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ABSTRACT
Much emphasis in multiagent reinforcement learning (MARL)re-
search is placed on ensuring that MARL algorithms (eventually)
converge to desirable equilibria. As in standard reinforcement learn-
ing, convergence generally requires sufficient exploration of strat-
egy space. However, exploration often comes at a price in theform
of penalties or foregone opportunities. In multiagent settings, the
problem is exacerbated by the need for agents to “coordinate” their
policies on equilibria. We propose a Bayesian model for optimal
exploration in MARL problems that allows these explorationcosts
to be weighed against their expected benefits using the notion of
value of information. Unlike standard RL models, this modelre-
quires reasoning about how one’s actions will influence the behav-
ior of other agents. We develop tractable approximations toop-
timal Bayesian exploration, and report on experiments illustrating
the benefits of this approach in identical interest games.

Categories and Subject Descriptors
I.2 [Artificial Intelligence ]: Miscellaneous

General Terms
Algorithms
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1. INTRODUCTION
The application of reinforcement learning (RL) to multiagent

systems has received considerable attention [12, 3, 7, 2]. How-
ever, in multiagent settings, the effect (or benefit) of one agent’s
actions are often directly influenced by those of other agents. This
adds complexity to the learning problem, requiring that an agent not
only learn what effects its actions have, but also how to coordinate
or align its action choices with those of other agents. Fortunately,
RL methods can often lead to coordinated or equilibrium behavior.
Empirical and theoretical investigations have shown that standard
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(single-agent) RL methods can under some circumstances lead to
equilibria [3, 8, 2], as can methods designed to explicitly account
for the behavior of other agents [12, 3, 7].

Multiagent reinforcement learning (MARL)algorithms face dif-
ficulties not encountered in single-agent settings: the existence of
multiple equilibria. In games with unique equilibrium strategies
(and hence values), the “target” being learned by agents is well-
defined. With multiple equilibria, MARL methods face the prob-
lem that agents must coordinate their choice of equilibrium(and not
just their actions).1 Empirically, the influence of multiple equilibria
on MARL algorithms is often rather subtle, and certain game prop-
erties can make convergence to undesirable equilibria verylikely
[3]. For obvious reasons, one would like RL methods that con-
verge to desirable (e.g., optimal) equilibria. A number of heuristic
exploration strategies have been proposed that in fact increase the
probability (or even guarantee) that optimal equilibria are reached
in identical interest games [3, 11, 10, 16].

Unfortunately, methods that encourage or force convergence to
optimal equilibria often do so at a great cost. Coordinationon a
“good” strategy profile often requires exploration in partsof pol-
icy space that are very unrewarding. In such a case, the bene-
fits of eventual coordination to an optimal equilibrium ought to be
weighed against the cost (in terms of reward sacrificed whilelearn-
ing to play that equilibrium) [1]. This is simply the classicRL
exploration-exploitation tradeoff in a multiagent guise.In standard
RL, the choice is between:exploitingwhat one knows about the
effects of actions and their rewards by executing the actionthat—
given current knowledge—appears best; andexploringto gain fur-
ther information about actions and rewards that has the potential to
changethe action that appears best. In the multiagent setting, the
same tradeoff exists with respect to action and reward information;
but another aspect comes to bear: the influence one’s action choice
has on the future action choices of other agents. In other words, one
can exploit one’s current knowledge of the strategies of others, or
explore to try to find out more information about those strategies.

In this paper, we develop a model that accounts for thisgen-
eralized exploration-exploitation tradeoffin MARL. We adopt a
Bayesian, model-based approach to MARL, much like the single-
agent model described in [4]. Value of information will playa key
role in determining an agent’s exploration policy. Specifically, the
value of an action consists of two components: its estimatedvalue
given current model estimates, and the expected decision-theoretic
value of informationit provides (informally, the ability this infor-
mation has to change future decisions). We augment both parts of
this value calculation in the MARL context. The estimated value
of an action given current model estimates requires predicting how

1The existence of multiple equilibria can have a negative impact on
known theoretical results for MARL [7, 8].



the action will influence the future action choices of other agents.
The value of information associated with an action includesthe in-
formation it provides about other agents’s strategies, notjust the
environment model. Both of these changes require that an agent
possess some model of the strategies of other agents, for which we
adopt a Bayesian view [9]. Putting these together, we deriveopti-
mal exploration methods for (Bayesian) multiagent systems.

After reviewing relevant background and related work, we de-
velop a general Bayesian model, and describe computationalap-
proximations for optimal—with respect to the tradeoff discussed
above—exploration. We describe a number of experiments illus-
trating this approach, with our experiments focusing on identical
interest games, since these have has been the almost exclusive tar-
get of recent research on heuristic exploration methods.

