
Coordination in Multiagent 
Reinforcement Learning: 

A Bayesian Approach

Georgios Chalkiadakis & Craig Boutilier

Department of Computer Science

University of Toronto



[Chalkiadakis & Boutilier] Coordination in MARL: A Bayesian Approach 2

Coordination / Equilibrium Selection
¾ Coordination of agent activities an important focus of MARL
� (Identical interest) stochastic games provide a useful model for

studying such problems

¾ A repeated game example: The Penalty Game…the equilibrium 
selection problem (curse of multiple equilibria)

¾ A stochastic game example: 

The Opt in or out Game…
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in cooperative multiagent systems]
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To Avoid the Suboptimal Equilibria?
¾A number of (mainly heuristic) methods proposed to 
avoid convergence to suboptimal equilibria [CB96, LR00, 
KK02, WS02]
� Generally, adopt an optimistic bias in exploration, in an 
attempt to reach optimal equilibrium
� Some methods even guarantee convergence to optimal 
equilibrium

� Tradeoff: Is the price paid – penalties, lost opportunities –
worth the gain offered by convergence to optimal equilibrium?

• Depends on discount factor, horizon, odds of converging 
to specific equilibrium, etc.

An “optimal” MARL exploration method 
should be able to address this tradeoff
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Bayesian Perspective on MARL 

¾ Single-agent Bayesian RL: Bayesian update of 
distributions over possible rewards and transition dynamics 
models [Dearden et al.]
¾We have adopted this point of view for Bayesian 
exploration in multi-agent RL settings
¾ However, new components required: 
� Priors over models include opponents’ strategies
� Action selection is formulated as a POMDP:

• Value of information includes what is learned about 
opponents’ strategies
• Object level value includes how action choice will 
impact what the opponents will do
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Basic Setup

¾ Assume a stochastic game as a framework for MARL

� States S, fully observable

� Players i ∈ {1,…,N}

� Action sets Ai , joint action set A = ×Ai

�Transition dynamics Pr(s, a, t)

� Stochastic reward functions Ri 

� Strategies σi, strategy profiles σ, σ-i

¾ Each agent’s experience is a tuple <s, a, r, t>
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Agent Belief State
¾ Belief state: b = <PM , PS , s, h>
� PM : density over space of possible models (games)
� PS : density over space of opponents’ strategies
� s : current state of the game
� h : relevant history

¾ Update belief state given experience <s, a, r, t>
� b’ = b(<s, a, r, t>) = <P’M , P’S , t, h’>
� Densities obtained by Bayes rule

• P’M (m)= z Pr(t, r | a, m) PM(m)
• P’S (σ-i) = z Pr(a-i| s, h, σ-i) PS(σ-i)

• This combines Bayesian RL and Bayesian strategy 
learning
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Simplifying Assumptions

¾ PM factored into independent local models PD
s,a, PR

s,a

� Assume local densities are Dirichlet, 

� This allows for easy updating of PM

¾ Some convenient prior PS

�We use simple fictitious play beliefs (no history)

�More general models are feasible

� Interesting question: what are reasonable, feasible 
classes of opponent models?
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Tradeoffs in Optimal Exploration

¾ Given belief state b, each action ai:
� has expected object level value
� provides info which can subsequently be exploited

¾ Object level value:
� immediate reward
� predicted state transition (expected value)
� impact on future opponent action selection

¾ Value of information: 
� what you learn about transition model & reward
� what you could learn about opponent strategy
� how this info impacts own future decisions
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POMDP Formulation
¾ Tradeoff can be made implicitly by considering long-term impact of 

actions on belief states and associating value with belief states:

Q(ai,b) = ∑a-i Pr(a-i |b) ∑t Pr(t|aioa-i,b) 
∑r Pr(r| aioa-i,b)[r+γV(b(<s, a, r, t>))]

V(b) = maxaiQ(ai,b)
where

Pr(a-i |b) = ∫σ-i Pr(a-i|σ-i) PS(σ-i)
Pr(t|a,b) = ∫m Pr(t|s,a,m) PM(m)
Pr(r|b) = ∫m Pr(r|s,m) PM(m)

¾ These equations describe the solution to the POMDP that represents 
the multiagent exploration-exploitation problem.

