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ABSTRACT

Much emphasis in multiagent reinforcement learning (MARE)
search is placed on ensuring that MARL algorithms (evehtual
converge to desirable equilibria. As in standard reinforeet learn-
ing, convergence generally requires sufficient exploratibstrat-
egy space. However, exploration often comes at a price ifotie
of penalties or foregone opportunities. In multiagentisgs, the
problem is exacerbated by the need for agents to “coordittze
policies on equilibria. We propose a Bayesian model forrogti
exploration in MARL problems that allows these exploratomsts
to be weighed against their expected benefits using themofio
value of information. Unlike standard RL models, this moel
quires reasoning about how one’s actions will influence ttealo-
ior of other agents. We develop tractable approximationspto
timal Bayesian exploration, and report on experimentstiating
the benefits of this approach in identical interest games.

Categories and Subject Descriptors
1.2 [Artificial Intelligence ]: Miscellaneous

General Terms
Algorithms
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1. INTRODUCTION

The application of reinforcement learning (RL) to multiage
systems has received considerable attention [12, 3, 7, 2w-H
ever, in multiagent settings, the effect (or benefit) of ogerd’s
actions are often directly influenced by those of other agyertis
adds complexity to the learning problem, requiring thatgera not
only learn what effects its actions have, but also how to dioate
or align its action choices with those of other agents. Fately,
RL methods can often lead to coordinated or equilibrium fina
Empirical and theoretical investigations have shown ttetdard
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(single-agent) RL methods can under some circumstancdgdea
equilibria [3, 8, 2], as can methods designed to explicitgaunt
for the behavior of other agents [12, 3, 7].

Multiagent reinforcement learning (MARR)gorithms face dif-
ficulties not encountered in single-agent settings: theterte of
multiple equilibria. In games with unique equilibrium gBgies
(and hence values), the “target” being learned by agentsls w
defined. With multiple equilibria, MARL methods face the pro
lem that agents must coordinate their choice of equilibrfand not
just their actions}. Empirically, the influence of multiple equilibria
on MARL algorithms is often rather subtle, and certain gamopp
erties can make convergence to undesirable equilibria lilely
[3]. For obvious reasons, one would like RL methods that con-
verge to desirable (e.g., optimal) equilibria. A number efilistic
exploration strategies have been proposed that in factaserthe
probability (or even guarantee) that optimal equilibriea egached
in identical interest games [3, 11, 10, 16].

Unfortunately, methods that encourage or force convegémc
optimal equilibria often do so at a great cost. Coordinatona
“good” strategy profile often requires exploration in pasfspol-
icy space that are very unrewarding. In such a case, the bene-
fits of eventual coordination to an optimal equilibrium otighbe
weighed against the cost (in terms of reward sacrificed vib#m-
ing to play that equilibrium) [1]. This is simply the clasdRi
exploration-exploitation tradeoff in a multiagent guise standard
RL, the choice is betweerexploitingwhat one knows about the
effects of actions and their rewards by executing the adtiat—
given current knowledge—appears best; argloringto gain fur-
ther information about actions and rewards that has thenpat¢o
changethe action that appears best. In the multiagent setting, the
same tradeoff exists with respect to action and reward rimédion;
but another aspect comes to bear: the influence one’s adtaoec
has on the future action choices of other agents. In othedsyone
can exploit one’s current knowledge of the strategies oérsthor
explore to try to find out more information about those stya®.

In this paper, we develop a model that accounts for ¢fas-
eralized exploration-exploitation tradeoffi MARL. We adopt a
Bayesian, model-based approach to MARL, much like the singl
agent model described in [4]. Value of information will playkey
role in determining an agent’s exploration policy. Speaific the
value of an action consists of two components: its estimaa@oe
given current model estimates, and the expected decibenrétic
value of informationt provides (informally, the ability this infor-
mation has to change future decisions). We augment both part
this value calculation in the MARL context. The estimatetliea
of an action given current model estimates requires priedittow

1The existence of multiple equilibria can have a negativesicpn
known theoretical results for MARL [7, 8].



the action will influence the future action choices of othgerats.
The value of information associated with an action incluthesin-
formation it provides about other agents’s strategies,jusit the
environment model. Both of these changes require that ant age
possess some model of the strategies of other agents, fohwiai
adopt a Bayesian view [9]. Putting these together, we dexpie
mal exploration methods for (Bayesian) multiagent systems

After reviewing relevant background and related work, we de
velop a general Bayesian model, and describe computatigal
proximations for optimal—with respect to the tradeoff dissed
above—exploration. We describe a number of experiments-ill
trating this approach, with our experiments focusing omfidal
interest games, since these have has been the almost exdhusi
get of recent research on heuristic exploration methods.

2. BACKGROUND

We begin with basic background on RL and stochastic games.