2. BACKGROUND
We begin with basic background on RL and stochastic games.

2.1 Bayesian Reinforcement Learning
We assume an agent learning to control a stochastic environment

modeled as a Markov decision process (MDP)〈S ,A, R, Pr〉, with
finite state and action setsS ,A, reward functionR, and dynamics
Pr. The dynamicsPr refers to a family of transition distributions
Pr(s, a, ·), wherePr(s, a, s′) is the probability with which states′

is reached when actiona is taken ats. R(s, r) denotes probability
with which rewardr is obtained when states is reached.2 The
agent is charged with constructing an optimal Markovian policy
π : S 7→ A that maximizes the expected sum of future discounted
rewards over an infinite horizon:Eπ[

P
∞

t=0
γtRt|S0 = s]. This

policy, and its value,V ∗(s) at eachs ∈ S , can be computed using
standard algorithms such as policy or value iteration.

In the RL setting, the agent does not have direct access toR and
Pr, so it must learn a policy based on its interactions with the envi-
ronment. Any of a number of RL techniques can be used to learn
an optimal policy. We focus here onmodel-based RLmethods,
in which the learner maintains an estimated MDP〈S ,A, bR, cPr〉,
based on the set of experiences〈s, a, r, t〉 obtained so far. At each
stage (or at suitable intervals) this MDP can be solved (exactly or
approximately).

Bayesian methods allow agents to incorporate priors and explore
optimally. We assume some prior densityP over possible dynam-
ics D and reward distributionsR, which is updated with each data
point 〈s, a, r, t〉.3 Letting H denote the (current)state-action his-
tory of the observer, we use the posteriorP (D, R|H) to determine
an appropriate action choice at each stage. The formulationof
[4] renders this update tractable by assuming a convenient prior.
Specifically, the following assumptions are made: (a) the densityP
is factored overR andD; (b) P (D) is the product of independent
local densitiesP (Ds,a) for each transition distributionPr(s, a, ·);
and (c) each densityP (Ds,a) is a Dirichlet.4

To modelP (Ds,a) we require a Dirichlet parameter vectorn
s,a

with entriesns,a,s′ for each possible successor states′. The expec-
tation ofPr(s, a, s′) w.r.t. P is given byns,a,s′/

P
i
ns,a,si . Up-

date of a Dirichlet is a straightforward: given priorP (Ds,a;ns,a)
and data vectorcs,a (wherecs,a

i is the number of observed tran-
sitions froms to si undera), the posterior is given by parameter

2We will treat this distribution as if it has support over a finite set of
possible valuesr, but more general density functions can be used.
3We writeD for the family of distributions for notational clarity.
4We assume reward densities are modeled similarly, with a Dirich-
let prior over reward probabilities for eachs. Gaussian reward dis-
tributions [4] pose no serious complications.

vectorns,a + c
s,a. Thus the posteriorP (D|H) can be factored

into posteriors over local families, each of the form:

P (Ds,a|Hs,a) = z Pr(Hs,a|Ds,a)P (Ds,a) (1)

whereHs,a is the history ofs, a-transitions updates are of Dirichlet
parameters, andz is a normalizing constant.

The Bayesian approach has several advantages over other ap-
proaches to model-based RL. First, it allows the natural incorpora-
tion of prior knowledge. Second, approximations to optimalBayesian
exploration can take advantage of this model [4]. We elaborate on
optimal exploration below in the MARL context.

2.2 Stochastic Games and Coordination
A normal form gameis a tupleG = 〈α, {Ai}i∈α, {Ui}i∈α〉,

whereα is a collection of agents,Ai is the set of actions available
to agenti, andUi is agenti’s payoff function. LettingA = ×Ai

denote the set ofjoint actions, Ui(a) denotes the real-valued utility
obtained byi if the agents executea ∈ A. We refer to anyσi ∈
∆(Ai) as amixed strategy. A strategy profileσ is a collection
of strategies, one per agent. We often writeσi to refer to agent
i’s component ofσ, andσ−i to denote a reduced strategy profile
dictating all strategies except that fori. We useσ−i ◦ σi to denote
the (full) profile obtained by augmentingσ−i with σi. Let σ−i

be some reduced strategy profile. Abest responseto σ−i is any
strategyσi s.t.Ui(σ−i ◦ σi) ≥ Ui(σ−i ◦ σ′

i) for anyσ′

i ∈ ∆(Ai).
We defineBR(σ−i) to be the set of such best responses. ANash
equilibrium is any profileσ s.t.σi ∈ BR(σ−i) for all agentsi.

Nash equilibria are generally viewed as the standard solution
concept to games of this form. However, it is widely recognized
that the equilibrium concept has certain (descriptive and prescrip-
tive) deficiencies. One important problem (among several) is the
fact that games may have multiple equilibria, leading to theprob-
lem of equilibrium selection. As an example, consider the sim-
ple two-player identical interest game called thepenalty game[3],
shown here in standard matrix form:

a0 a1 a2

b0 10 0 k

b1 0 2 0

b2 k 0 10

Here agentA has movesa0, a1, a2 andB has movesb0, b1, b2.
The payoffs to both players are identical, andk < 0 is some
penalty. There are three pure equilibria. While〈a0, b0〉 and〈a2, b2〉
are the optimal equilibria, the symmetry of the game inducesa co-
ordination problem for the agents. With no means of breakingthe
symmetry, and the risk of incurring the penalty if they choose dif-
ferent optimal equilibria, the agents might in fact focus onthe sub-
optimal equilibrium〈a1, b1〉.