¾ Solving this belief state MDP is intractable
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Computational Approximations I

¾Myopic Q-function equations, assuming a fixed 
distribution over models and strategies:

Qm(ai,b) = ∑a-i Pr(a-i |b) ∑t Pr(t|aioa-i,b) 

∑r Pr(r| aioa-i,b)[r+γVm(b(<s, a, r, t>))]

Vm(b) = maxai ∫m∫σ-i Q(ai,s| m,σ-i) PM(m) PS(σ-i)

¾What they mean intuitively: One step lookahead
in belief space followed by evaluation of the 
expected value of these successor states…
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Computational Approximations II

¾Other approaches include using the rather different 
naïve Q-value sampling approach to estimating 
EVOI [Dearden et al.] (see paper for details)

� some number of models can be sampled
� the MDPs are solved
� Q-values are estimated by averaging over the 
results
� decision is made on whether these values are 
sufficient to change the optimal action choice at 
the current state
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Experiments
¾ Tested the Bayesian approach using both
� One-step lookahead using expectations for strategies - for 

single state games  (BOL)

� Naïve VPI sampling (BVPI)

¾ Compared on several repeated and (multi-state) 
stochastic games to several algorithms:
� KK (Kapetanakis & Kudenko, AAAI-02)

� (model-based versions of) OB & CB (Claus & Boutilier ’98)

� WoLF-PHC (Bowling & Veloso, IJCAI-01)
� Much more general algorithm

¾ Compared using total discounted reward accrued
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“Chain World” Results

Chain World 
Domain

γ = 0.75γ = 0.99
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“Opt in or out”  Results I
Opt in or out

Domain

“Low” Noise

γ = 0.99 γ = 0.75
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“Opt in or out” Results II
Opt in or out

Domain

“Medium” Noise

γ = 0.99 γ = 0.75
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Penalty Game 
Results 

Uninformative Priors, k=-20, γ = 0.95

Uninformative Priors, k=-20, γ = 0.75

Informative Priors, k=-100, γ = 0.95
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Concluding Remarks
9 Bayesian agents explicitly reason about their uncertainty regarding 
the domain and their opponents’ strategies
9We provided a formulation of optimal exploration under this model
9We developed several computational approximations for Bayesian 
exploration in MARL.

¾ Bayesian exploration agents don’t necessarily converge to optimal
equilibria; they weigh exploration benefits against exploration costs…

� But in many cases, they do converge to optimal equilibria

¾Generally, they perform better than other approaches wrt. discounted 
reward
¾ The model is flexible

� Can use various priors; opponent models; discount/horizon
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Future Work

¾ Framework is general, but experiments involved only 
identical interest games
� Need to apply framework to more general problems

¾ Use more sophisticated opponent models than fictitious play 
beliefs

¾More work on computational approximations to estimating 
VPI or solving the belief state MDP is required

¾ Develop computationally tractable means of representing and 
reasoning with distributions over strategy models
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Computational Approximations: 
Naïve VPI Sampling (“BVPI”) I

• This method tries to estimate the (myopic) value 
of obtaining perfect information about Q(a,s); 
does not perform 1-step LA in belief space

• gains,a(q) = 
EV(a2, s) – q, if a=a1 and q < EV(a2,s)
q - EV(a1, s), if a ≠a1 and q > EV(a1,s)

0 otherwise
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Computational Approximations: 
Naïve VPI Sampling (“BVPI”) II

• A finite set of k models are sampled from PM

• Each sampled j MDP is solved, w.r.t. PS, giving 
optimal Qj(ai,s) for each ai in that MDP, and 
average EV(ai,s) over all k MDPs

• For each ai, compute the gain w.r.t. each 
Qj(ai,s). Define EVPI(ai,s) to be the average 
over all k MDPs of gains,ai(Qj(ai,s))

• Execute the action that maximizes 
EV(ai,s) +EVPI(ai,s)
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Computational Approximations 
II