2.1 Bayesian Reinforcement Learning

We assume an agent learning to control a stochastic envaohm
modeled as a Markov decision process (MRB®)A, R, Pr), with
finite state and action sefs A, reward functionR®, and dynamics
Pr. The dynamic®r refers to a family of transition distributions
Pr(s,a,-), wherePr(s, a, s') is the probability with which state’
is reached when actianis taken ats. R(s, ) denotes probability
with which rewardr is obtained when state is reached. The
agent is charged with constructing an optimal Markovianayol
w : S — A that maximizes the expected sum of future discounted
rewards over an infinite horizonE,[>";° v*R'|S° = s]. This
policy, and its value} *(s) at eachs € S, can be computed using
standard algorithms such as policy or value iteration.

In the RL setting, the agent does not have direct acceBsaid
Pr, so it must learn a policy based on its interactions with the-e
ronment. Any of a number of RL techniques can be used to learn
an optimal policy. We focus here anodel-based RImethods,
in which the learner maintains an estimated M A, R, f’?>,
based on the set of experiendgsa, r, t) obtained so far. At each
stage (or at suitable intervals) this MDP can be solved (gxac
approximately).

Bayesian methods allow agents to incorporate priors anlbexp
optimally. We assume some prior densiyover possible dynam-
ics D and reward distribution&, which is updated with each data
point (s, a,r,t).3 Letting H denote the (currengtate-action his-
tory of the observer, we use the posterid(D, R|H ) to determine
an appropriate action choice at each stage. The formulation
[4] renders this update tractable by assuming a convenigot p
Specifically, the following assumptions are made: (a) thresig P
is factored overR and D; (b) P(D) is the product of independent
local densities?(D**) for each transition distributioRr(s, a, -);
and (c) each densiti?(D**) is a Dirichlet?

To model P(D**) we require a Dirichlet parameter vectoh*
with entriesn®®* for each possible successor stdteThe expec-
tation of Pr(s, a, s’) w.r.t. P is given byns’avsl/ >, no®% Up-
date of a Dirichlet is a straightforward: given prigY(D*¢; n**)
and data vectoe®® (wherec;™* is the number of observed tran-
sitions froms to s; undera), the posterior is given by parameter

2\We will treat this distribution as if it has support over afinset of
possible values, but more general density functions can be used.
3We write D for the family of distributions for notational clarity.
“We assume reward densities are modeled similarly, with @Dir
let prior over reward probabilities for eash Gaussian reward dis-
tributions [4] pose no serious complications.

vectorn®® + ¢>“. Thus the posterioP(D|H) can be factored
into posteriors over local families, each of the form:
P(D**|H*") = 2 Pr(H**|D>*)P(D*“) 1)

whereH ** is the history ofs, a-transitions updates are of Dirichlet
parameters, angis a normalizing constant.

The Bayesian approach has several advantages over other ap-
proaches to model-based RL. First, it allows the naturaripora-
tion of prior knowledge. Second, approximations to optiBayesian
exploration can take advantage of this model [4]. We elabava
optimal exploration below in the MARL context.

2.2 Stochastic Games and Coordination

A normal form gamés a tupleG = (o, {Ai}ica, {Ui}ica)s
whereq is a collection of agents4; is the set of actions available
to agent;, andU; is agenti's payoff function. LettingA = x A;
denote the set gbint actions U;(a) denotes the real-valued utility
obtained by if the agents execute € A. We refer to any; €
A(A;) as amixed strategy A strategy profiles is a collection
of strategies, one per agent. We often weiteto refer to agent
i's component ofr, ando_; to denote a reduced strategy profile
dictating all strategies except that forWWe uses_; o o; to denote
the (full) profile obtained by augmenting_; with o;. Leto_;
be some reduced strategy profile. bast responséo o_; is any
strategyo; s.t.U;(0—; 0 0;) > U;(0—; o 0}) for anyo; € A(4;).
We defineBR(o—;) to be the set of such best responsesNash
equilibriumis any profiles s.t.o; € BR(o_;) for all agentsi.

Nash equilibria are generally viewed as the standard soluti
concept to games of this form. However, it is widely recogdiz
that the equilibrium concept has certain (descriptive amdqrip-
tive) deficiencies. One important problem (among sevesathe
fact that games may have multiple equilibria, leading topteb-
lem of equilibrium selection. As an example, consider the-si
ple two-player identical interest game called genalty gamég3],
shown here in standard matrix form:

| a0 al a2
b0 | 10 0 k
bl 0 2 0
b2 k 0 10

Here agentA has movesi0, al, a2 and B has moves0, b1, b2.
The payoffs to both players are identical, ahd< 0 is some
penalty. There are three pure equilibria. WHi#®, b0) and(a2, b2)
are the optimal equilibria, the symmetry of the game induces-
ordination problem for the agents. With no means of breakieg
symmetry, and the risk of incurring the penalty if they creo-
ferent optimal equilibria, the agents might in fact focustioa sub-
optimal equilibrium{al, b1).