Learning models have become popular as a means of tackling
equilibrium selection [9, 6]. Assuming repeated play of some “stage
game,” these methods require an agent to make some prediction
about the play of others at the current stage based on the history
of interactions, and play the current stage game using thesepre-
dictions. One simple model isfictitious play[14]: at each stage,
agenti uses the empirical distribution of observed actions by other
agents over past iterations as reflective of the mixed strategy they
will play at the current stage; agenti then plays a best response to
these estimated strategies. This method is known to converge (in
various senses) to equilibria for certain classes of games.

Another interesting learning model is the Bayesian approach of
Kalai and Lehrer [9]. In this model, an agent maintains a distribu-
tion over all strategies that could be played by other agents. This
strategy space is not confined to strategies in the stage game, but
allows for beliefs about strategies another agent could adopt for



the repeated game itself.5 Standard Bayesian updating methods are
used to maintain these beliefs over time, and best responsesare
played by the agent w.r.t. the expectation over strategy profiles.

Repeated games are a special case ofstochastic games[15, 5],
which can be viewed as a multiagent extension of MDPs. Formally,
a stochastic gameG = 〈α, {Ai}i∈α,S ,Pr, {Ri}i∈α〉 consists of
five components. The agentsα and action setsAi are as in a typ-
ical game, and the componentsS andPr are as in an MDP, ex-
cept thatPr now refers to joint actionsa ∈ A = ×Ai. Ri is a
the reward function for agenti, defined over statess ∈ S (pairs
〈s, a〉 ∈ S × A). The aim of each agent is, as with an MDP, to
act to maximize the expected sum of discounted rewards. How-
ever, the presence of other agents requires treating this problem in
a game theoretic fashion. For particular classes of games, such as
zero-sum stochastic games [15, 5], algorithms like value iteration
can be used to compute Markovian equilibrium strategies.

The existence of multiple “stage game” equilibria is again aprob-
lem that plagues the construction of optimal strategies forstochas-
tic games. Consider another simple identical interest example, the
stochastic game shown in Figure 3(a). In this game, there aretwo
optimal strategy profiles that maximize reward. In both, thefirst
agent chooses to “opt in” at states1 by choosing actiona, which
takes the agents (with high probability) to states2; then ats2 both
agents either choosea or both chooseb—either joint strategy gives
an optimal equilibrium.

Intuitively, the existence of these two equilibria gives rise to a
coordination problem at states2. If the agents choose their part
of the equilibrium randomly, there is a 0.5 chance that they mis-
coordinate ats2, thereby obtaining an expected immediate reward
of 0. On this basis, one might be tempted to propose methods
whereby the agents decide to “opt out” ats1 (the first agent takes
action b) and obtain the safe payoff of 6. However, if we allow
some means of coordination—for example, simple learning rules
like fictitious play or randomization—the sequential nature of this
problem means that the short-term risk of miscoordination at s2 can
be more than compensated for by the eventual stream of high pay-
offs should they coordinate. Boutilier [1] argues that the solution
of games like this, assuming some (generally, history-dependent)
mechanism for resolving these stage game coordination problems,
requires explicit reasoning about the odds and benefits of coordina-
tion, the expected cost of attempting to coordinate, and thealterna-
tive courses of action.

Repeated games can be viewed as stochastic games with a single
state. If our concern is not with stage-game equilibrium, but with
reward accrued over the sequence of interactions, techniques for
solving stochastic games can be applied to solving such repeated
games. Furthermore, the points made above regarding the risks
associated with using specific learning rules for coordination can
be applied with equal force to repeated games.

2.3 Multiagent RL
In this section, we describe some existing approaches to MARL,

and point out recent efforts to augment standard RL schemes to en-
courage RL agents in multiagent systems to converge to optimal
equilibria. Intuitively, MARL can be viewed as the direct orin-
direct application of RL techniques to stochastic games in which
the underlying model (i.e., transitions and rewards) are unknown.
In some cases, it is assumed that the learner is even unaware (or
chooses to ignore) the existence of other agents.

Formally, we suppose we have some underlying stochastic game

5A strategy in the repeated game is any mapping from the observed
history of play to a (stochastic) action choice. This admitsthe pos-
sibility of modeling other agents’s learning processes.

G = 〈α, {Ai}i∈α,S ,Pr, {Ri}i∈α〉. We consider the case where
each agent knows the “structure” of the games—that is, it knows
the set of agents, the actions available to each agent, and the set of
states—but knows neither the dynamicsPr, nor the reward func-
tions Ri. The agents learn how to act in the world through expe-
rience. At each point in time, the agents are at a known states,
and each agenti executes one of its actions; the resulting joint ac-
tion a induces a transition to statet and a rewardri for each agent.
We assume that each agent can observe the actions chosen by other
agents, the resulting statet, and the rewardsri.

