaches
to semantic interpretation of texts, so that there is currently no serious alter-
native to a hand-crafted system for semantic interpretation. Even though one
could argue | and we do support this argument | that accurate parses often
cannot be achieved without the consideration of semantic criteria2, we neverthe-
less claim that it is reasonable to perform parsing and semantic interpretation
in separate steps. First of all, the amount of knowledge, rules, and processing
needed for full-
edged semantic interpretation goes far beyond the requirements
for accurate parsing. Therefore, adding semantic interpretation capabilities to
an existing parsing system is labor-intensive and expensive, especially when sta-
tistical techniques used for parsing have to be coordinated with hand-crafted
rules. And secondly, given the number of parsers that are becoming available
for Japanese3 , it is highly desirable to be able to interpret output of di�erent
parsers with the same set of semantic interpretation rules.

The purpose of this paper is to describe how a system can be designed so
that the semantic interpretation of parse trees does not depend on parser-speci�c

2 A classical example is the sentence pair [He ate spaghetti with Alfredo sauce] and
[He ate spaghetti with a fork], where the decision that the PP [with Alfredo sauce] is
attached to N' [spaghetti], and the PP [with a fork] is attached to V' [ate spaghetti]
can only be made on the grounds that spaghetti and Alfredo sauce are both some
kind of food, whereas a fork is a tool for eating.

3 We are currently aware of the KNP parser developed at Kyoto University (Kyoto
University 1997b), and an HPSG parser developed at Tokyo University (Makino
et al. 1998, Mitsuishi et al. 1998), in addition to the parsers currently used in our
system (cf. Fn. 1).

characteristics such as the set of category symbols used, or the particular order
of attachments within the parse tree. In the remainder of this paper, we �rst
describe how semantic interpretation works and how it is implemented in our
system. We then discuss the problems that arise when trying to interpret parse
trees robustly, and how these problems can be overcome.

2 Semantic Interpretation

The idea of semantic interpretation is based on the notion of compositional se-
mantics, i.e., the assumption that the meaning of an utterance can be computed
by applying combinatorial rules to the meanings of the immediate constituents
of the utterance. While semantic interpretation is usually implemented as a
bottom-up algorithm, we will discuss the idea of compositional semantics in a
top-down fashion in this section.

In a highly simpli�ed framework, we assume that a sentence consists of one
or more basic propositions. A basic proposition is the claim that a certain pred-
icate or relation holds of, or holds between certain objects in the world. These
objects are either su�ciently characterized by linguistic means (such as descrip-
tive phrases that distinguish these objects from others in the respective domain
of discourse), or obvious from the context.

For example, the sentence

(3) The video lasts about eleven minutes, and [it] describes the company's
activities.

consists of two basic propositions:

(3a) The video lasts about eleven minutes.
(3b) The video describes the company's activities.

(3a) is the claim that the relation last holds between the video being talked
about and a time span of eleven minutes: last (video, eleven minutes). (3b) claims
that the relation describe holds between the video and the company's activities:
describe (video, the company's activities).

The arguments of the predicates can be further analyzed as restricted vari-
ables: The video refers to that object X (in the respective domain of discourse)
that has the property of being a video: X j video (X)4. Similarly, the company's
activities are those Y that have the properties of (a) being activities, and (b)
being somehow related5 to the company: Y j (activities (Y) ^ be related to (Y,
the company). Finally, the company is that Z that has the property of being a
company: Z j company (Z). If we replace the arguments in (3b) by these restricted
variables, we get the expression

4 We do not consider the issue of quanti�ers here.
5 The speci�c character of this relation cannot be determined on syntactic grounds.
We therefore leave the relation between the company and its activities unanalyzed
here.

(3b') describe (X j video (X),
Y j (activities (Y) ^ be related to (Y, Z j company (Z))))

During semantic interpretation, a representation of the content of a sentence
is built up by applying combinatorial rules �rst to the con�gurations of the
individual words and then to the con�gurations of the higher-level constituents,
whose meanings have been determined by previous interpretation steps. The
meanings of the individual words are retrieved from a lexicon. As a rule of
thumb, noun phrases (referential constituents) are interpreted as restrictions
of variables, and verbs (predicative constituents) as predicates. It is assumed
that the predicate{argument relations between the referential constituents and
the predicative constituents of a sentence are re
ected in its morphological and
syntactic structure, so that the range of interpretations that a sentence may
have is restricted by its morphological and syntactic properties. As we have seen
above, these properties are not always su�cient for an accurate interpretation.
In this case, knowledge about the world is utilized.