Learning models have become popular as a means of tackling
equilibrium selection [9, 6]. Assuming repeated play of sdstage
game,” these methods require an agent to make some predictio
about the play of others at the current stage based on tranhist
of interactions, and play the current stage game using these
dictions. One simple model ictitious play[14]: at each stage,
agent; uses the empirical distribution of observed actions byrothe
agents over past iterations as reflective of the mixed glyateey
will play at the current stage; agenthen plays a best response to
these estimated strategies. This method is known to coav@ng
various senses) to equilibria for certain classes of games.

Another interesting learning model is the Bayesian appradc
Kalai and Lehrer [9]. In this model, an agent maintains aritist
tion over all strategies that could be played by other agehtss
strategy space is not confined to strategies in the stage,dare
allows for beliefs about strategies another agent coulgtafiy



the repeated game itsélStandard Bayesian updating methods are
used to maintain these beliefs over time, and best resparses
played by the agent w.r.t. the expectation over strategdfjl@so

Repeated games are a special casstathastic gamefl5, 5],
which can be viewed as a multiagent extension of MDPs. Fdymal
a stochastic gam€ = («, {Ai}ica, S, Pr, {Ri}ica) consists of
five components. The agentisand action sets!; are as in a typ-
ical game, and the componenfsand Pr are as in an MDP, ex-
cept thatPr now refers to joint actions € A = xA;. R, isa
the reward function for agent defined over states € S (pairs
(s,a) € S x A). The aim of each agent is, as with an MDP, to
act to maximize the expected sum of discounted rewards. How-
ever, the presence of other agents requires treating thidgm in
a game theoretic fashion. For particular classes of gameh, &
zero-sum stochastic games [15, 5], algorithms like valeaiton
can be used to compute Markovian equilibrium strategies.

The existence of multiple “stage game” equilibria is aggimab-
lem that plagues the construction of optimal strategiestochas-
tic games. Consider another simple identical interest @k@nthe
stochastic game shown in Figure 3(a). In this game, theréasre
optimal strategy profiles that maximize reward. In both, fingt
agent chooses to “opt in” at state by choosing actiom, which
takes the agents (with high probability) to state then ats» both
agents either choosgeor both choosé—either joint strategy gives
an optimal equilibrium.

Intuitively, the existence of these two equilibria giveserito a
coordination problem at state. If the agents choose their part
of the equilibrium randomly, there is a 0.5 chance that théy m
coordinate ak., thereby obtaining an expected immediate reward

G = {a,{Ai}ica,S,Pr,{Ri}ica). We consider the case where
each agent knows the “structure” of the games—that is, itMsno
the set of agents, the actions available to each agent, arsbtiof
states—but knows neither the dynamRs nor the reward func-
tions R;. The agents learn how to act in the world through expe-
rience. At each point in time, the agents are at a known state
and each ageritexecutes one of its actions; the resulting joint ac-
tion a induces a transition to stateind a reward:; for each agent.
We assume that each agent can observe the actions chosémeby ot
agents, the resulting stateand the rewards;.

Littman [12] devised an extension of Q-learning for zermsu
Markov games calledninimax-Q At each state, the agents have
estimated Q-values over joint actions, which can be usedno c
pute an (estimated) equilibrium value at that state. Minir@econ-
verges to the equilibrium value of the stochastic game [13{L
and Wellman [7] apply similar ideas—using an equilibriummzo
putation on estimated Q-values to estimate state valuegerteral
sum games, with somewhat weaker convergence guarantees.
gorithms have also been devised for agents that do not abteev
behavior of their counterparts [2, 8].

Identical interest games have drawn much attention, pimyid
suitable models for task distribution among teams of age®itus
and Boutilier [3] proposed several MARL methods for repdate
games in this context. A simpleint-action learner(JAL) pro-
tocol learned the (myopic, or one-stage) Q-values of joitipas.
The novelty of this approach lies in its exploration strate¢n)

a fictitious play protocol estimates the strategies of otgants;
and (b) exploration is biased by tlexpected Q-value of actions
Specifically, the estimated value of an action is given byeits

Al

of 0. On this basis, one might be tempted to propose methods pected Q-value, where the expectation is taken w.r.t. thitidics

whereby the agents decide to “opt out”sat(the first agent takes
actiond) and obtain the safe payoff of 6. However, if we allow
some means of coordination—for example, simple learnimgsru
like fictitious play or randomization—the sequential natof this
problem means that the short-term risk of miscoordinatten aan
be more than compensated for by the eventual stream of high pa
offs should they coordinate. Boutilier [1] argues that tbugon

of games like this, assuming some (generally, history-deemet)
mechanism for resolving these stage game coordinatiorgms)
requires explicit reasoning about the odds and benefitsartlota-
tion, the expected cost of attempting to coordinate, andilteena-
tive courses of action.

play beliefs over the other agents’s strategies. When geegidy
exploration is used, this method will converge to an eqriilif in
the underlying stage game.

