$V_{4:6}$ $V_{1:3}$

The learning update we propose takes time independent of the vocabulary size

Metropolis Hastings

- I. Sample from $q(\mathbf{v}^i)$ to get a proposed word $\widetilde{\mathbf{V}}$ ($q(\mathbf{v}^i)$ can be a smoothed unigram model)
- 2. Replace current word by $\tilde{\mathbf{v}}$ with probability

$$\min\left\{1, \frac{q(\mathbf{v}^{i}) \exp(\mathbf{b}^{i^{\top}} \tilde{\mathbf{v}} + \mathbf{h}^{\top} \mathbf{W}^{i} \tilde{\mathbf{v}}}{q(\tilde{\mathbf{v}}) \exp(\mathbf{b}^{i^{\top}} \mathbf{v}^{i} + \mathbf{h}^{\top} \mathbf{W}^{i} \mathbf{v}}\right.$$

3. For proposals from a fixed distribution (e.g. smoothed unigram) the alias method lets us generate proposals in constant time (linear setup cost)

RBM with Word Representations

• We used MH to train a K-ary RBM, with factored weights that incorporate word representations, on *n*-gram windows

$$E(\mathbf{v}, \mathbf{h}) = -\mathbf{c}^{\top}\mathbf{h} + \sum_{i=1}^{n} -\mathbf{b}^{*^{\top}}\mathbf{v}^{i} - \mathbf{h}^{\top}\mathbf{U}^{i}$$

The top-down conditional distribution becomes

$$p(\mathbf{v}^{i} = \mathbf{e}_{k} | \mathbf{h}) = \frac{\exp(\mathbf{b}^{*^{\top}} \mathbf{e}_{k} + \mathbf{h}^{\top} \mathbf{U}^{i} \mathbf{D}^{\top} \mathbf{e}_{k})}{\sum_{k'=1}^{K} \exp(\mathbf{b}^{*^{\top}} \mathbf{e}_{k'} + \mathbf{h}^{\top} \mathbf{U}^{i} \mathbf{D}^{\top} \mathbf{e}_{k'})}$$

shared biases

position dependent weights

Nearest neighbors (word rep. space)

Mixing of Metropolis-Hastings

Left: Convergence of MH operator to the true conditional over the visible units for 6 randomly chosen data cases, measured with symmetric KL

Right: For the slowest case on the left, convergence of MH operator to the true conditional over the group of visible units for each word in the 5-gram

- The hidden state has a strong effect on the mixing
- Most groups mix well, but a few tend to mix very slowly
- More sophisticated proposal distributions might improve mixing

Sampling proposed words in constant time

- Naïve implementations of sampling from a unigram distribution would be linear in the vocabulary size
- The alias method samples in constant time by first transforming the

George E. Dahl (University of Toronto) Ryan P. Adams (Harvard University) Hugo Larochelle (Université de Sherbrooke)

- corpus (vocabulary of 100k words)

Chunking results

Method	Valid FI	Test FI
Without representations	94.16	93.79
WordRepRBM	94.82	94.10
WordRepRBM (+ hidden unit features)	95.01	94.44
Mnih and Hinton	94.63	94.00
Collobert and Weston	94.66	94.10
Brown clusters	94.67	94.11

- Maas et al.
- for a discriminative classifier

Sentiment Classification results

Method	Test
LDA	67.42
LSA	83.96
Maas et al."full"	87.44
Bag of words "bnc"	87.80
Maas et al."full" + BoW "bnc"	88.33
Maas et al. "full" + BoW "bnc" + unlabeled data	88.89
5-gram WordRepRBM	87.42
5-gram WordRepRBM + BoW "bnc"	89.23
5-gram WordRepRBM + BoW "bnc"	89.2

References

Turian, Ratinov and Bengio, Word representations: A simple and general method for semisupervised learning, 2010 Mnih and Hinton, Three new graphical models for statistical language modelling, 2007 Mnih and Hinton, A scalable hierarchical distributed language model, 2009 Collobert and Weston, A unified architecture for natural language processing: Deep neural networks with multitask learning, 2008 Maas, Daly, Pham, Huang, Ng, and Potts, Learning Word Vectors for Sentiment Analysis, 2011

	china	mother	sunday
	japan	father	saturday
	taiwan	daughter	friday
	thailand	son	monday
2S	russia	grandmother	thursday
ng	indonesia	sister	wednesday
C	iran	grandfather	tuesday
gy	india	brother	yesterday
n	nigeria	girlfriend	today
	greece	husband	tomorrow
	vietnam	cousin	tonight
	earned	what	hotel
	earned averaged	what why	hotel restaurant
	earned averaged clinched	what why how	hotel restaurant theater
	earned averaged clinched retained	what why how whether	hotel restaurant theater casino
y	earned averaged clinched retained regained	what why how whether whatever	hotel restaurant theater casino ranch
y y	earned averaged clinched retained regained grabbed	what why how whether whatever where	hotel restaurant theater casino ranch zoo
y y	earned averaged clinched retained regained grabbed netted	what why how whether whatever where something	hotel restaurant theater casino ranch zoo cafe
y y	earned averaged clinched retained regained grabbed netted saved	whatwhyhowwhetherwhateverwheresomethingwhom	hotel restaurant theater casino ranch zoo cafe tribune
y y	earned averaged clinched retained regained grabbed netted saved secured	whatwhyhowwhetherwhetherwhateverwheresomethingwhomnothing	hotel restaurant theater casino ranch zoo cafe tribune warehouse
y y	earned averaged clinched retained regained grabbed netted saved secured enjoyed	whatwhyhowwhetherwhetherwhateverwheresomethingwhomnothingeverything	hotel restaurant theater casino ranch zoo cafe tribune warehouse symphony
y y	earned averaged clinched retained regained grabbed grabbed netted saved secured enjoyed surpassed	whatwhyhowwhetherwhetherwhateverwheresomethingwhomnothingeverythingneither	hotel restaurant theater casino ranch zoo cafe tribune warehouse symphony nightclub

distribution into a uniform mixture of Bernoulli distributions over 2 words

• Unlike in Mnih and Hinton (2007), we model the **joint** distribution of *n*-grams, not the conditional probability of the last word given the n-1 previous words

• Can then use the hidden unit activities as *n*-gram representations

We trained on 3-grams extracted from the English Gigaword

Using the word representations and hidden activations as CRF features helps on a chunking benchmark

• Training class conditional "bag of 5-grams" WordRepRBMs helps sentiment classification on the Large Movie Review dataset from

• We use the average free energy of each RBM over a bag as features

• When combined with binary term frequency bag of word features, the average free energies of the two RBMs over the 5-grams from a document yield state of the art results on this dataset