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Abstract

The intensive care is a unit of vital importance within a hospital, where although a small number of patients are
being treated, a great number of their vital functions have to be monitored very carefully. Monitoring within an
Intensive Care Unit (ICU) is usually based on heterogeneous, dedicated hardware and software devices that em-
body their own time metrics for the collection of vital sign measurements provided at regular time intervals. This
paper presents a distributed, agent-based architecture for the acquisition, management, archiving and display of
real-time monitoring data in the ICU that makes efficient use of the Common Object Request Broker Architecture
(CORBA). A prototype implementation is presented for the acquisition and communication of the continuously
fed, vital sign information from the appropriate and distributed, real-time monitoring devices to single graphical
user interfaces at the corresponding ICU monitoring workstations. Focus is paid on the design and development
of individual, collaborating software agents to be used for data acquisition and monitoring, and on their commu-
nication through stable interfaces of the middleware infrastructure. Additional issues examined include the use of
efficient mechanisms for handling sudden increase in workload, environment changes and monitoring device
malfunctions.

Keywords: intensive care, CORBA, software agents, real-time ICU monitoring, distributed architectures, dis-
tributed systems.

1. Introduction

In intensive care, there is a need for the use of assisting information systems for on-line monitoring and recording
of vital sign information acquired for bedside monitoring. This need stems from the existing demand for the ex-
ploitation of the continuously increasing volume of data produced, which makes patient supervising extremely
tedious for medical personnel [Bellon94] [Metniz95] [Tonnesen97]. Monitoring patients in an ICU demands ap-
propriate reactions to time-critical circumstances and complicated situations, since the distinction between small
and large parameter changes or the presence of specific monitoring signals and the decision of when and what
actions are required is not an easy task to model and follow.

Artificial Intelligence (AI) has in the past emphasized on the creation of centralized "expert" systems, which tried
to specialize in dealing with difficult problems, by making use of complicated knowledge structures. Most of the
published efforts so far deal with the development of an ICU medical workstation to be used for ventilation man-
agement, mostly with adult patients. Medical workstations belonging to this domain mostly contain a very com-
plex architecture to manage all the different parameters. For example VentPlan’s [Rutledge93] goal is to assist
medical personnel in the treatment of patients who need respiration support, provided by a ventilator for postop-
erative patients in a Surgical ICU (SICU). On the other hand, VIE-VENT [Miksch95] is a knowledge-based
monitoring and therapy-planning system for artificially ventilated newborn infants to optimize therapy planning
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and to support neonatologists in their daily routine. Several other approaches exist: PATRICIA [Moret-
Bonillo93] has been designed to advise clinicians in the management of patients dependent on mechanical venti-
lation and incorporates a patient-oriented symbolic approach for representing knowledge and a symbolic-oriented
temporal approach for the intelligent control of the monitoring process. EPILOG is a UNIX-based system that
controls routine operations such as analogue-to-digital conversion, data storage, and media management [Col-
lura92] [Collura93]. GUARDIAN [Larsson97] [Larsson98], the most advance R&D effort so far, is applied to
respiratory and cardiovascular monitoring problems in an SICU. GUARDIAN’s reasoning system interprets per-
ceived information from the environment, performs all knowledge-based reasoning and problem solving (e.g.
problem detection, diagnosis, prediction, planning, explanation), and decides what actions to perform. It also
constructs and modifies dynamic global control plan to co-ordinate its perception, reasoning, and action. How-
ever, none of the above mentioned approaches emphasizes on the distributed nature of the architectures, and none
of them discusses issues closely-related to the middleware infrastructure required in an ICU in order to handle the
requirements imposed by the real-time nature of the continuously-fed information (i.e. availability, scalability,
extensibility, and resource sharing).

This paper’s objective is to elaborate on the architectural framework that has already been presented in [Kate-
hakis97], regarding the ICU information system. As such it mainly focuses on the perception of the dynamic en-
vironment found within the ICU, and provides stable CORBA interfaces to achieve on-line acquisition and com-
munication of continuously fed, multi-sensorial vital signs from the appropriate and distributed, real-time moni-
toring devices to a uniform graphical user interface. An important issue examined includes the use of efficient
mechanisms for handling sudden increases in workload, environment changes and monitoring device malfunc-
tions. Issues pertaining to cognition are left, for the moment, open for future work. Section 2 describes the real-
world, daily situation that exists in the intensive care, as well as its requirements. Section 3 presents the architec-
tural considerations for the design of any system that is to be used for collecting, validating, recording, recalling,
processing and communicating multimedia information related to patients under medical observation and recov-
ery in the intensive care. Section 4 focuses on the design characteristics of the appropriate software components
used for data acquisition and monitoring, as well as their communication requirements. The implementation
status of the developed software components that can acquire, manipulate, store and display continuously fed vi-
tal signs through uniform graphical user interfaces at the corresponding ICU monitoring workstations, are pre-
sented in Section 5. Section 6 exhibits the implemented system's behavior as well as the lessons learned, while
Section 7 provides the reader with some conclusions and considerations regarding future work.