One drawback of the JAL method is the fact that the equilib-
rium it converges to depends on the specific path of play, hvhic
is stochastic. Certain equilibria can exhibit seriousstasice—for
example, the odds of converging to an optimal equilibriunthie
penalty game above are quite small (and decrease dranatididl
the magnitude of the penalty). Claus and Boutilier propeseisl
heuristic methods that bias exploration toward optimalildaia:
for instance, action selection can be biased toward acti@t$orm
part of an optimal equilibrium. In the penalty game, for arste,

Repeated games can be viewed as stochastic games withe singldespite the fact that age may be predicted to play a strategy

state. If our concern is not with stage-game equilibrium,\iith
reward accrued over the sequence of interactions, techsitpr
solving stochastic games can be applied to solving suctatege
games. Furthermore, the points made above regarding tke ris
associated with using specific learning rules for coorddmacan

be applied with equal force to repeated games.

2.3 Multiagent RL

In this section, we describe some existing approaches to MAR
and point out recent efforts to augment standard RL scheoras t
courage RL agents in multiagent systems to converge to aptim
equilibria. Intuitively, MARL can be viewed as the direct ior
direct application of RL techniques to stochastic games lhirckv
the underlying model (i.e., transitions and rewards) atnawn.

In some cases, it is assumed that the learner is even unagrare (
chooses to ignore) the existence of other agents.

Formally, we suppose we have some underlying stochastie gam

5A strategy in the repeated game is any mapping from the obderv
history of play to a (stochastic) action choice. This adrfitspos-
sibility of modeling other agents’s learning processes.

that makes the0 look unpromising, the repeated play of thé
by A can be justified by optimistically assumirfg will play its
part of this optimal equilibrium. This is further motivatéy the
fact that repeated play af0 would eventuallydraw B toward this
equilibrium.

This issue of learning optimal equilibria in identical irést games
has been addressed recently in much greater detail. Lawuer an
Riedmiller [11] describe a Q-learning method for identiceérest
stochastic games that explicitly embodies this optimiasump-
tion in its Q-value estimates. Kapetanakis and Kudenko pt6}
pose a method called FMQ for repeated games that uses the opti
mistic assumption to bias exploration, much like [3], butia con-
text of individual learners. Wang and Sandholm [16] sintylaise
the optimistic assumption in repeated games to guarant@eco
gence to an optimal equilibrium. We critique these methadeva

3. ABAYESIAN VIEW OF MARL

The spate of activity described above on MARL in identical in
terest games has focused exclusively on devising methatigh
sure eventual convergence to optimal equilibria. In coalber



games, this pursuit is well-defined, and in some circumssntay

be justified. However, these methods do not account for tbie fa
that—byforcing agents to undertake actions that have potentially
drastic effects in order to reach an optimal equilibrium-eytitan
have a dramatic impact on accumulated reward. The penaite ga
was devised to show that these highly penalized states @an bi
(supposedly rational) agents away from certain equiljbrét op-
timistic exploration methods ignore this and blindly peghese
equilibria at all costs. Under certain performance meffcg., av-
erage reward over an infinite horizon) one might justify eéhtech-
niques® However, using the discounted reward criterion (which all
of these methods are designed for), the tradeoff betweeptkmm
benefit and short-term cost should be addressed.

This tradeoff was discussed above in the context of knowdeaho
stochastic games. In this section, we attempt to addressatne
tradeoff in the RL context. To do so, we formulate a Bayesian
approach to model-based MARL. By maintaining probabibie-
liefs over the space of models and the space of opponertgitat
our learning agents can explicitly account for the effehtsrtac-
tions can have on (a) their knowledge of the underlying ma@!
their knowledge of the other agent strategies; (c) expdaotetkdi-
ate reward; and (d) expected future behavior of other ag€us-
ponents (a) and (c) are classical parts of the single-agay¢dian
RL model [4]. Components (b) and (d) are key to the multiagent
extension, allowing an agent to explicitly reason aboupititential
costs and benefits of coordination.

3.1 Theoretical Underpinnings

We assume a stochastic gaién which each agent knows the
game structure, but not the reward or transition models.afnieg
agent: is able to observe the actions taken by all agents, the re-
sulting game state, and the rewards received by other agemis
an agent’s experience at each point in time is simplya, ;, t),
wheres is a state in which joint actiom was takenr; is the reward
received, and is the resulting state.

A Bayesian MARL agerthas some prior distribution over the
space of possible models as well as the space of possibte-stra
gies being employed by other agents. These beliefs are eghdat
as the agent acts and observes the results of its actionbaraat
tion choices of other agents. The strategies of other ageaysbe
history-dependent, and we allow our Bayesian agent (BA3sa
positive support to such strategies. As such, in order toensak
curate predictions about the actions others will take, tAenfist
monitor appropriate observable history. In general, tiséony (or
summary thereof) required will be a function of the stragegio
which the BA assigns positive support. We assume that the BA
keeps track of sufficient history to make such predictibns.