• Problems…  A*R*S successor belief states; 
direct evaluation of the integral over all 
models m is impossible

Î sampling: some number of models can be 
sampled; the MDPs solved; Q-values 
estimated by averaging over the results
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MDPs – Connection with RL

• RL: the agent-environment interaction can 
be modeled as an MDP

• MDP: <S, A, R, Pr>;  R(s,r), Pr(s,a,s’)

• MDPs: R, Pr are known
• RL: an MDP can be viewed as a complete 

specification of the RL environment, that 
satisfies the Markov property

» Markov Property: current state is independent of 
previous states or actions
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MDPs-RL continued
• MDPs infinite-horizon model of optimal behavior: 

Goal: Construct a policy π:SÆA such that
Eπ [Σt=0…∞γtRt | S0=s] is maximized

V*(s): optimal value at s denotes the long term desirability of s, and 
can be computed, e.g., with value/policy iteration

• RL : same goal but…
– In the RL case, R and Pr are not known…

So, in the RL case, the agent has to learn a policy 
based on her interactions with the environment.
This can be done via direct (model-free) methods, or via
model-based methods…
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Model-based RL

• Model-based algorithms use a model 
of the environment to update the 
value function. In case the model is 
not given a priori (RL) it has to be 
estimated:

Model not known, but can be learned…

<s,a,r,t> Î update

By learning a model, the agent makes fuller use of experiences.
Also, costly repetition of steps in the environment can be avoided.

∧
R and

∧
Pr

to maintain an estimated <S, A,
∧
Pr> MDP

∧
R,
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Bayesian Model-Based RL

• Prior density P over (transition dynamics) D and (reward distributions) R is 
assumed;     P is updated with each <s,a,r,t>; Action selection using P(D,R|H)

• P is factored over R and D

• P(D) and P(R) are the products of independent local densities (e.g., P(Ds,a) & 
P(Rs,a)) for each distribution Pr(s,a,t) or Pr(s,a,r)

• Each P(Ds,a), P(Rs,a) is a Dirichlet; Dirichlet priors are conjugate to the multinomial  
distribution Æ Dirichlet posteriors

(Dirichlet distributions use some prior counts (hyper-parameters) for the possible outcomes, 
and update those based on observed experience to come up with a prediction for each 
outcome)

[Dearden et al., 1999: “Model-based Bayesian exploration”]

P(Ds,a |Hs,a)=a Pr(Hs,a |Ds,a ) P(Ds,a)

P(Rs,a |Hs,a)=a Pr(Hs,a |Rs,a ) P(Rs,a)

The agent uses these posteriors to decide on an appropriate action.
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Stochastic Games

• A stochastic game is a tuple

<S, N, A1,...,An, pT, r1,...,rn>
• Analogies with MDPs are apparent, but actions are joint ;

• Goal: maximization of the sum of expected discounted rewards 
– but now other agents are present too…

• Repeated games are a special case of stochastic games having 
only one state. A repeated game is made up from repetitions of 
a single strategic (normal form/ matrix) game…

Some notation: σ, σi, σ-i, BR(σ-i)
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Q-values, Boltzmann, OB, CB Exploration

• Boltzmann Exploration

Action a is chosen with probability: ————
eQ(s,a) /T

∑a’ eQ(s,a’) /T

Optimistic Boltzmann: instead of Q(ai), uses MaxQ(ai)

Combined  Boltzmann: instead of Q(ai), uses:
C(ai) = ρ MaxQ(ai)  + (1- ρ) EV(ai) 

(EV(ai) is the expected Q-value of ai given fictitious play beliefs 
about the opponent’s strategy)

[Claus & Boutilier 98]

“Q-values” can be calculated with value iteration:
Q(a,s) = E Pr(r| a,s)[r| a,s] +γ ∑s’ V(s’)
V(s) = maxaQ(a,s)
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Identical Interest Games:
Some previous approaches

• Claus & Boutilier had brought those issues 
regarding coordination to light…

• JALs: Q-learning  of Q-values of joint actions + 
use of fictitious play Æ calculation of expected Q-
values; exploration is biased by the expected Q-
values (Combined Boltzmann Exploration); 
convergence to equilibrium, but not necessarily an 
optimal equilibrium.