Littman [12] devised an extension of Q-learning for zero-sum
Markov games calledminimax-Q. At each state, the agents have
estimated Q-values over joint actions, which can be used to com-
pute an (estimated) equilibrium value at that state. Minimax-Q con-
verges to the equilibrium value of the stochastic game [13].Hu
and Wellman [7] apply similar ideas—using an equilibrium com-
putation on estimated Q-values to estimate state values—togeneral
sum games, with somewhat weaker convergence guarantees. Al-
gorithms have also been devised for agents that do not observe the
behavior of their counterparts [2, 8].

Identical interest games have drawn much attention, providing
suitable models for task distribution among teams of agents. Claus
and Boutilier [3] proposed several MARL methods for repeated
games in this context. A simplejoint-action learner(JAL) pro-
tocol learned the (myopic, or one-stage) Q-values of joint actions.
The novelty of this approach lies in its exploration strategy: (a)
a fictitious play protocol estimates the strategies of otheragents;
and (b) exploration is biased by theexpected Q-value of actions.
Specifically, the estimated value of an action is given by itsex-
pected Q-value, where the expectation is taken w.r.t. the fictitious
play beliefs over the other agents’s strategies. When semi-greedy
exploration is used, this method will converge to an equilibrium in
the underlying stage game.

One drawback of the JAL method is the fact that the equilib-
rium it converges to depends on the specific path of play, which
is stochastic. Certain equilibria can exhibit serious resistance—for
example, the odds of converging to an optimal equilibrium inthe
penalty game above are quite small (and decrease dramatically with
the magnitude of the penalty). Claus and Boutilier propose several
heuristic methods that bias exploration toward optimal equilibria:
for instance, action selection can be biased toward actionsthat form
part of an optimal equilibrium. In the penalty game, for instance,
despite the fact that agentB may be predicted to play a strategy
that makes thea0 look unpromising, the repeated play of thea0
by A can be justified by optimistically assumingB will play its
part of this optimal equilibrium. This is further motivatedby the
fact that repeated play ofa0 would eventuallydraw B toward this
equilibrium.

This issue of learning optimal equilibria in identical interest games
has been addressed recently in much greater detail. Lauer and
Riedmiller [11] describe a Q-learning method for identicalinterest
stochastic games that explicitly embodies this optimisticassump-
tion in its Q-value estimates. Kapetanakis and Kudenko [10]pro-
pose a method called FMQ for repeated games that uses the opti-
mistic assumption to bias exploration, much like [3], but inthe con-
text of individual learners. Wang and Sandholm [16] similarly use
the optimistic assumption in repeated games to guarantee conver-
gence to an optimal equilibrium. We critique these methods below.

3. A BAYESIAN VIEW OF MARL
The spate of activity described above on MARL in identical in-

terest games has focused exclusively on devising methods that en-
sure eventual convergence to optimal equilibria. In cooperative



games, this pursuit is well-defined, and in some circumstances may
be justified. However, these methods do not account for the fact
that—by forcing agents to undertake actions that have potentially
drastic effects in order to reach an optimal equilibrium—they can
have a dramatic impact on accumulated reward. The penalty game
was devised to show that these highly penalized states can bias
(supposedly rational) agents away from certain equilibria; yet op-
timistic exploration methods ignore this and blindly pursue these
equilibria at all costs. Under certain performance metrics(e.g., av-
erage reward over an infinite horizon) one might justify these tech-
niques.6 However, using the discounted reward criterion (which all
of these methods are designed for), the tradeoff between long-term
benefit and short-term cost should be addressed.

This tradeoff was discussed above in the context of known-model
stochastic games. In this section, we attempt to address thesame
tradeoff in the RL context. To do so, we formulate a Bayesian
approach to model-based MARL. By maintaining probabilistic be-
liefs over the space of models and the space of opponent strategies,
our learning agents can explicitly account for the effects their ac-
tions can have on (a) their knowledge of the underlying model; (b)
their knowledge of the other agent strategies; (c) expectedimmedi-
ate reward; and (d) expected future behavior of other agents. Com-
ponents (a) and (c) are classical parts of the single-agent Bayesian
RL model [4]. Components (b) and (d) are key to the multiagent
extension, allowing an agent to explicitly reason about thepotential
costs and benefits of coordination.

3.1 Theoretical Underpinnings
We assume a stochastic gameG in which each agent knows the

game structure, but not the reward or transition models. A learning
agenti is able to observe the actions taken by all agents, the re-
sulting game state, and the rewards received by other agents. Thus
an agent’s experience at each point in time is simply〈s, a, ri, t〉,
wheres is a state in which joint actiona was taken,ri is the reward
received, andt is the resulting state.