The belief stateof the BA has the formb = (P, Ps, s, h),
where: Py is some density over the space of possible models (i.e.,
games);Ps is a joint density over the possible strategies played
by other agents;s is the current state of the system; ahds a
summary of the relevant aspects of game history, sufficepte-
dict the action of any agent given any strategy consistettit R4.
Given experiencgs, a, i, t), the BA updates its belief state using
standard Bayesian methods. The updated belief state is:

b/ :b(<s,a,n,t>) = <PIIV17Pé7t7hI> (2)
5Even then, more refined measures such as bias optimalityt migh
cast these techniques in a less favorable light.

"For example, should the BA believe that its opponent’s atyat
lies in the space of finite state controller that depends erlakt
two joint actions played, the BA will need to keep track ofdadast
two actions. If it uses fictitious play beliefs (which can bewed
as Dirichlet priors) over strategies, no history need bentaaied.

Updates are given by Bayes rulei,; (m) = z Pr(¢,r;|a, m) Par(m)
and Ps(o—;) = zPr(a—;|s,h,0-;)Ps(oc—;). And }’ is a suit-
able update of the observed history (as described above)s Th
model combines aspects of Bayesian reinforcement leafdihg
and Bayesian strategy modeling [9].

To make belief state maintenance tractable (and admit compu
tationally viable methods for action selection below), veswane
a specific form for these beliefs [4]. First, our prior overdno
els will be factored into independent local models for batvards
and transitions. We assume independent piigi®ver reward dis-
tributions at each state and P;“ over system dynamics for each
state and joint action pair. These local densities are Bligicwhich
are conjugate for the multinomial distributions to be leatnThis
means that each density can be represented using a smalenumb
of hyperparameters, expected transition probabilitieshEcom-
puted readily, and the density can be updated easily. Fonghea
our BA's prior beliefs about the transition probabilitiesr fioint
actiona at states will be represented by a vecter®* with one
parameter per successor stateExpected transition probabilities
and updates of these beliefs are as described in SectionTRel.
independence of these local densities is assured aftetugalette.

Second, we assume that the beliefs about opponent strategie
be factored and represented in some convenient form. Fon-exa
ple, it would be natural to assume that the strategies of aifpents
are independent. Simple fictitious play models could be used
model the BA's beliefs about opponent strategies (corneding to
Dirichlet priors over mixed strategies), allowing readydafe and
computation of expectations, and obviating the need te $tistory
in the belief state. Similarly, distributions over specifiasses of
finite state controllers could also be used. We will not paru-
ther development of such models in this paper, since we uge on
simple opponent models in our experiments below. But theldev
opment of tractable classes of (realistic) opponent magetgins
an interesting problem.

We provide a different perspective on Bayesian exploratiam
that described in [4]. The value of performing an actignat a
belief stateh can be viewed as involving two main components:
expected value with respect to the current belief state;itgnich-
pact on the current belief state. The first component is afpic
RL, while the second captures tlea&pected value of information
(EVOI) of an action. Since each action gives rise to some ‘“re-
sponse” by the environment that changes the agent’s hetiats
these changes in belief can influence subsequent actiocechnd
expected reward, we wish to quantify the value of that infation
by determining its impact osubsequendecisions.

EVOI need not be computed directly, but can be combined with
“object-level” expected value through the following Belimequa-
tions over the belief state MDP:

an

Q(ai,b) = > Pr(a—i[b) Y Pr(tla;0a_s,b)

> " Pr(rilai o a—i,b)[ri + 7V (b((s,a,7:,1)))]  (3)

V(b) = max Q(ai, b)

a?,

4)

These equations describe the solution to the POMDP thaerepr
sents the exploration-exploitation problem, by conversma be-
lief state MDP. These can (in principle) be solved using asyhod
for solving high-dimensional continuous MDPs—of coursetiac-
tice, a number of computational shortcuts and approximatieill

be required (as we detail below). We complete the specificati
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Figure 1: Penalty Game Results

with the straightforward definition of the following terms:

Pr(a—;|b) = / Pr(a—ilo—;)Ps(o_;) (5)
Pr(t|a,b) = / r(t|s, a,m) Py (m) (6)
Pr(r;|b) = / Pr(ri|s,m)Par(m) @)

We note that the evaluation of Egs. 6 and 7 is trivial usingd&e
composed Dirichlet priors mentioned above.

This formulation determines the optimal policy as a functid
the BA's belief state. This policy incorporates the tradebktween
exploration and exploitation, both with respect to the ulyiieg
(dynamics and reward) model, and with respect to the behavio
of other agents. As with Bayesian RL and Bayesian learning in
games, n@xplicit exploration actions are required. Of course, it is
important to realize that this model may not converge to dimap
policy for the true underlying stochastic game. Priors fadtto
reflect the true model, or unfortunate samples early on, eaitye
mislead an agent. But it is precisely this behavior thatvedlan
agent to learn how to behave well without drastic penalty.