2. Requirements of the Intensive Care

The ICU is a hospital ward with a limited number of patients and a small group of users. Under normal condi-
tions the ICU monitoring devices function properly, the patient’s state is steady and the medical personnel’s re-
sponsibility is to watch patients and treat them accordingly. When one or more monitoring device alarms are ac-
tive, then there is an emergency situation. In such a situation, it is very important for the patients’ record to be
updated with information regarding the injected drugs, the medical acts, as well as the acceptance or rejection of
certain data recordings during the alarm period. Another critical point for the proper health care delivery in an
ICU is the seamless shift change. The major issue here is the critical patient information, associated to special
treatment needs, that has to be passed along. What is important here is not what has to be done, rather than what
has preceded. Much of detail in this data is not relevant to the patient record after the patient has passed a given
point in time.

Vital sign parameters like Arterial Blood Pressure (ABP), Hearth Rate, Temperature, Respiratory Rate (RR),
Fraction of Inspired Oxygen (FiO,), Tidal Volume (VT) and Positive End-Expiratory Pressure (PEEP), are of the
most common ones that an ICU practitioner deals with daily. A typical set of ICU monitoring devices (including
physiological monitors, respirators, thermidometers, infusion pumps, ventilators, and capnographs) provides a
wide variety of digital parameters (like e.g. cardiac rate, respiration rate, pulse oximetry, FiO,, VCO,, VO,, RQ)
with varying sampling rate requirements ranging from periods of milliseconds to seconds or even more. Conse-
quently, there is a clear distinction between simple measurements (having a sampling period at the order of sec-
onds or more) and continuous recordings (having a sampling period at the order of milliseconds — 500 Hz is the
typical sampling rate for ECGs).



With all the above in mind, the requirements that any ICU-oriented information system should fulfill can be
summarized as follows:

e On-line data acquisition from various sources: This, combined with the ability to extract additional infor-
mation from primary sensed data, can lead to new data presentation methods and can provide the practitioners
with new possibilities for efficient treatment.

e Automatic data validation: This way human errors can be minimized and equipment malfunctions can be
isolated.

e Integrated data presentation centered around the different data modalities: Controlling data in a uni-
form manner can reduce significantly the time spent by hospital personnel switching to and from various data
modalities, and thus improve the ICU productivity.

e Fast data manipulation: The amount of real-time data should be condensed to a more accurate representa-
tion of the patient's condition, without causing bottlenecks. The computer system must not distract the busy
ICU clinician, while the data entry process and the data review process must be easy to understand and per-
form.

¢ Reporting and charting: By presenting information in an easily accessible, meaningful, and readable way,
documentation quality can be improved significantly.

e Adherence to international standards: This is the only viable solution to the problem of integration.

e Scalability: It should be easy for the architecture to be expanded with the addition of more interoperable
software components. It should be also easily incorporated within a larger scale on-line system.

3. Architectural Considerations

Most of the on-line monitoring devices found in the ICU today are proprietary, vendor dependent systems that
have little or no access to other information sources such as hospital information systems. They are usually based
on dedicated hardware and software that embody their own time metrics to collect data provided at regular time
intervals. They process data acquired from sensors, and consequently send the corresponding results to proper
activators or displays. Continuously fed data that need to be monitored uniformly so as to detect any changes
promptly from a central monitoring workstation have to be either read periodically or passed together with their
corresponding time stamp by the monitoring devices themselves.

Any architectural attempt to enable this data collection from the various monitoring devices, as well as the com-
pression of vital sign information for the effective storage of huge volumes of data produced, should be modular
and extensible. In order to achieve dynamic reallocation of devices, data acquisition should be performed by
separate and reusable, software components connected to the appropriate ICU monitoring devices, which should
be able to operate independently [Hayes-Roth96]. Each acquisition component should possess access to individ-
ual monitoring device profiles, in order to be able to extract the vital sign measurement packets provided by at-
tached device(s) (e.g. via the use of multiple serial communication ports) with minimum reconfiguration effort
each time acquisition is initiated. Therefore, knowledge of information regarding the appropriate communication
parameters, monitoring device name, its individual characteristics, as well as the value range of all the relevant
measurements is essential. This would allow for on-line reconfiguration [Stewart97]. In addition, storage man-
agement techniques should be efficient enough to allow for the tracking of any potential inter-working anomalies.
The environment should be managed throughout its execution because of the varying workload environment
changes and failures the system must continuously react to [Marzullo91]. Special care should be taken for ena-
bling automatic relation and comparative evaluation of certain diagnostic parameters, and their changes, as well
as the openness for future enhancements, enabling the use of smart alarms and controls. The user-interface, pro-
viding end-user access to visual information should be uniform and customizable [Thull93] so that it may sub-
stantially contribute to the extraction of useful conclusions. Functional integration of the ICU monitoring system
with other information systems, through the development of a multimedia clinical workstation, should be sup-
ported too.