A Bayesian MARL agenthas some prior distribution over the
space of possible models as well as the space of possible strate-
gies being employed by other agents. These beliefs are updated
as the agent acts and observes the results of its actions and the ac-
tion choices of other agents. The strategies of other agentsmay be
history-dependent, and we allow our Bayesian agent (BA) to assign
positive support to such strategies. As such, in order to make ac-
curate predictions about the actions others will take, the BA must
monitor appropriate observable history. In general, the history (or
summary thereof) required will be a function of the strategies to
which the BA assigns positive support. We assume that the BA
keeps track of sufficient history to make such predictions.7

The belief stateof the BA has the formb = 〈PM , PS , s, h〉,
where:PM is some density over the space of possible models (i.e.,
games);PS is a joint density over the possible strategies played
by other agents;s is the current state of the system; andh is a
summary of the relevant aspects of game history, sufficient to pre-
dict the action of any agent given any strategy consistent with PS .
Given experience〈s, a, ri, t〉, the BA updates its belief state using
standard Bayesian methods. The updated belief state is:

b′ = b(〈s, a, ri, t〉) = 〈P ′

M , P ′

S, t, h′〉 (2)

6Even then, more refined measures such as bias optimality might
cast these techniques in a less favorable light.
7For example, should the BA believe that its opponent’s strategy
lies in the space of finite state controller that depends on the last
two joint actions played, the BA will need to keep track of these last
two actions. If it uses fictitious play beliefs (which can be viewed
as Dirichlet priors) over strategies, no history need be maintained.

Updates are given by Bayes rule:P ′

M (m) = z Pr(t, ri|a, m)PM(m)
andP ′

S(σ−i) = z Pr(a−i|s, h, σ−i)PS(σ−i). And h′ is a suit-
able update of the observed history (as described above). This
model combines aspects of Bayesian reinforcement learning[4]
and Bayesian strategy modeling [9].

To make belief state maintenance tractable (and admit compu-
tationally viable methods for action selection below), we assume
a specific form for these beliefs [4]. First, our prior over mod-
els will be factored into independent local models for both rewards
and transitions. We assume independent priorsP s

R over reward dis-
tributions at each states, andP s,a

D over system dynamics for each
state and joint action pair. These local densities are Dirichlet, which
are conjugate for the multinomial distributions to be learned. This
means that each density can be represented using a small number
of hyperparameters, expected transition probabilities can be com-
puted readily, and the density can be updated easily. For example,
our BA’s prior beliefs about the transition probabilities for joint
actiona at states will be represented by a vectorns,a with one
parameter per successor statet. Expected transition probabilities
and updates of these beliefs are as described in Section 2.1.The
independence of these local densities is assured after eachupdate.

Second, we assume that the beliefs about opponent strategies can
be factored and represented in some convenient form. For exam-
ple, it would be natural to assume that the strategies of other agents
are independent. Simple fictitious play models could be usedto
model the BA’s beliefs about opponent strategies (corresponding to
Dirichlet priors over mixed strategies), allowing ready update and
computation of expectations, and obviating the need to store history
in the belief state. Similarly, distributions over specificclasses of
finite state controllers could also be used. We will not pursue fur-
ther development of such models in this paper, since we use only
simple opponent models in our experiments below. But the devel-
opment of tractable classes of (realistic) opponent modelsremains
an interesting problem.

We provide a different perspective on Bayesian explorationthan
that described in [4]. The value of performing an actionai at a
belief stateb can be viewed as involving two main components: an
expected value with respect to the current belief state; andits im-
pact on the current belief state. The first component is typical in
RL, while the second captures theexpected value of information
(EVOI) of an action. Since each action gives rise to some “re-
sponse” by the environment that changes the agent’s beliefs, and
these changes in belief can influence subsequent action choice and
expected reward, we wish to quantify the value of that information
by determining its impact onsubsequentdecisions.

EVOI need not be computed directly, but can be combined with
“object-level” expected value through the following Bellman equa-
tions over the belief state MDP:

Q(ai, b) =
X

a−i

Pr(a−i|b)
X

t

Pr(t|ai ◦ a−i, b)

X

ri

Pr(ri|ai ◦ a−i, b)[ri + γV (b(〈s, a, ri, t〉))] (3)

V (b) = max
ai

Q(ai, b) (4)

These equations describe the solution to the POMDP that repre-
sents the exploration-exploitation problem, by conversion to a be-
lief state MDP. These can (in principle) be solved using any method
for solving high-dimensional continuous MDPs—of course, in prac-
tice, a number of computational shortcuts and approximations will
be required (as we detail below). We complete the specification
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Figure 1: Penalty Game Results

with the straightforward definition of the following terms:

Pr(a−i|b) =

Z

σ−i

Pr(a−i|σ−i)PS(σ−i) (5)

Pr(t|a, b) =

Z

m

Pr(t|s, a, m)PM(m) (6)

Pr(ri|b) =

Z

m

Pr(ri|s, m)PM (m) (7)

We note that the evaluation of Eqs. 6 and 7 is trivial using thede-
composed Dirichlet priors mentioned above.

This formulation determines the optimal policy as a function of
the BA’s belief state. This policy incorporates the tradeoffs between
exploration and exploitation, both with respect to the underlying
(dynamics and reward) model, and with respect to the behavior
of other agents. As with Bayesian RL and Bayesian learning in
games, noexplicit exploration actions are required. Of course, it is
important to realize that this model may not converge to an optimal
policy for the true underlying stochastic game. Priors thatfail to
reflect the true model, or unfortunate samples early on, can easily
mislead an agent. But it is precisely this behavior that allows an
agent to learn how to behave well without drastic penalty.