3.2 Computational Approximations

Solving the belief state MDP above will generally be computa
tionally infeasible. In specific MARL problems, the gendsabf
such a solution—defining as it does a value for every posbidief
state—is not needed anyway. Most belief states are not abéch
given a specific initial belief state. A more directed sedvabed
method can be used to solve this MDP for the agent’s currdigfbe
stateb. We consider a form ofmyopic EVOIlin which only im-
mediate successor belief states are considered, and &hed&svare
estimated without using VOI or lookahead.

Formally, myopic action selection is defined as follows. &iv
belief stateh, themyopicQ-function for eactu; € A; is:

ZPr |b)ZPr(t|ai oa—i,b)
ZPY rilai o a—i, b)[r + YV (b({s,a,7:,t)))] (8)

au

max// Q(as, slm,o—;)Prv(m)Ps(o—:) (9)

The action performed is that with maximum myopic Q-value. &q
differs from Eq. 3 in the use of the myopic value functidp,,

which is defined as the expected value of the optimal actidheat
current state, assuming a fixed distribution over modelssarade-
gies® Intuitively, this myopic approximation performs one step-
lookahead in belief space, then evaluates these succéatas By
determining the expected value to BA w.r.t. a fixed distiifaubver
models, and a fixed distribution over successor states.

This computation involves the evaluation of a finite numbler o
successor belief states4— R - S such states, wheté is the num-
ber of joint actions,R is the number of rewards, arfflis the size
of the state space (unlebsestricts the number of reachable states,
plausible strategies, etc.). Greater accuracy can bezeealiith
multistage lookahead, with the requisite increase in cdatfmnal
cost. Conversely, the myopic action can be approximatedaby s
pling successor beliefs (using the induced distributiogféned in
Egs. 5, 6, 7) if the branching facter - R - S is problematic.

The final bottleneck involves the evaluation of the myopikiga
function V;,,(b) over successor belief states. TQéa;, s|m,o_;)
terms are Q-values for standard MDPs, and can be evaluated us
ing standard methods, but direct evaluation of the integval all
models is generally impossible. However, sampling tealesccan
be used [4]. Specifically, some number of models can be saimple
the corresponding MDPs solved, and the expected Q-values es
mated by averaging over the sampled results. Various tqubsi
for making this process more efficient can be used as welldnc
ing importance sampling (allowing results from one MDP to be
used multiple times by reweighting) and “repair” of the dmn
for one MDP when solving a related MDP [4].

For certain classes of problems, this evaluation can bepeed
directly. For instance, suppose a repeated game is beingekia
and the BA's strategy model consists of fictitious play Hsli@he
immediate expected reward of any actiortaken by the BA (w.r.t.
successob’) is given by its expectation w.r.t. its estimated reward
distribution and fictitious play beliefs. The maximizingtiao a;
with highest immediate reward will be the best actiomlasubse-
guent stages of the repeated game—and has a fixed expected rew
r(a;) under the myopic (value) assumption that beliefs are fixed by
b'. Thus the long-term value atisr(a;)/(1 — 7).

The approaches above are motivated by approximating teetdir
myopic solution to the “exploration POMDP.” A different apach
to this approximation is proposed in [4], which estimates (my-
opic) value of obtainingerfect informatioraboutQ(a, s). Sup-
pose that, given an agent’s current belief state, the eggectiue

8We note thatl/,,, (b) only provides a crude measure of the value
of belief stateb under this fixed uncertainty. Other measures could
include the expected value ®f(s|m, o_;).
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Figure 2: Chain World Results

of actiona is given byQ(a, s). Leta; be the action with highest
expected Q-value and stat@nda. be the second-highest. We de-
fine thegain associated with learning that the true valueXt, s)
(for anya) is in factq as follows:

@(aﬁs) —gq, ifa=a;andg < Q(az, s)
gains,a(q) = q— Q(a17 8)7 if a 7é ai andq > Q(a17 'S)
0, otherwise

Intuitively, the gain reflects the effect on decision quabf learn-
ing the true Q-value of a specific action at statdn the first two
cases, what is learned causes us to change our decisiom (finsth
case, the estimated optimal action is learned to be worseptiea
dicted, and in the second, some other action is learned t@ptie o
mal). In the third case, no change in decision &induced, so the
information has no impact on decision quality.

Adapted to our setting, a computational approximation te th
naive samplingapproach involves the following steps:

(a) afinite set ok models is sampled from the densiBy,;

(b) each sampled MDPis solved (w.r.t. the densits over strate-
gies), giving optimal Q-valueg)’ (a;, s) for eacha; in that
MDP, and average Q-valu@(as, s) (over allk MDPs);

(c) for eacha;, computegain, ,, (Q%(as,s)) for each of thek
MDPS; letEVPI(a;, s) be the average of thedevalues;

(d) define the value af; to beQ(a;, s) + EVPI(a;, s) and execute
the action with highest value.