Any such non-centralized architecture composed of multiple autonomous processing entities, co-operating to-
wards a common purpose, in a dynamic and distributed environment demands the use of distributed computing
standards, specifying inter-object communication. In addition, for each individual entity to be able to achieve the
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predetermined goals, it needs to exhibit re-activeness to external stimuli, and to possess both learning and co-
operation capabilities.

3.1 Agent-Based Computing

It is a fact that the concept of "agent hood" has not been strictly defined so far. However, it is possible to define a
set of main characteristics that could identify an entity as an agent. Software agents could in general be regarded
as dynamic and adaptable, computational entities or robots that try to satisfy a set of objectives and are able to
exhibit autonomous, goal-oriented behavior in complicated, unpredictable, dynamic, and possibly heterogeneous
environments [Maes94] [Hedberg95] [Russel95]. Jennings and Wooldridge mention in [Jennings96] autonomy,
pro-activeness, social ability and responsiveness as "key hallmarks of agent hood". Autonomy refers to the en-
tity's ability to have control over its own actions and pro-activeness to its capability to take initiative to act in
such a way that will enhance the fulfillment of its intended goals. Social ability refers to the exhibition of social
behavior while it interacts with other agents (software entities or humans). Finally, responsiveness can be thought
of as the ability of an agent to respond promptly and properly to the changes that occur to its environment'.

The goals of an agent could vary from being extremely simple to being extremely complicated: they could be in-
termediate goals to serve a final goal, or internal needs and motives that have to be held within certain limits
[Wooldridge95]. The agent has to use reasoning in order to achieve its goals (probably by altering the environ-
mental conditions), and has to exhibit behaviors that could also vary from stereotype to complex [Hayes-Roth95]
[Sycara96]. Clearly, agents can be thought to perform three tasks: perception of the dynamically changing envi-
ronment conditions, reasoning so as to interpret the data being perceived and solve problems and action to influ-
ence/ alter these conditions. In analogy to the human sensing and effecting organs, an agent has sensors to per-
ceive its environment and actuators (or effectors) to act on it (Figure 1). These tasks are performed while inter-
action with other dynamic (human or non-human) entities is taking place.

Perceives

Sensors

Agent/

Acts

Figure 1. Agents Interact with the External Environment through Sensors and Effectors.

While Single Agent Systems (SAS) use a single agent that can communicate with a human user and local or re-
mote resources (but not with other agents), Multi-Agent Systems (MAS) are occupied by many agents that are
able to communicate with each other. According to Stone and Veloso [Stone97] the use of MAS possesses cer-
tain benefits:

e The overall system's speed is improved due to the parallel execution of a task's components by different
agents.

! Except those main characteristics, secondary abilities the agents exhibit are: sincerity, which means that the agent will not
consciously give false information; good will, which means that the agents does not have contradictory intentions; and sense,
which means that the agent will only perform actions that seem to promote the achievement of its goals (or at least they don't
seem to hazard those goals). In addition, another ability that often characterizes agents is mobility, that is the capability of

agents to move from one system to another, in order to use remote resources or to co-operate with other agents.



e The overall system becomes more stable and secure due to workload sharing and no single point of system's
failure exists.

e The overall system has the ability to extend and improve by just adding new agents in it.

The agents that occupy MAS may serve common system goals, or they may not have any common goals at all; in
any case, they co-operate within the team to achieve their goals. When there are no common team goals, the team
is called a coalition of agents, and it is common for members of the coalition to be antagonistic (i.e. they try to
maximize their own profits from participating in the coalition). On the other hand, there are MAS architectures or
architectures of agents that participate in MAS, which allow the temporary or once-and-for-all abandonment of
secondary agent goals, in order to promote a common or a primary goal. Agents that participate in such a MAS,
are usually called co-operating agents [Sandholm95]. Knowledge sharing between all the agent-members is deci-
sive for the successful operation of a MAS, The existence of coherent understanding interaction protocols and the
clear representation of global or private goals is necessary, in order to achieve successful knowledge sharing
[Cohen91][Tambe96]. The existence of collisions-resolving protocols is also important, since collisions are pos-
sible to occur because of different private goals of the agents. The resolution of collisions is usually achieved
through negotiations or even through auctions. Another important aspect is that agent communication is con-
ducted either directly, or with the use of an intermediate or coordinator [Genesereth94].