3.2 Computational Approximations
Solving the belief state MDP above will generally be computa-

tionally infeasible. In specific MARL problems, the generality of
such a solution—defining as it does a value for every possiblebelief
state—is not needed anyway. Most belief states are not reachable
given a specific initial belief state. A more directed search-based
method can be used to solve this MDP for the agent’s current belief
stateb. We consider a form ofmyopic EVOIin which only im-
mediate successor belief states are considered, and their values are
estimated without using VOI or lookahead.

Formally, myopic action selection is defined as follows. Given
belief stateb, themyopicQ-function for eachai ∈ Ai is:

Qm(ai, b) =
X

a−i

Pr(a−i|b)
X

t

Pr(t|ai ◦ a−i, b)

X

ri

Pr(ri|ai ◦ a−i, b)[r + γVm(b(〈s, a, ri, t〉))] (8)

Vm(b) = max
ai

Z

m

Z

σ−i

Q(ai, s|m, σ−i)PM (m)PS(σ−i) (9)

The action performed is that with maximum myopic Q-value. Eq. 8
differs from Eq. 3 in the use of the myopic value functionVm,

which is defined as the expected value of the optimal action atthe
current state, assuming a fixed distribution over models andstrate-
gies.8 Intuitively, this myopic approximation performs one step-
lookahead in belief space, then evaluates these successor states by
determining the expected value to BA w.r.t. a fixed distribution over
models, and a fixed distribution over successor states.

This computation involves the evaluation of a finite number of
successor belief states—A · R · S such states, whereA is the num-
ber of joint actions,R is the number of rewards, andS is the size
of the state space (unlessb restricts the number of reachable states,
plausible strategies, etc.). Greater accuracy can be realized with
multistage lookahead, with the requisite increase in computational
cost. Conversely, the myopic action can be approximated by sam-
pling successor beliefs (using the induced distributions defined in
Eqs. 5, 6, 7) if the branching factorA · R · S is problematic.

The final bottleneck involves the evaluation of the myopic value
functionVm(b) over successor belief states. TheQ(ai, s|m, σ−i)
terms are Q-values for standard MDPs, and can be evaluated us-
ing standard methods, but direct evaluation of the integralover all
models is generally impossible. However, sampling techniques can
be used [4]. Specifically, some number of models can be sampled,
the corresponding MDPs solved, and the expected Q-values esti-
mated by averaging over the sampled results. Various techniques
for making this process more efficient can be used as well, includ-
ing importance sampling (allowing results from one MDP to be
used multiple times by reweighting) and “repair” of the solution
for one MDP when solving a related MDP [4].

For certain classes of problems, this evaluation can be performed
directly. For instance, suppose a repeated game is being learned,
and the BA’s strategy model consists of fictitious play beliefs. The
immediate expected reward of any actionai taken by the BA (w.r.t.
successorb′) is given by its expectation w.r.t. its estimated reward
distribution and fictitious play beliefs. The maximizing action a∗

i

with highest immediate reward will be the best action atall subse-
quent stages of the repeated game—and has a fixed expected reward
r(a∗

i ) under the myopic (value) assumption that beliefs are fixed by
b′. Thus the long-term value atb′ is r(a∗

i )/(1 − γ).
The approaches above are motivated by approximating the direct

myopic solution to the “exploration POMDP.” A different approach
to this approximation is proposed in [4], which estimates the (my-
opic) value of obtainingperfect informationaboutQ(a, s). Sup-
pose that, given an agent’s current belief state, the expected value

8We note thatVm(b) only provides a crude measure of the value
of belief stateb under this fixed uncertainty. Other measures could
include the expected value ofV (s|m, σ−i).
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Figure 2: Chain World Results

of actiona is given byQ(a, s). Let a1 be the action with highest
expected Q-value and states anda2 be the second-highest. We de-
fine thegainassociated with learning that the true value ofQ(a, s)
(for anya) is in factq as follows:

gains,a(q) =

8
<
:

Q(a2, s) − q, if a = a1 andq < Q(a2, s)
q − Q(a1, s), if a 6= a1 andq > Q(a1, s)
0, otherwise

Intuitively, the gain reflects the effect on decision quality of learn-
ing the true Q-value of a specific action at states. In the first two
cases, what is learned causes us to change our decision (in the first
case, the estimated optimal action is learned to be worse than pre-
dicted, and in the second, some other action is learned to be opti-
mal). In the third case, no change in decision ats is induced, so the
information has no impact on decision quality.

Adapted to our setting, a computational approximation to this
naive samplingapproach involves the following steps:

(a) a finite set ofk models is sampled from the densityPM ;

(b) each sampled MDPj is solved (w.r.t. the densityPS over strate-
gies), giving optimal Q-valuesQj(ai, s) for eachai in that
MDP, and average Q-valueQ(ai, s) (over allk MDPs);

(c) for eachai, computegains,ai
(Qj(ai, s)) for each of thek

MDPS; letEVPI(ai, s) be the average of thesek values;

(d) define the value ofai to beQ(ai, s)+EVPI(ai, s) and execute
the action with highest value.