In the Gazelle system, semantic interpretation is implemented in the fol-
lowing manner. The parser returns an annotated tree structure. Each node of
the parse tree has a category label and a feature structure associated with it,
which stores the various properties of the constituent represented by the node.
Traversing the tree from the bottom to the top, and augmenting the feature
structures associated with the nodes of the parse tree, the semantic interpreta-
tion engine gradually builds up an intermediate representation of the semantic
content of the sentence, using information from the annotated tree structure,
knowledge provided by a lexico-ontological database, and knowledge encoded in
the semantic interpretation rules.

A feature structure is a bundle of attribute-value pairs (features), e.g. hnum-
ber, sgi, where number is the attribute and sg is its value. A value can be either
an atomic feature structure, i.e. an empty bundle of features (which corresponds
to an entity that cannot be described in terms of having particular properties),
or it can be a complex feature structure itself. Mathematically speaking, fea-
tures structures are rooted, directed graphs with labeled arcs. Figure 2 shows
a feature structure that partially models the English word sees in a graph rep-
resentation and as a so-called attribute-value matrix (AVM). The nodes of the
graph represent values, the arcs attributes. Each attribute can be identi�ed by
its path, the sequence of arcs from the root node to the node representing its
value. For example, in Fig. 2 the path syn leads to a complex value representing
the syntactic properties of the word sees, whereas the path syn�person points
to the `person' value of the word. By organizing features as a feature structure,
features can be grouped and be passed along to higher nodes in the parse tree by
declaring path identity between an attribute of the mother node and an attribute
of a daughter node. Two paths are considered identical if they lead to the same
node in the feature structure, i.e., if their values are token-identical. As a matter
of convenience, we refer to a feature consisting of an attribute with the path
x{y{z and its value as the x�y�z feature.

seessurface

syn

verb

p.o.s.

3rdperson

sg

number
sem

jsee j
inst

2
6664
surface sees

syn

"
p.o.s. verb
person 3rd
number sg

#

sem
�
inst jseej

�

3
7775

Fig. 2. A feature structure describing the word sees in a graph representation (left)
and as an attribute-value matrix (AVM; right). Adapted from Germann (1998).

Each semantic interpretation rule consists of two elements: a context-free
phrase structure rule which speci�es the class of syntactic con�gurations that
the rule should be applied to, and a set of instructions for the manipulation of
the feature structures associated with the nodes. Syntactic con�gurations are
identi�ed by the labels of the mother and the daughter nodes in the parse tree.
The basic mechanism for the manipulation of feature structures is uni�cation
(Shieber 1986, Moore 1989). Uni�cation is an operation over two feature struc-
tures that returns a feature structure that contains (a) all features that occur in
either one of the two feature structures, and (b) the uni�cations of all the fea-
tures that occur in both of them. If the respective values of a feature that occurs
in both structures are not uni�able, uni�cation fails. Atomic feature structures
are uni�able if they are either type-identical or in a subtype{supertype rela-
tionship with respect to a type hierarchy. In the latter case, the result of the
uni�cation is the more speci�c type. For example, the result of the uni�cation
of �

attr1 A
attr2 B

�
and

�
attr1 a
attr3 C

�
is

2
4attr1 a
attr2 B
attr3 C

3
5

if a is a subtype of A. If a and A are not identical or in a subtype{supertype
or supertype{subtype relationship, the uni�cation of the two feature structures
fails.

The semantic interpretation engine recognizes two kinds of uni�cation in-
structions. Conditioned uni�cation instructions (<path1> =c <path2|value>)
succeed only if <path1> already exists. Unconditioned uni�cation instructions
(<path1> = <path2jvalue>) will create any path speci�ed if it does not already
exist. In order to distinguish the feature structures associated with the di�erent
parse nodes, path names are pre�xed by the identi�ers x0, x1 . . . xn, where
x0 refers to the root node of the feature structure associated with the mother
node in the con�guration, and x1 . . . xn refer to the root nodes of the feature
structures associated with the daughter nodes from left to right.