Agents that participate in a multi-agent system share knowledge and abilities, and each of them is dedicated to
achieve certain, relatively simple goals and to perform simple actions. What adds to the "intelligence" of the
whole system is agent co-operation (or antagonism). Agents, not like traditional Al systems that are mostly
"closed" applications without direct interaction with the environment, keep on interacting with the external envi-
ronment directly and continuously by means of their sensors and effectors. An agent-based system, contrary to an
Al system, may have to deal with more than one problem at the same time, possibly having to compromise differ-
ent goals and action plans. In addition, cognitive structures of agent systems are adjustable and dynamically
change as knowledge and experiences are acquired, in contrast to traditional expert systems.

3.2 Distributed Object Computing Middleware Infrastructure

Unlike client/ server architectures, where the client discovers and communicates directly with the server, when
dealing with distributed object computing, communication middleware acts as an extra functional layer between
clients and servers. This additional layer allows applications to be developed without knowledge of the location
or any given logic implementation of all external functionalities. This way a client can transparently invoke a
method on a server object by using an Object Request Broker (ORB) without needing to be aware of where the
servicing object is located, the programming language implementation, the underlying Operating System (OS), or
the any other system aspects that are not part of an object's interface (Figure 2).

Target Object

-

‘ Client ’

Request

| Object Request Broker (ORB) |

1
i Network
| Boundary

Figure 2. A Client Invoking a Server Object Method.

Three are the basic computing infrastructures that currently provide for transparent inter-process communication:

e The Object Management Group's (OMG) CORBA has been produced by a consortium of 760+ vendors as a
platform-neutral infrastructure and as such, it can support object distribution across heterogeneous environ-
ments [Vinoski97] [OMG98]. CORBA allows applications to use a common interface, defined in an Interface
Definition Language (IDL), across multiple platforms and development tools. As viewed by the client, a
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CORBA object is entirely opaque, in that the object's implementation and location are unknown to the appli-
cation that uses it.

e Sun’s Java Remote Method Invocation (RMI) is based on the execution environment of Java to support net-
work computers [Wollrath96] [Sun99]. Here, platform independence is accomplished by means of the Java
Virtual Machine (JVM) that emulates a computing platform itself. The JVM is provided for each actual com-
bination of hardware and OS upon which Java is to run.

e Microsoft’s Distributed Component Object Model (DCOM) is an integration architecture that targets the ho-
mogeneous Windows environment (personal computer) and permits interaction between objects executing on
separate hosts in a network [Box97] [Brown98]. As an extension rather than a separate architecture, DCOM
inserts a stub interface between the calling application and the actual implementation of that interface, resem-
bling an RPC-based model.

All three infrastructures automate common network programming tasks, such as object location and activation,
parameter marshaling/ de-marshaling, socket and request de-multiplexing, fault recovery, and security by deliv-
ering requests to objects and by returning any responses to the clients making requests [Kuhns99] [Schmidt99].
Since clients see only the object's interface, and never any implementation detail, the existence of a distributed
object computing middleware infrastructure guarantees substitutability of the implementation behind the inter-
face. It also simplifies application development by providing a uniform view of heterogeneous networks, proto-
cols, and OS layers. This facilitates the development of flexible distributed applications and reusable services in
heterogeneous distributed environments. However, all three implementations are characterized by the lack of
Quality of Service (QoS) specification and enforcement. CORBA provides no standard way for indicating the
relative priorities of client requests, and there are no means for DCOM or RMI clients to inform an ORB how
frequently to execute operations that must run periodically. In addition there are no guarantees that real-time ap-
plications will not to block indefinitely when ORB end system and network resources are temporarily unavail-
able, and in addition, they all incur both throughput and latency overhead [Pyarali96] [Gokhale98]. Nevertheless,
there is a clear distinction, between what the needs of real-time systems are [Stankovic88], and what the archi-
tecture presented in this paper tries to achieve for the reasons described in Section 2.