This approach can benefit from the use of importance samplingand
repair (with minor modifications). Naive sampling can be more
computationally effective than one-step lookahead (whichrequires
sampling and solving MDPs frommultiplebelief states). The price
paid is approximation inherent in the perfect information assump-
tion: the execution of joint actiona does not come close to provid-
ing perfect information aboutQ(a, s).

4. EXPERIMENTAL RESULTS
We have conducted a number of experiments with both repeated

and stochastic games to evaluate the Bayesian approach. We focus
on two-player identical interest games largely to compare to exist-
ing methods for “encouraging” convergence to optimal equilibria.
The Bayesian methods examined are one-step lookahead (BOL)
and naive sampling for estimating VPI (BVPI) described in Sec-
tion 3. In all cases, the Bayesian agents use a simple fictitious play

model to represent their uncertainty over the other agent’sstrategy.
Thus at each iteration, a BA believes its opponent to play an action
with the empirical probability observed in the past (for multistate
games, these beliefs are independent at each state).

BOL is used only for repeated games, since these allow the im-
mediate computation of expected values over the infinite horizon
at the successor belief states: expected reward for each joint ac-
tion can readily be combined with the BA’s fictitious play beliefs to
compute the expected value of an action (over the infinite horizon)
since the only model uncertainty is in the reward. BVPI is used
for both repeated and multi-state games. In all cases, five models
are sampled to estimate the VPI of the agent’s actions. The strat-
egy priors for the BAs are given by Dirichlet parameters (“prior
counts”) of0.1 or 1 for each opponent action. The model priors are
similarly uninformative, with each state-action pair given the same
prior distribution over reward and transition distributions (except
for one experiment as noted).

We first compare our method to several different algorithms on a
stochastic version of the penalty game described above. Thegame
is altered so that joint actions provide a stochastic reward, whose
mean is the value shown in the game matrix.9 We compare the
Bayesian approach to the following algorithms. KK is an algorithm
[10] that biases exploration to encourage convergence to optimal
equilibria in just these types of games. Two related heuristic algo-
rithms that also bias exploration optimistically are the Optimistic
Boltzmann (OB) and Combined OB (CB) [3] are also evaluated.
Unlike KK, these algorithms observe and make predictions about
the other agent’s play. Finally, we test the more general algorithm
WoLF-PHC [2], which works with arbitrary, general-sum stochas-
tic games (and has no special heuristics for equilibrium selection).
In each case the game is played by two learning agents of the same
type. The parameters of all algorithms were empirically tuned to
give good performance.

The first set of experiments tested these agents on the stochastic
penalty game withk set to−20 and discount factors of0.95 and
0.75. Both BOL and BVPI agents use uninformative priors over
the set of reward values.10 Results appear in in Figures 1(a) and (b)
showing the total discounted reward accumulated by the learning
agents, averaged over 30 trials. Discounted accumulated reward
provides a suitable way to measure both the cost being paid inthe
attempt to coordinate as well as the benefits of coordination(or lack

9Each joint action gives rise to X distinct rewards.
10Specifically, anypossiblereward (for any joint action) is given
equal (expected) probability in the agent’s Dirichlet priors.
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Figure 3: “Opt In or Out” Results: Low Noise

thereof). The results show that both Bayesian methods perform sig-
nificantly better than the methods designed to force convergence to
an optimal equilibrium. Indeed, OB, CB and KK converge to an
optimal equilibrium in virtually all of their 30 runs, but clearly pay
a high price.11 By comparison, whenγ = 0.95, the ratio of con-
vergence to an optimal equilibrium, the nonoptimal equilibrium, or
a nonequilibrium is, for BVPI 25/1/4 and for BOL 14/16/0. Sur-
prisingly, WoLF-PHC does better than OB, CB and KK in both
tests. In fact, this method outperforms the BVPI agent in thecase
of γ = 0.75 (largely because BVPI converges to a nonequilibrium
5 times and the suboptimal equilibrium 4 times). WoLF-PHC con-
verges in each instance to an optimal equilibrium.

We repeated this comparison on a more “difficult” problem with
a mean penalty of -100 (and increasing the variance of the reward
for each action). To test one of the benefits of the Bayesian per-
spective we included a version of BOL and BVPI with informative
priors (giving it strong information about rewards by restricting the
prior to assign (uniform) nonzero expected probability to the small
range of truly feasible rewards for each action). Results are shown
in Figure 1(c) (averaged over 30 runs). Wolf-PHC and CB con-
verge to the optimal equilibrium each time, while the increased re-
ward stochasticity made it impossible for KK and OB to converge
at all. All four methods perform poorly w.r.t. discounted reward.
The Bayesian methods perform much better. Not surprisingly, the
agents BOL and BVPI with informative priors do better than their
“uninformed” counterparts; however, because of the high penalty
(despite the high discount factor), they converge to the suboptimal
equilibrium most of the time (22 and 23 times, respectively).