This approach can benefit from the use of importance samatidg
repair (with minor modifications). Naive sampling can be enor
computationally effective than one-step lookahead (whécjuires
sampling and solving MDPs fromultiple belief states). The price
paid is approximation inherent in the perfect informatisswmp-
tion: the execution of joint action does not come close to provid-
ing perfect information abou®(a, s).

4. EXPERIMENTAL RESULTS

model to represent their uncertainty over the other agstredegy.
Thus at each iteration, a BA believes its opponent to playctiora
with the empirical probability observed in the past (for tiathte
games, these beliefs are independent at each state).

BOL is used only for repeated games, since these allow the im-
mediate computation of expected values over the infinitéezbor
at the successor belief states: expected reward for eauhgoi
tion can readily be combined with the BA's fictitious play ile¢s$ to
compute the expected value of an action (over the infinitezboy
since the only model uncertainty is in the reward. BVPI isduse
for both repeated and multi-state games. In all cases, fivdetso
are sampled to estimate the VPI of the agent’s actions. The st
egy priors for the BAs are given by Dirichlet parameters i¢pr
counts”) of0.1 or 1 for each opponent action. The model priors are
similarly uninformative, with each state-action pair givthe same
prior distribution over reward and transition distributto(except
for one experiment as noted).

We first compare our method to several different algorithma o
stochastic version of the penalty game described abovegdime
is altered so that joint actions provide a stochastic reyattse
mean is the value shown in the game mafrixVe compare the
Bayesian approach to the following algorithms. KK is an alipon
[10] that biases exploration to encourage convergence timap
equilibria in just these types of games. Two related hearégo-
rithms that also bias exploration optimistically are theti@stic
Boltzmann (OB) and Combined OB (CB) [3] are also evaluated.
Unlike KK, these algorithms observe and make predictiormutb
the other agent’s play. Finally, we test the more generairélgn
WoLF-PHC [2], which works with arbitrary, general-sum dias-
tic games (and has no special heuristics for equilibriuractign).

In each case the game is played by two learning agents of mhe sa
type. The parameters of all algorithms were empiricallyetlito
give good performance.

The first set of experiments tested these agents on the stacha
penalty game wittk set to—20 and discount factors df.95 and
0.75. Both BOL and BVPI agents use uninformative priors over
the set of reward valué8.Results appear in in Figures 1(a) and (b)
showing the total discounted reward accumulated by thenilegr

We have conducted a number of experiments with both I’epeatEdagentS, averaged over 30 trials. Discounted accumulatealrde

and stochastic games to evaluate the Bayesian approactocié f
on two-player identical interest games largely to comparexist-
ing methods for “encouraging” convergence to optimal erid.

provides a suitable way to measure both the cost being pafein
attempt to coordinate as well as the benefits of coordindtiolack

The Bayesian methods examined are one-step lookahead (BOL)°Each joint action gives rise to X distinct rewards.

and naive sampling for estimating VPI (BVPI) described irt-Se
tion 3. In all cases, the Bayesian agents use a simple ficdifiay

105pecifically, anypossiblereward (for any joint action) is given

equal (expected) probability in the agent’s Dirichlet psio
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Figure 3: “Opt In or Out” Results: Low Noise

thereof). The results show that both Bayesian methods e diy-
nificantly better than the methods designed to force corverg to
an optimal equilibrium. Indeed, OB, CB and KK converge to an
optimal equilibrium in virtually all of their 30 runs, butehrly pay
a high price!! By comparison, wher = 0.95, the ratio of con-
vergence to an optimal equilibrium, the nonoptimal equillitn, or
a nonequilibrium is, for BVPI 25/1/4 and for BOL 14/16/0. Sur
prisingly, WoLF-PHC does better than OB, CB and KK in both
tests. In fact, this method outperforms the BVPI agent incéee
of v = 0.75 (largely because BVPI converges to a nonequilibrium
5 times and the suboptimal equilibrium 4 times). WoLF-PH@&-co
verges in each instance to an optimal equilibrium.

We repeated this comparison on a more “difficult” problemhwit
a mean penalty of -100 (and increasing the variance of tharckw
for each action). To test one of the benefits of the Bayesian pe
spective we included a version of BOL and BVPI with informati
priors (giving it strong information about rewards by raging the
prior to assign (uniform) nonzero expected probabilityte small
range of truly feasible rewards for each action). Resulisshown
in Figure 1(c) (averaged over 30 runs). Wolf-PHC and CB con-
verge to the optimal equilibrium each time, while the inceshre-
ward stochasticity made it impossible for KK and OB to cogeer
at all. All four methods perform poorly w.r.t. discountedveed.
The Bayesian methods perform much better. Not surprisirigé/
agents BOL and BVPI with informative priors do better thaeith
“uninformed” counterparts; however, because of the highafig
(despite the high discount factor), they converge to thepgtimal
equilibrium most of the time (22 and 23 times, respectively)

We also applied the Bayesian approach to two identicatéste
multi-state, stochastic games. The first is a version of CW4irld
[4] modified for multiagent coordination, and is illustrdte Fig-
ure 2(a). The optimal joint policy is for the agents to do @t
at each state, though these actions have no payoff unél stas
reached. Coordinating drleads to an immediate, but smaller, pay-
off, and resets the proce¥s.Unmatched actionga, b) and (b, a)
result in zero-reward self-transitions (omitted from thegdam for
clarity). Transitions are noisy, with a 10% chance that aen#lg
action has the “effect” of the opposite action. The origiGhlain
World is difficult for standard RL algorithms, and is made esp
cially difficult here by the requirement of coordination.