One of the biggest factors in favor of Microsoft's DCOM solutions is its installed base. Most 32-bit versions of
Windows support it, despite the fact that the programming model behind COM and DCOM is closely wedded to
C++, making support for other programming languages such as COBOL and Java problematic. In a DCOM space
the handler is usually an ActiveX component which although it can be packaged in several different forms, it is
usually delivered as a Dynamic Link Library (DLL). As such, these components need to be installed, if only tem-
porarily, into a user's system so that they can be executed. Using Java™ RMI is the easiest solution, since it only
supports Java objects, and it fits directly into the Java model, with minimal impact on development resources for
pure Java distributed systems, offering high portability. Although Java will undoubtedly have a large share of the
market for new software development, Java™ RMI is impractical for use with objects or applications written in
any other language, especially due to the huge number of existing legacy systems. CORBA provides the greatest
flexibility of all three with its programming-language and platform neutrality, although there are some costs asso-
ciated with this neutrality, both in deployment and in runtime overhead. Open systems and the sharing of re-
sources increase portability, and cost effectiveness and all three architectures claim to allow applications to
communicate with one another no matter where they are located or who has designed and implemented them. No
matter what is the technology of choice, the adoption of a component approach in server applications, saves a lot
of time in maintenance and increases the potential for future improvements. Baring in mind that there is no right
or wrong choice, the following facts need to be recorded:

e CORBA has a very strong support from the industry and is not limited by either platform (like e.g. DCOM),
or programming language (like e.g. Java™ RMI).

e The COM+ enhancement of DCOM (to appear in 2000) adds software layers to emulate CORBA's strengths
[Kirtland97] [Box99].

e The Java Developers Kit (JDK) version 1.2 is now shipping bundled with a CORBA implementation provid-
ing support for the Java™ RMI over the Internet Inter-ORB Protocol (IIOP).



Therefore, and after taking into account all the above considerations, the Center of Medical Informatics and
Health Telematics Applications (CMI-HTA), of the Institute of Computer Science (ICS), Foundation for Re-
search and Technology — Hellas (FORTH), has designed and implemented a component-based architecture for
the acquisition, management, archiving and display of real-time monitoring data in the ICU by means of
CORBA. This architecture is described in the sections that follow.

4. System Architecture

The software entities that inhabit the presented architectural environment have a number of agent characteristics
and exhibit, to a certain extent, agent-like behavior, and therefore, the term agent is used from this point on to re-
fer to these entities.

Two such software entities, namely the acquisition agent and the monitoring agent, collaborate within the pre-
sented ICU monitoring architecture and their names are representative of their functionalities. In general, acqui-
sition agents perform data acquisition and feed data to monitoring agents, who in turn facilitate data-visualization
and storage (Figure 3). Since providing the agents that inhabit the proposed architectural environment with so-
phisticated cognition algorithms or knowledge bases is beyond the scope of this work, the reasoning tasks per-
formed are quite simple, and no complicated symbolic representations have to be used. As a result, agent com-
munication is being achieved without the use of an Agent Communication Language [Finin97]. However, exten-
sions of the proposed architecture that would enhance both the agents' cognitive abilities and the entire system's

intelligence are under consideration.
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Figure 3. Inputs and Outputs of the Acquisition and Monitoring Agents.

The acquisition agent collects data from special hardware devices (i.e. the bedside monitoring devices) and/ or
appropriate clinical information systems (e.g. the biochemical laboratory). Acquired data are temporarily kept at
a local data store (i.e. RAM or disk), until they are transmitted to the appropriate monitoring agents. An acquisi-
tion agent may have a number of input and output channels, each of which can be dedicated to a different moni-
toring agent (Figure 4). The acquisition agent is therefore communicating with several monitoring agents simul-
taneously. Each outgoing channel possesses a set of individual characteristics that identifies the transmitted signal
(i.e. destination, name, priority level, transmission rate, normalization factor, and units), and is serviced by the
monitoring agent accordingly. The monitoring agent resides on a host and receives data, which are stored tem-
porarily in a data repository and are visualized through a Graphical User Interface (GUI).
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Figure 4. The Distributed Agent-Based System Architecture.

4.1 Dynamic Behavior

The monitoring agent, once initiated remains active, as it continuously checks for the existence of data to moni-
tor. The agent-based architecture can handle the complexity of an ICU monitoring system by forcing the individ-
ual software components to collectively respond to situations where the timing requirements cannot be met. This
is because sudden workload environment changes, monitoring device malfunctions, and/ or any other type of dy-
namic system changes may occur at any time.

Continuously fed data that need to be monitored from a central ICU monitoring workstation can either be read
periodically or are passed together with their corresponding time stamp by the monitoring devices themselves. As
soon as the acquisition agent initializes a certain input channel to prepare it for data collection, it reserves a cer-
tain amount of data storage space with the “no signal” indication. Each channel carries its own time stamp, which
is defined either by the monitoring device itself, or by the acquisition agent’s sampling period.