We also applied the Bayesian approach to two identical-interest,
multi-state, stochastic games. The first is a version of Chain World
[4] modified for multiagent coordination, and is illustrated in Fig-
ure 2(a). The optimal joint policy is for the agents to do action a
at each state, though these actions have no payoff until state s5 is
reached. Coordinating onb leads to an immediate, but smaller, pay-
off, and resets the process.12 Unmatched actions〈a, b〉 and〈b, a〉
result in zero-reward self-transitions (omitted from the diagram for
clarity). Transitions are noisy, with a 10% chance that an agent’s
action has the “effect” of the opposite action. The originalChain
World is difficult for standard RL algorithms, and is made espe-
cially difficult here by the requirement of coordination.

We compared BVPI to WoLF-PHC on this domain using two

11All penalty game experiments were run to 500 games, though only
the interesting initial segments of the graphs are shown.

12As above, rewards are stochastic with means shown in the figure.

different discount factors, plotting the total discountedreward (av-
eraged over 30 runs) in Figure 2(b) and (c). Only initial segments
are shown, though the results project smoothly to 50000 iterations.
BVPI compares favorably to Wolf-PHC in terms of online perfor-
mance. BVPI converged to the optimal policy in 7 (of 30) runs
with γ = 0.99 and in 3 runs withγ = 0.75, intuitively reflecting
the increased risk aversion due to increased discounting. WoLF-
PHC rarely even managed to reach states5, though in 2 (of 30)
runs withγ = 0.75 it stumbled acrosss5 early enough to converge
to the optimal policy. The Bayesian approach manages to encour-
age intelligent exploration of action space in a way that trades off
risks and predicted rewards; and we see increased exploration with
the higher discount factor, as expected.

The second multi-state game is “Opt in or Out” shown in Fig-
ure 3(a). The transitions are stochastic, with the action selected
by an agent having the “effect” of the opposite action with some
probability. Two versions of the problem were tested, one with low
“noise” (probability0.05 of an action effect being reversed), and
one with “medium” noise level (probability roughly0.11). With
low noise, the optimal policy is as if the domain were determinis-
tic (the first agent opts in ats1 and both play a coordinated choice
at s2), while with medium noise, the “opt in” policy and the “opt
out” policy (where the safe move tos6 is adopted) have roughly
equal value. BVPI is compared to WoLF-PHC under two differ-
ent discount rates, with low noise results shown in Figure 3(b) and
(c), and high noise results in Figure 4(a) and (b). Again BVPI
compares favorably to WoLF-PHC, in terms of dicounted reward
averaged over 30 runs. In the low noise problem, BVPI converged
to the optimal policy in 18 (of 30) runs withγ = 0.99 and 15 runs
with γ = 0.75. The WoLF agents converged in the optimal pol-
icy only once withγ = 0.99, but 17 times withγ = 0.75. With
medium noise, BVPI chose the “opt in” policy in 10 (0.99) and
13 (0.75) runs, but learned to coordinate ats2 even in the “opt out”
cases. Interestingly, WoLF-PHC always converged on the “opt out”
policy (recall both policies are optimal with medium noise).

Finally, we remark that the Bayesian methods do incur greater
computational cost per experience than the simpler model-free RL
methods we compared to. BOL in particular can be intensive, tak-
ing up to 25 times as long to select actions in the repeated game
experiments as BVPI. Still, BOL computation time per step isonly
half a millisecond. BVPI is comparable to all other methods on re-
peated games. In the stochastic games, BVPI takes roughly 0.15ms
to compute action selection, about 8 times as long as WoLF in
ChainWorld, and 24 times in Opt In or Out.
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5. CONCLUDING REMARKS
We have described a Bayesian approach to modeling MARL

problems that allows agents to explicitly reason about their uncer-
tainty regarding the underlying domain and the strategies of their
counterparts. We’ve provided a formulation of optimal exploration
under this model and developed several computational approxima-
tions for Bayesian exploration in MARL.

The experimental results presented here demonstrate quiteeffec-
tively that Bayesian exploration enables agents to make thetrade-
offs described. Our results show that this can enhance online per-
formance (reward accumulated while learning) of MARL agents
in coordination problems, when compared to heuristic exploration
techniques that explicitly try to induce convergence to optimal equi-
libria. This implies that BAs run the risk of converging on a subop-
timal policy; but this risk is taken “willingly” through dueconsider-
ation of the learning process given the agent’s current beliefs about
the domain. Still we see that BAs often find optimal strategies in
any case. Key to this is a BA’s willingness to exploit what it knows
before it is very confident in this knowledge—it simply needsto be
confident enough to be willing to sacrifice certain alternatives.

While the framework is general, our experiments were confined
to identical interest games and fictitious play beliefs as (admittedly
simple) opponent models. These results are encouraging butneed
to be extended in several ways. Empirically, the application of this
framework to more general problems is important to verify its util-
ity. More work on computational approximations to estimating VPI
or solving the belief state MDP is also needed. Finally, the de-
velopment of computationally tractable means of representing and
reasoning with distributions over strategy models is required.
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