» The introduction of the penalty game was meant to show 
that, really, maybe sometimes it doesn’t worth it to 
converge to optimal…
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Computational Approximations: Analytic 
One-Step Look-ahead Method (“BOL”)

• When there is only one state, we can compute the one-step 
LA expected value of perfoming an action at b, analytically:

1StepLAVal(ai, b) =
= ∑a-i Pr(a-i |b) ∑r PrDirichlet< ai , a-i >(r) {r+γ ExpVal(b’)} =
= ∑a-i Pr(a-i |b) ∑r PrDirichlet< ai , a-i >(r) {r+γ/(1- γ) MaxEVb’}

because ExpVal(b’)= (1/(1- γ)) MaxEVb’, 
MaxEVb’ being the value of the optimal individual action at b’
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Exploration vs. Exploitation 
“in a multiagent guise”

• Coordination requires exploration in parts 
of the policy space that are unrewarding.

• Coordination to an optimal equilibrium 
should be weighted against the possible 
costs.

• The strategies of others should be taken into 
consideration; is what we know so far 
enough or not?
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Identical Interest Games: 
Some previous approaches II

• What others do: 

– Goal: Maximize the “discounted accumulated rewards”

– But actually: seek/force convergence to optimal 
equilibrium

• These are not actually compatible: they are compatible only if 
the agents actually start playing the optimal equilibrium early 
enough, but in reality exploration will undoubtedly lead to 
costs in the process.
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Identical Interest Games: 
Some previous approaches III

• The “Optimistic Assumption”: Each agent assumes that others will 
act optimally, i.e. the chosen individual actions can be combined in 
an optimal action vector
…If so, therefore, acting greedily in respect with the estimated Q-values can 

lead to the optimal equilibrium

• [Lauer & Riedmiller 2000] embody the optimistic assumption in 
the Q-values over individual actions, along with a mechanism to 
resolve ties between equilibria (The policy is updated only if Q-values are 
improved.)

• [Wang & Sandholm 2002], similarly, use biased Adaptive Play 
(Fictitious play with random samples; actions are chosen if have been recently played and they are 

contained into a set of optimal joint actions…) to force (and prove) convergence to 
optimal equilibria.

• [Kapetanakis & Kudenko 2002] use a heuristic exploration method 
that counts the frequency of achieving maximum reward so far in 
order to select an optimal individual action.
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A Bayesian View of MARL

The agents maintain probabilistic beliefs over   
the space of models and the space of opponent 
strategies to account for the effects of actions 
on:
– Knowledge/uncertainty of underlying model

– Knowledge/uncertainty of others’ strategies

– Expected immediate reward

– Expected future behavior of opponents  

Note: Our approach is generic; but the results we have so far are well-suited to make our points 
regarding multiagent coordination in an RL environment.



[Chalkiadakis & Boutilier] Coordination in MARL: A Bayesian Approach 35

Theoretical Underpinnings I

• Belief state: b=<PM , PS , s, h> over current 
MDP models and opponent strategies 
models

• Updated belief state:
b’=b(<s, a, r, t>)=<P’M , P’S , t, h’>

• Densities obtained by Bayes rule
– P’M (m)= zPr(t,r | a,m)PM(m)
– P’S (σ-i) = zPr(a-i| s,h, σ-i)PS (σ-i)
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Theoretical Underpinnings II

• Assumptions: parameter independence,
Dirichlet priors  conjugate for the 
multinomial distributions we wish to learn, 
use of simple fictitious play models…
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In brief… 
• Coordination of agents activities an important focus of multiagent

learning (and RL)
– (Identical interest) stochastic games provide a useful model for

studying such problems

• Much emphasis in MARL research is placed on ensuring that 
MARL algorithms eventually converge to desirable equilibria.

9We propose a Bayesian model for optimal exploration in 
MARL problems

Exploration costs are weighed against expected exploration benefits.

Reasoning about how one’s actions will influence the behavior of
others is required.