In the event of a monitoring device malfunction the acquisition agent informs immediately (responsiveness &
pro-activeness) the corresponding monitoring agents by sending a special “equipment malfunction” signal. Every
acquisition agent performs its main tasks (data acquisition and communication) autonomously, while a monitor-
ing agent can intervene to the work of an acquisition agent, in case the former has decided (after reasoning) to
enforce the latter to disconnect from its host. The acquisition agent could be responsive to this action, by imme-
diately trying to connect to another monitoring agent in order to serve its disconnected channels.

In several cases, a human user can demand that a certain acquisition agent channel services a different monitoring
device. This is done through the acquisition station's GUI, and is facilitated by means of the appropriate moni-
toring device drivers. The choice for device change is a choice of major importance, and results to several state
transitions for the various open channels of the acquisition agent. All related data acquisition procedures have to
be stopped and all related open acquisition agent channels (both incoming and outgoing) have to be closed and
then restored to their original state. Proper care is taken for substituting all missing information, for all the re-
initialization moments, with the indication “unavailable”.
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The record keeping of both continuous recordings and simple medical measurements is done in such a way that
allows backward tracking up to a certain period. This guarantees error recovery, as far as data propagation from
acquisition agents to monitoring agents is concerned, when network resources are temporarily unavailable. This
means that when timing constraints are not met, then lower quality of on-line vital sign monitoring results.

The monitoring agent can autonomously reach decisions concerning the intelligent allocation of its resources (i.e.
its outgoing monitored data channels). This can be done using reasoning/ cognitive procedures. Although the cur-
rent monitoring agent implementation does not include any complicated cognition algorithms, when the moni-
toring agent runs out of resources a static algorithm is implemented that enforces the simple priority scheme of
Figure 5. A monitoring agent resource can be a data-viewing channel, a smart alarm channel or a control channel.

IF there is no monitoring agent resource available AND
there is a pending resource allocation request:
IF there is a monitoring agent resource allocated to an incoming
"equipment malfunction” signal for over a time period of t
THEN release this monitoring agent resource
ELSIF there is a monitoring agent resource allocated to an incoming signal with priority
level lower than the priority level of the pending resource allocation request

THEN release this monitoring agent resource

ELSE reject pending request

Note: The pending request is not guaranteed resource allocation since another
pending request of higher priority may acquire the monitoring agent resource.

Figure 5. Simple Resource De-allocation Scheme for the Monitoring Agent.

4.2 Communication Protocol

The CORBA technology is used to facilitate the communication between involved software components.
CORBA IDL interfaces, where the functions that need to be exported to the network are defined, are built by
each agent (either acquisition or monitoring). Any acquisition agent, required to service a certain outgoing data
channel, gets a reference to the corresponding monitoring agent, by binding to the appropriate host. Subse-
quently, the acquisition agent then sends synchronization information (individual channel characteristics) to ap-
ply for an available monitoring agent resource (i.e. a monitoring channel) to serve its requesting outgoing data
channel. If an available resource exists, the monitoring agent locks the resource and returns its id to the request-
ing acquisition agent. At the same time, the monitoring agent binds to the acquisition agent host to get prepared
to invoke certain exception handling acquisition agent methods. If no monitoring agent resource is available, then
the monitoring agent executes its resource release algorithm and the acquisition agent resubmits its application
after a predetermined period of time. After a certain number of unsuccessful requests, the acquisition agent dis-
connects. Once a monitoring agent resource is allocated to the acquisition agent, the acquisition agent can start
transmitting data to the monitoring agent through its connected data channel (Figure 6).



X A
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Agent Agent
Bind to MA Host -
Request MA Resource ID After a certain time
S - period with no MA response
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I Provide AA with Resource ID disconnects from MA host
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i J
Transmit data
H B e m While the channel
is connected...

Figure 6. Communication Establishment between an Acquisition Agent and a Monitoring Agent.

A number of state transitions may occur, when a single acquisition agent outgoing channel is connected to the
appropriate monitoring agent. The acquisition outgoing channel may be idle, fully functional (transmitting data
properly), or partly functional (expecting certain actions to occur). The state transition diagram of Figure 7
shows that the partly functional state can be further decomposed into six more states (A4S, BtH, AS-BtH, BtH-S,
AS-BtH-S, BtH-S-SNSD). When the acquisition agent channel is in the Initial State, then it has not been bound to
the monitoring agent's host, and hence it is non-functional (it is idle). The acquisition agent channel transmits

data effectively only in the fully functional state (4S-BtH-S-SD).