We compared BVPI to WoLF-PHC on this domain using two

1Al penalty game experiments were run to 500 games, thoulyh on
the interesting initial segments of the graphs are shown.

2As above, rewards are stochastic with means shown in theefigur

different discount factors, plotting the total discountedard (av-
eraged over 30 runs) in Figure 2(b) and (c). Only initial segta
are shown, though the results project smoothly to 50008titers.
BVPI compares favorably to Wolf-PHC in terms of online perfo
mance. BVPI converged to the optimal policy in 7 (of 30) runs
with v = 0.99 and in 3 runs withy = 0.75, intuitively reflecting
the increased risk aversion due to increased discountinglL P&/
PHC rarely even managed to reach statethough in 2 (of 30)
runs withy = 0.75 it stumbled acrosss early enough to converge
to the optimal policy. The Bayesian approach manages touenco
age intelligent exploration of action space in a way thadesaoff
risks and predicted rewards; and we see increased explonatih
the higher discount factor, as expected.

The second multi-state game is “Opt in or Out” shown in Fig-
ure 3(a). The transitions are stochastic, with the actidactsd
by an agent having the “effect” of the opposite action witimso
probability. Two versions of the problem were tested, orti Vaiw
“noise” (probability 0.05 of an action effect being reversed), and
one with “medium” noise level (probability roughly.11). With
low noise, the optimal policy is as if the domain were deteigsi
tic (the first agent opts in at; and both play a coordinated choice
at s2), while with medium noise, the “opt in” policy and the “opt
out” policy (where the safe move tg; is adopted) have roughly
equal value. BVPI is compared to WoLF-PHC under two differ-
ent discount rates, with low noise results shown in Figuby agd
(c), and high noise results in Figure 4(a) and (b). Again BVPI
compares favorably to WoLF-PHC, in terms of dicounted relvar
averaged over 30 runs. In the low noise problem, BVPI coragrg
to the optimal policy in 18 (of 30) runs with = 0.99 and 15 runs
with v = 0.75. The WoLF agents converged in the optimal pol-
icy only once withy = 0.99, but 17 times withy = 0.75. With
medium noise, BVPI chose the “opt in” policy in 10.99) and
13 (0.75) runs, but learned to coordinatesateven in the “opt out”
cases. Interestingly, WoLF-PHC always converged on thedof§
policy (recall both policies are optimal with medium noise)

Finally, we remark that the Bayesian methods do incur greate
computational cost per experience than the simpler madelRL
methods we compared to. BOL in particular can be intensale, t
ing up to 25 times as long to select actions in the repeatecegam
experiments as BVPI. Still, BOL computation time per steprily
half a millisecond. BVPI is comparable to all other methods®
peated games. In the stochastic games, BVPI takes roudtiyg.
to compute action selection, about 8 times as long as WoLF in
ChainWorld, and 24 times in Opt In or Out.
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5. CONCLUDING REMARKS

We have described a Bayesian approach to modeling MARL

problems that allows agents to explicitly reason about thecer-
tainty regarding the underlying domain and the strategidbeir
counterparts. We've provided a formulation of optimal exption
under this model and developed several computational ajpas
tions for Bayesian exploration in MARL.

The experimental results presented here demonstratesdigite
tively that Bayesian exploration enables agents to makér#ue-
offs described. Our results show that this can enhanceepkn-

formance (reward accumulated while learning) of MARL agent

in coordination problems, when compared to heuristic exgpion
techniques that explicitly try to induce convergence toropt equi-
libria. This implies that BAs run the risk of converging onubsp-
timal policy; but this risk is taken “willingly” through dueonsider-
ation of the learning process given the agent’s currenefsetibout
the domain. Still we see that BAs often find optimal stratedgie
any case. Key to this is a BA's willingness to exploit whatrikvs
before it is very confident in this knowledge—it simply ne¢nlbe
confident enough to be willing to sacrifice certain altenresti

While the framework is general, our experiments were codfine

to identical interest games and fictitious play beliefs asnétedly

simple) opponent models. These results are encouragingeleat

to be extended in several ways. Empirically, the applicatibthis
framework to more general problems is important to veriyuitil-
ity. More work on computational approximations to estimgtV/PI

or solving the belief state MDP is also needed. Finally, the d

velopment of computationally tractable means of représgrand
reasoning with distributions over strategy models is nesglii

ences and Engineering Research Council.
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