The keyword �xor� in a rule introduces a hierarchical list of sets of instruc-
tions for the interpretation engine. The engine applies these sets of rules sequen-
tially until uni�cation succeeds. As soon as a set of instructions succeeds, the
engine proceeds to the next con�guration in the parse tree.

For example, the rule

(4) ((V -> N V) (*xor* (((x1 syn focus) =c wa)

...

)

(((x1 syn case) =c ga)

...

checks �rst whether the path x1�syn�focus already exists and whether its value
is uni�able with wa. If these conditions are met, and uni�cation also succeeds for
the other instructions contained within the �rst set of instructions, the engine
proceeds to the next parse node, otherwise it tries to execute the next set of
instructions from the �xor� list.

Figures 3 and 4 illustrate the interpretation process for the sentence ª��
H�dÍ�� (bideo wa yaku zyuuippun. | \The video lasts about eleven min-
utes."). The semantic content of each constituent is represented in the sem fea-
ture of the feature structure associated with the respective parse node. For pred-
icative constituents, the sem�inst(ance) feature contains the predicate, and the
values of the attributes arg1 . . . argn contain restrictions that characterize the
arguments of this predicate. For referential constituents, the sem�inst feature
contains the `head' restriction6 of the respective argument. Various other features
are used to store semantic modi�cations of constituents and other information.

The values of the inst features are usually concepts from the Sensus ontol-
ogy. In generation, inst values surrounded by vertical bars (j) in the intermediate
representation are treated as concepts, inst values surrounded by double quotes
are treated as literal strings. Each concept is associated with one or more En-
glish words that can express it.7 Using concepts from an ontology does not only
provide a wider range of expressiveness in the generator, but also allows us to use
hierarchical information from the ontology during interpretation. For the sake of
simplicity, all semantic values are represented as Sensus concepts in the �gures,
even though they may look and be treated di�erently in the actual system.

3 Making Semantic Interpretation Robust

As mentioned above, the semantic interpretation rules identify syntactic con�gu-
rations primarily by `bare' phrase structure rules. In order to achieve robustness
(coverage) in the system, we thus need at least one default rule for every con-
ceivable combination of category symbols within a parse tree. Accuracy is then a
matter of re�ning these rules. In order to achieve accuracy, we must have access
to the properties of the constituents, i.e., we must know what features may occur
in the feature structures associated with the parse nodes.

6 A blue car is both something blue and a car, but in accordance with the syntac-
tic structure of the phrase we consider car to be the `head' restriction and blue a
supplementary restriction of what the phrase can refer to.

7 The lower areas of the Sensus hierarchy are based on WordNet (Miller et al. 1990,
Fellbaum 1998), version 1.5.

N"
bform \ª��"

sem

�
inst jvideo j

�
=p�

bform \H"
�

N (1)2
64bform \ª��"

sem
�
inst jvideo j

�
syn

�
focus wa

�
3
75

N2
64bform \dÍ"

lemma j�Number�j

sem
�
inst j11 j

�
3
75

-n"
bform \�"

sem
�
inst jminute j

�#

N (2)"
sem

�
inst jtime unit j

minute
�
inst j11 j

��#
q�

bform \�"
�

N (3)2
664sem

2
64inst jtime unit j

minute
�
inst j11 j

�
mod

�
inst jor so j

�
3
75
3
775

N (4)2
6666664sem

2
666664

inst jlast,measurej

arg1
�
inst jvideo j

�
arg2

2
64inst jtime unit j

minute

�
inst j11 j

�
mod

�
inst jor so j

�
3
75

3
777775

3
7777775

Symbol�
bform \�"

�

N (5)2
6666664sem

2
666664

inst jlast,measurej

arg1

�
inst jvideo j

�
arg2

2
64inst jtime unit j

minute
�
inst j11 j

�
mod

�
inst jor so j

�
3
75

3
777775

3
7777775

Fig. 3. The semantic interpretation process for the sentence ª��H�dÍ� (bideo wa
yaku zyuuippun | \The video lasts about eleven minutes."). Information associated
with the leaf nodes is provided by the segmenter/tagger and the lexicon. The feature
structures associated with the higher nodes are computed in accordance with semantic
interpretation rules (cf. Fig. 4). The numbers in parentheses after the node labels
correspond to the numbers of the semantic interpretation rules in Fig. 4.

(1) ((N -> N =p) (*xor* (((x2 bform) =c H)

((x0 bform) = (x1 bform))

((x0 sem) = (x1 sem))

((x0 syn focus) = wa)

)

...