Initial State

AS-BtH-S

State Names

BtH: Bound to Host SEND

AS:  Acquisition Started

S: Synchronized DIS
SD:  Sending Data

SNSD: Sending

AS-BtH-S-SD

“no signal” Data

State Transitions

BH: Bind to Host

SRA: Start Acquisition
SPA:  Stop Acquisition
SYNC: Synchronize

SEND: Send Data

DIS:  Disconnect from host

BtH-S-SNS

SRA

Figure 7. State Transition Diagram for an Acquisition Agent Channel during the Communication with a Moni-

toring Agent.
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The acquisition agent's channel may release the resource if either the acquisition agent requests to disconnect its
channel from the monitoring agent, or the monitoring agent decides to allocate the monitoring agent resource to
the input from another acquisition channel. As Figure 8 displays, when either the acquisition or the monitoring
agent request for disconnection, both agents release their references to each other.

X

AAL1 : Acquisition MAL : Monitoring
Agent Agent
Disconnect from MA Host
Disconnect from AA host

MAI1
Resource is
freed

2

o
A

AA2 : Acquisition

MA2 : Monitorin
Agent Agent
Disconnect from AA host
MA2
Resource is
freed
Disconnect from MA host

Figure 8. Acquisition- Monitoring Agent Disconnection Scenarios.

5. System Implementation

Four applications have been developed so far, which comprise the ICU monitoring system. The first of these,
named "Continuous Recordings Viewer" (CR Viewer) handles the monitoring and storage of high frequency con-
tinuous recordings and embodies a monitoring agent. The second application, named "Simple Measurements
Viewer" (SM Viewer) monitors and stores simple numeric patient measurements (simple physiological measure-
ments), and also embodies a monitoring agent. An "ICU Demographic Data Viewer" is the database interface for
patient demographics. Finally, a distributed "Acquisition Station" with one embodied acquisition agent has also
been developed, and performs the tasks of medical data acquisition and data transmission to the SM and/or CR
Viewers. The topology of the architecture implemented is depicted in Figure 9.
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The CR Viewer (Figure 10) has the following features:

e up to twelve input data channels can be served

e waveforms are presented to the user on-line

each waveform carries its individual time stamp

consequent presentation of the waveforms (in a form of a "slide show") is offered
users can "freeze" any waveform in order to capture its view at a specific time
daily overview of the waveforms is possible

users can zoom in and out of each waveform

import/ export functionalities are supported
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any number of 1-12 waveforms can be dynamically positioned on the presentation screen in various ways
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Figure 10. Typical CR Viewer Screen.

The SM Viewer has the following features:
e up to sixty input data channels can be served
e real-time display of all changing measurements, their names and units of measurement is supported
e current hour's measurements' values are presented in a spreadsheet-like table
e current hour's measurements' trends can be drawn
e daily overview of all measurements via spreadsheet-like tables and diagrams is supported
e on-line data acquisition supported from CORBA enabled information systems

The ICU Demographic Data Viewer features the insertion/ update/ viewing of patient demographics and medi-
cal actions/ diagnoses concerning the specific patient, as well as of the medicines prescribed during the patient’s
stay at the ward.

The Acquisition Station can be used for the specification of a medical device to be used for the actual data ac-
quisition (monitoring device), as well as for the specification of the appropriate settings for the communication
with the device. An acquisition station can serve up to twelve input channels by means of its embodied acquisi-
tion agent. Its functionality also includes the connection and communication of each input channel with one
monitoring agent. In other words, one acquisition station may communicate simultaneously with twelve moni-
toring agents, possibly each of whom is positioned on a different viewing application (CR and/ or SM). Figure 11
shows some typical acquisition station screens.
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Figure 11. Typical Acquisition Station Screens.

6. Conclusions — Lessons Learned

Any ICU related monitoring information system is by nature, patient-centered and as such, it needs to be able to
provide patient-related vital sign information as close as possible to the rate it is produced. Due to the complexity
of the data modalities involved, and its data-integration, communication and presentation requirements, the ICU
is exactly the place where location-independent access to patient data, multi-platform support, and the use of
standard communication protocols makes more sense. The distributed object computing approach adopted takes
care of packaging parameters appropriately for transmission over the communication link and syntactically al-
lows components to be viewed as if they were local objects. The implemented system's response times within a
local network testing area were not much higher compared to the response times observed when the communi-
cating components were acting within the same address space. However, as it has already been mentioned in the
Section 3.2 (Distributed Object Computing Middleware Infrastructure), no end-to-end Quality of Service (QoS)
guarantees is provided at this time.

The presented approach enables the acquisition and communication of continuously fed, vital sign information
from appropriate, distributed, real-time monitoring devices to corresponding ICU monitoring workstations. Most
of the effort has been paid on describing the appropriate IDL interfaces, as well as the efficient management and
handling of the vast amounts of the produced vital data. This allows for an integrated and uniform presentation of
information that frees medical personnel from having to switch to and from various data modalities. The archi-
tecture is both extensible and able to be integrated with other clinical information systems, since it consists of
collaborating components built with the combined use of existing standards and emerging technology.

