
DART: Directed Automated Random Testing
Patrice Godefroid, Nils Klarlund, Koushik Sen

Presented by:

Geri Grolinger

Instructor:

Professor Azadeh Farzan

Testing

� Primary way to test correctness of the software

� Costs software industry billions of dollars

� 50% of the cost of software development

� Software failures cost US economy about $60
billion a year

� Improvement in testing might save one third of
that cost

Unit testing

� In theory:

� Tests individual components of software system

� Check logic, corner cases etc.

� Provides 100% code coverage

� In practice:

� Hard and expensive

� Requires writing test drivers

� Rarely done properly

DART automates unit testing

� Combines 3 techniques:

� Automated interface extraction

� Automatic generation of a test driver for random
testing through the interface

� Dynamic test generation to direct execution along
alternative program paths

DART overview

Program Instrumentation

� Using static code parsing

� Concrete execution - original program

� Symbolic calculations – original program with
interleaved gathering of symbolic constraints

Static code parsing

� Parse code and automatically find:

� Inputs to the program: arguments to the main
function

� Variables whose values depend on the environment

� External function calls

Example: Static code parsing

Testing:

function(int x, int y)

Static parsing finds:

int x

int y

Concrete and symbolic execution

� Concrete execution

� Symbolic execution

� Original program interleaved with gathering of
symbolic constraints

� Path constraint – input vector that drives program
through the current path

� Path constraints solved (constraint solver) to get the
next run to execute the unexplored branch

� When stuck - falls back to concrete values from
concrete execution

Example: Concrete and symbolic execution

Concrete execution

Symbolic execution

Path constraintPath constraint

x = 23, y = 100, temp = 46

symbolic variables x, y,
temp = 2 * x

2 * x != y

Solution to 2 * x = y

Is: x = 5, y = 10

Test Driver

� Combines random testing and directed
search

� Tries to explore all execution paths (directed)
while starting with random values

Random testing and directed search

� Random testing

� Initializes all external variables with random input

� Directed search

� During each execution, an input vector for next
execution is calculated – solution to this symbolic
constraint is used as the new input

� Loops till all execution paths visited or bug found

Example: random test driver, directed search

Concrete execution

Symbolic execution

Path constraintPath constraint

x = 23, y = 100, temp = 46

symbolic variables x, y,
temp = 2 * x

2 * x != in2

Solution to 2 * x = y

Is: x = 5, y = 10

Soundness and completeness

� Sound (in respect to errors found)

� No false positives among reported errors

� Complete (in a way)

� If tests terminates without reporting a bug, then no
bug exists and all paths are exercised

� Test driver can run forever

Example

Concrete execution

Symbolic execution

Path constraintPath constraint

x = 12, y = 100

symbolic variables x, y

Example

Concrete execution

Symbolic execution

Path constraintPath constraint

x = 23, y = 100, temp = 46

symbolic variables x, y,
temp = 2 * x

Example

Concrete execution

Symbolic execution

Path constraintPath constraint

x = 23, y = 100, temp = 46

symbolic variables x, y,
temp = 2 * x

2 * x != y

Solution to 2 * x = in2

Is: x = 5, y = 10

Example

Concrete execution

Symbolic execution

Path constraintPath constraint

x = 5, y = 10

symbolic variables x, y

Example

Concrete execution

Symbolic execution

Path constraintPath constraint

x = 5, y = 10, temp = 10

symbolic variables x, y,
temp = 2 * x

Example

Concrete execution

Symbolic execution

Path constraintPath constraint

x = 5, y = 10, temp = 10

symbolic variables x, y,
temp = 2 * x

2 * x == y

Example

Concrete execution

Symbolic execution

Path constraintPath constraint

x = 5, y = 10, temp = 10

symbolic variables x, y,
temp = 2 * x

2 * x == y and
y != x + 10

Solution to 2 * x = y and

y = x + 10

is x = 10, y = 20

Example

Concrete execution

Symbolic execution

Path constraintPath constraint

x = 10, y = 20

symbolic variables x, y

Example

Concrete execution

Symbolic execution

Path constraintPath constraint

x = 10, y = 20, temp = 20

symbolic variables x, y,
temp = 2 * x

Example

Concrete execution

Symbolic execution

Path constraintPath constraint

x = 10, y = 20, temp = 20

symbolic variables x, y,
temp = 2 * x

2 * x == y

Example

Concrete execution

Symbolic execution

Path constraintPath constraint

x = 10, y = 20, temp = 20

symbolic variables x, y,
temp = 2 * x

2 * x == y and
y == x + 10

ERROR FOUND

Dart for C

� Automated interface extraction

� Program functions, external functions, library
functions

� Automated generation of test driver

� Random initialization of top-level arguments

� Code for simulating external functions

� Directed search

� Code instrumentation: CIL

� Constraint solver: lp_solve

Results: AC-controller

� Toy-program

� Input filtering

� DART vs random search

� DART finds errors in less then 1sec (7 runs)

� Random search runs forever

Results: Needham-Schroeder Protocol

� C implementation of NS public key
authentication protocol

� 400 lines of code

� Finds a partial attack in 2 sec (664 runs)

� Finds a full attack in 18 min (328 459 runs)

� DART also found a new bug !

Results: oSIP

� Open source Session Initiation Protocol Library

� 30 000 lines of C code, 600 external functions

� DART crashes 65% of functions in 1000 runs

� Many due to null-pointer exceptions

� Analysis reveals serious security vulnerability

Conclusion

� DART
� automates unit testing

� requires no manually written driver code

� can test any program that compiles

� symbolic reasoning in parallel with real execution

� randomization used where symbolic reasoning is hard

� improves code coverage vs. pure random testing

� no false alarms

End

Thanks for listening !