))

(2) ((N -> N -n) (*xor* (((x1 lemma) =c |*Number*|)

((x2 bform) =c "�")

((x0 sem inst) = |time unit|)

((x0 sem minute) = (x1 sem))

)

...

))

(3) ((N -> q N) (*xor* (((x1 bform) =c "�")

((x0 sem) = (x2 sem))

((x0 sem mod inst) = |or so|)

)

...

))

(4) ((N -> N N) (*xor* (((x2 sem inst) =c |time unit|)

((x1 syn focus) =c wa)

((x0 sem inst) = |last,measure|)

((x0 sem arg1) = (x1 sem))

((x0 sem arg2) = (x2 sem))

)

...

))

(5) ((N -> N Symbol) (*xor* (((x2 bform) =c "�")

((x0 sem) = (x1 sem))

)

...

))

Fig. 4. Excerpts from the semantic interpretation rules applied in the semantic inter-
pretation process sketched in Fig. 3.

With regard to the implementation of a set of interpretation rules, this raises
the following questions:

� Which category symbols does the parser use?
� In which con�gurations do these symbols occur?
� What features does the parser introduce, if any?

One way to answer these questions would be to analyze a su�cient amount
of parser output in order to determine which symbols are used, in which con�gu-
rations they occur, and so on. However, this approach has several disadvantages.
First of all, it makes semantic interpretation vulnerable to changes in the parser.
Every change in the set of category symbols used, or in the order of syntactic
attachments will require adaptations of the semantic interpretation rules. More-
over, once the rules are tailored to one particular parser, switching to a di�erent
parser becomes expensive, since the set of rules will have to be ported to the
new parser. Finally, depending on the parser, the set of additional features pro-
vided may vary considerably. While one parser may use a small set of category
symbols and a rich vocabulary of additional features, others may make extensive
use of di�erent category symbols and not provide any additional features at all.
Overall, this approach turns out not to be an attractive option.

Instead, we established a standardized parse tree format to which the parse
trees are converted prior to semantic interpretation. Semantic interpretation
then operates over trees in the standardized parse tree format. All features that
serve as criteria for semantic interpretation are either introduced by the tree
converter (the module that (a) replaces the category labels of the original parse
tree with labels that conform to the standardized parse tree format, and (b)
integrates additional information from the lexical database), or by the semantic
interpretation rules themselves.

The standardized parse tree format is characterized by the following restric-
tions:

� We restrict the number of immediate constituents for each parse node to
a maximum of three, that is, we allow unary (A ! B), binary (A !
B C), and ternary (A! B C D) phrase structure rules. Ternary rules are
restricted to cases of bracketing with symbols that have corresponding left-
and-right counterparts such as quotes, parentheses, brackets, etc. All other
rules must be unary or binary.
� We restrict the set of nonterminal symbols in the parse tree to the set of
basic part-of-speech labels. There are no bar-level distinctions re
ected in
the labels. The unary sequence N { N' { NP in a parse tree will thus be
converted to N { N { N. In our actual system, we distinguish 20 parts of
speech,8 as listed in Fig. 5.
� The label of the mother node in each con�guration is unambiguously deter-
mined by the following principles. In unary con�gurations, the label of the
mother node is the same as that of the daughter node. In ternary ones, the

8 This part of speech inventory is based on Rickmeyer's (1995) analysis of Japanese.

part of speech derivational non-derivational

lexeme su�x particle

Verb V -v =v
Noun N -n =n

Adjective A -a =a
Nominal Adj. K -k =k
Adverb M -m

Adnominal D -d
Interjection I
Particle =p
Pre�x q

Symbol Symbol

Fig. 5. Category symbols used in our semantic interpretation rules.

category label of the middle node prevails. In binary con�gurations, the label
of the mother node is determined by two factors. First, if the con�guration
contains a lexeme, the label of the mother node is a lexeme symbol. Secondly,
the part of speech of the resulting label is determined by the part of speech
of the last derivational symbol (cf. Fig. 5). For example, the con�guration
N =v will be reduced to V by the rule N =v V , and V N will be reduced
to N, whereas the con�guration -v -a will be reduced to -a, because it does
not contain any lexeme. The label for the remaining nine possible binary
con�gurations of non-derivational symbols (=p, q, Symbol) is determined by
the label of the left-hand daughter node, except in the case q ! Symbol q.
� The part-of-speech classi�cation of the lowest nodes is based on the infor-
mation from the segmenter/tagger, which we expect to be preserved in the
feature structures associated with these nodes. Thus, dependence on infor-
mation from the parse tree is restricted to knowing in which features of the
feature structures this tagging information is stored.