The agent-based approach adopted ensures for the effective collaboration of the autonomous components and is
capable of handling the complexity of the ICU environment. This is done by forcing individual software compo-
nents to collectively respond to situations where timing requirements cannot be met, increasing thus predictabil-
ity. The system dynamically adapts to the changes in environment and undesired events such as physical failures
or malfunctions of the monitoring devices. This is done by performing continuous data validation and communi-
cating the operation status to the monitoring agents. Because of its distributed nature, the system is able to con-
tinue operation even if certain components are out of reach (e.g. due to power failure) for a certain time because
individual components perform data buffering continuously. During the congested failure-recovery periods, this
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leads to the need for communication channels load balancing, because of the bulk amounts of data that need to be
propagated at that time.

The future of CORBA is very promising, particularly for high-performance real-time systems, since real-time
system development strategies seem to migrate towards those used for "mainstream" real-time systems to achieve
lower development cost and faster time to market [Schmidt98]. OMG on July 20, 1999 completed a vote to adopt
the Real-time CORBA 1.0 specification in order to correct this deficiency by allowing clients to specify QoS
policies at the ORB level. Nevertheless, no real-world products are expected to be ready earlier than mid-2000.
CORBA 3, the first major addition to CORBA from the OMG since the Internet Inter-ORB Protocol (IIOP), is
also expected to be released very soon. [Vinoski98] [Siegel99]. In this sense, CORBA has an advantage over
DCOM and Java™ RMI since it can be integrated into a wider range of platforms, and programming languages.
The flexibility and adaptability offered by CORBA make it very attractive for use in real-time systems, and the
progress reported in this paper indicates that the real-time challenges can be overcome.

Other aspects that should be mentioned at this point is the fact that specialized personnel is required for config-
uring the acquisition agents to work properly with the various proprietary monitoring systems that are used in an
ICU ward. All experiments required this configuration, which proved to be a hard task, because the hardware de-
vices present in the ICU ward, use a plethora of different data transmission protocols. The fact that once the sys-
tem is up and running, keystroking is kept minimal, has been really appreciated. On the other hand, the real costs
of the ICU information systems are usually high. The most cost-effective way to make the ICU staff to utilize
computers and include them in their daily practice is by providing all the functionalities they require. This is usu-
ally done at the cost of certain architectural compromises, but still the development of health informatics and
services when based on definitions and requirements in close cooperation with healthcare professionals some-
times adapt technology standards to application requirements.

7. Discussion — Future Work

The presented work comes as complementary to the continuous effort of CMI-HTA to deliver seamless access to
healthcare information over HY GEIAnet, the regional health-telematics network of Crete. According to this ap-
proach, although the ICU ward, is autonomous and devoted to the delivery of a particular set of services, the de-
sirable continuity of care requires that different medical centers, offering complementary services and different
levels of expertise, exchange relevant patient data and operate in a co-operative working environment [Tsi-
knakis97]. The ICU in particular, is an example where timely access to a patient's Virtual Electronic Health Care
Record (EHCR) by the authorized personnel ensures that diagnoses and treatment decisions are made with a full
knowledge of the patient's history [Katehaki97]. Therefore it is very crucial for patient monitoring systems to in-
tegrate data generated in ICUs with other data sources such as a hospital information system (HIS).

Another issue currently under consideration deals with the examination of the appropriate strategies to be
adopted for selecting and processing data to be recorded into the patient's EHCR. Although at the moment im-
port/ export functionality for recording captured views of the patient's history is supported, only verified and an-
notated data by the care provider can be transmitted to the patient's EHCR. This procedure can be automated,
enabling automatic recording of ICU information. This can be done by archiving median values for definable pe-
riods, standard deviation as measure of variability, or even the complete data set when in emergency.

Work under progress at the CMI-HTA includes also the design of one more agent type, called Cognition Agent.
This type of agent will be used to facilitate data fusion. Cognition agents will apply proper sets of association
rules to data received by various acquisition agents, and will be responsible for cognitive tasks. Under normal
conditions, such an agent could be used for the extraction of composite information and/ or the management of
certain control devices, by means of a co-operative monitoring agent. In emergency cases, the cognition agent
will inform the proper monitoring agent, which in turn will notify ICU personnel, using special alarm activation
hardware (Figure 12).
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Future work also includes the design of sophisticated cognition algorithms to enhance the agents' reasoning skills.
The development of agents' knowledge bases is also in CMI-HTA’s plans; in that case, the use of an Agent
Communication Language (possibly KQML) to communicate knowledge between the agents will be considered.
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