With these restrictions, we have limited the number of possible con�gura-
tions in a parse tree (including con�gurations that are completely bogus from
a linguistic point of view such as a pre�x su�xed to the preceding word) to
k2 + 2k, where k is the number of part-of-speech symbols. In our case, with 20
part-of-speech symbols, the number of possible con�gurations is hence limited
to 440: 20 unary rules X ! X, 400 binary rules for every combination of two
of the 20 category symbols, and 20 ternary rules X ! Symbol X Symbol for
bracketing phenomena.9 Figure 6 shows the complete set of phrase structure
rules for the subset f V, N, -v, Symbol g of our set of category symbols.

Since we rely on the parser only for the bare tree structure, while lexical
information comes from the segmenter/tagger and the lexicon, and since the

9 For comparison, our current parser employs over 85 category labels, which would
increase the number of possible con�gurations to well over 7000. Of course, most of
them will never show up in `real life', but it is di�cult to determine in advance which
con�gurations may or may not occur.

unary rules

V ! V N ! N -v ! -v Symbol ! Symbol

binary rules

V ! V V V ! V Symbol N ! V N N ! Symbol N
V ! N V V ! Symbol V N ! N N -v ! -v -v
V ! V -v -v ! -v Symbol N ! -v N -v ! -v Symbol
V ! -v V -v ! Symbol -v N ! N Symbol -v ! Symbol -v

ternary rules

V ! Symbol V Symbol -v ! Symbol -v Symbol
N ! Symbol N Symbol Symbol ! Symbol Symbol Symbol

Fig. 6. The complete set of phrase structure rules for the categorial vocabulary fV, N,
-v, Symbol g. Our actual set of category symbols consists of 20 symbols.

new parse node labels are assigned to the nodes deterministically based on the
principles stated above, we gain a high degree of independence from parser-
speci�c information.

4 Coordinating Parsing and Semantic Interpretation

In order to coordinate parsing with semantic interpretation, the following steps
have to be taken:

� If the parser's output does not conform to the structural requirements of our
system, the parse trees have to be `binarized'. This could also be considered a
separate `microparsing' step after some `macroparsing' accomplished by the
�rst parser. It is currently implemented as part of the parsing process but
could also be integrated in the tree conversion step and take place after the
category symbols of the lowest nodes in the parse tree have been replaced
by our category symbols.

� The category symbols in the parse tree have to be replaced by the cate-
gory symbols used in semantic interpretation, based on information from
the segmenter/tagger, which is preserved in the parse tree, and on the label
assignment principles for higher nodes.

Figure 7 illustrates the
ow of processing: After parsing, the parse tree is �rst
binarized. The tree converter subsequently replaces the original category labels
by labels that conform to the standardized parse tree format and adds informa-
tion from the lexicon. The standardized, enriched parse tree is then fed into the
semantic interpretation engine.

parser
binarizer

(enforces binary
tree structure)

tree converter
(label replace-
ment and lexical
annotation)

semantic
interpreter

Fig. 7. From parsing to semantic interpretation: Parse trees are �rst converted to bi-
nary format, then category labels are replaced and lexical information is added to the
parse nodes. This enriched structure is subsequently fed into the semantic interpreta-
tion engine.

5 Summary

We have shown how a semantic interpretation system can be set up to handle
output from various parsers by replacing the category symbols provided by the
parsers with its own symbols, and by relying only on information provided by the
segmenter/tagger and a lexical knowledge base. The advantage of this approach
is that the set of semantic interpretation rules can be developed and maintained
independently from any speci�c parser. The costs of the adaptation of a new
parser and of the coordination between the parser and the semantic interpre-
tation module are reduced to the creation of mapping tables for symbols on
the part-of-speech level and the binarization of the parser's output, if necessary.
The modular setup of the system allows us to integrate additional resources as
they become available without having to change the actual knowledge base for
semantic interpretation.

6 Acknowledgments

The Gazelle machine translation project is funded by the US Government
under contract MDA904-96-C-1077. I am very grateful to Kevin Knight and
Daniel Marcu for various comments on earlier versions of this paper.

References

Michael Collins. 1997. Three generative, lexicalized models for statistical parsing.
In Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics (ACL).

Christiane Fellbaum (Ed.). 1998. WordNet. M.I.T. Press, Cambridge, MA.
Ulrich Germann. 1998. Visualization of protocols of the parsing and semantic inter-

pretation steps in a machine translation system. In COLING-ACL '98 Workshop
on Content Visualization and Intermedia Representations (CVIR '98).

Ulf Hermjakob and Raymond J. Mooney. 1997. Learning parse and translation decisions
from examples with rich context. In Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics (ACL).

Eduard Hovy and Kevin Knight. 1993. Motivating shared knowledge resources: An ex-
ample from the Pangloss collaboration. In Proceedings of the Workshop on Knowl-
edge Sharing and Information Interchange (IJCAI).

Kevin Knight, Ishwar Chander, Matthew Haines, Vasileios Hatzivassiloglou, Eduard
Hovy, Masayo Iida, Steve K. Luk, Richard Whitney, and Kenji Yamada. 1995. Fill-
ing knowledge gaps in a broad-coverage machine translation system. In Proceedings
of the International Joint Conference on Arti�cial Intelligence.

Kevin Knight and Vasileios Hatzivassiloglou. 1995a. Two-level, many-paths generation.
In Proceedings of the 33rd Annual Meeting of the Association for Computational
Linguistics (ACL).

Kevin Knight and Vasileios Hatzivassiloglou. 1995b. Uni�cation-based glossing. In
Proceedings of the International Joint Conference on Arti�cial Intelligence.

Kevin Knight and Steve K. Luk. 1994. Building a large-scale knowledge base for
machine translation. In Proceedings of the National Conference on Arti�cial Intel-
ligence.

Kyoto University. 1997a. Juman. http://www-lab25.kuee.kyoto-u.ac.jp/

nl-resource/juman.html. As of 05/22/1997; URL valid on 06/11/98.
Kyoto University. 1997b. KNP. http://www-lab25.kuee.kyoto-u.ac.jp/

nl-resource/knp-e.html. As of 05/28/1997; URL valid on 08/24/98.
Kyoto University. 1997c. µkdÓ������¨� Version 1.0 (Kyoto University

text corpus, version 1.0). http://www-lab25.kuee.kyoto-u.ac.jp/nl-resource/
corpus.html. As of 09/23/1997; URL valid on 06/11/98.

Irene Langkilde and Kevin Knight. 1998a. Generation that exploits corpus-based
statistical knowledge. In Proceedings of the 36th Annual Meeting of the Association
for Linguistics and 17th International Conference on Computational Linguistics
(COLING-ACL).

Irene Langkilde and Kevin Knight. 1998b. The practical value of n-grams in gener-
ation. In Proceedings of the Ninth International Workshop on Natural Language
Generation.

Takaki Makino, Minoru Yoshida, Kentaro Torisawa, and Jun'ichi Tsujii. 1998. LiLFeS {
towards a practical HPSG parser. In Proceedings of the 36th Annual Meeting of the
Association for Linguistics and 17th International Conference on Computational
Linguistics (COLING-ACL).

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinskiewicz. 1993. Building a
large annotated corpus of English: The Penn Treebank. Computational Linguistics,
19.

George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Kather-
ine J. Miller. 1990. Introduction to WordNet: an on-line lexical database. Inter-
national Journal of Lexicography, 3(4). ftp://ftp.cogsci.princeton.edu/pub/

wordnet/5papers.ps.
Yutaka Mitsuishi, Kentaro Torisawa, and Jun'ichi Tsujii. 1998. Underspeci�ed

Japanese grammar with wide coverage. In Proceedings of the 36th Annual Meeting
of the Association for Linguistics and 17th International Conference on Computa-
tional Linguistics (COLING-ACL).

Robert C. Moore. 1989. Uni�cation-based semantic interpretation. In Proceedings of
the 27th Annual Meeting of the Association for Computational Linguistics (ACL).

Jens Rickmeyer. 1995. Japanische Morphosyntax. Groos, Heidelberg.
Stuart M. Shieber. 1986. An Introduction to Uni�cation-Based Approaches to Gram-

mar. CSLI, Stanford, CA.

