
Table 1: The ten nearest neighbors (in the word feature vector space) of some sample words. All
query words shown are relatively frequent and thus tend to be modeled well.

could spokeswoman suspects science china mother sunday
should spokesman defendants sciences japan father saturday
would lawyer detainees medicine taiwan daughter friday
will columnist hijackers research thailand son monday
can consultant attackers economics russia grandmother thursday
might secretary-general demonstrators engineering indonesia sister wednesday
must strategist inmates arts iran grandfather tuesday
did negotiator assailants psychology india brother yesterday
wo administrator atrocities journalism nigeria girlfriend today
does correspondent dissidents privacy greece husband tomorrow
ca adviser killings nutrition vietnam cousin tonight
tom actually probably quickly earned what hotel
jim finally certainly easily averaged why restaurant
bob definitely definitely slowly clinched how theater
kevin rarely hardly carefully retained whether casino
brian eventually usually effectively regained whatever ranch
steve hardly actually frequently grabbed where zoo
chris ultimately surely badly netted something cafe
david basically simply seriously saved whom tribune
robert usually apparently quietly secured nothing warehouse
joe somehow obviously strongly enjoyed everything symphony
ron suddenly clearly closely surpassed neither nightclub

7 Conclusion

We considered the problem of modeling K-ary observations within an RBM, for large values of K.
We specifically looked at the problem of training RBMs with word observations from a vocabulary
in the hundred thousands. We investigated the use of Metropolis Hastings sampling as a way to scale
to such large vocabularies. By training an RBM embedded with real-valued word representations,
we showed that MH-based training is successful at learning meaningful word representations from
unlabeled text.

References
[1] Paul Smolensky. Information Processing in Dynamical Systems: Foundations of Harmony

Theory. volume 1, chapter 6, pages 194–281. MIT Press, Cambridge, 1986.
[2] Y Freund and D Haussler. Unsupervised learning of distributions of binary vectors using 2-

layer networks. In Advances in Neural Information Processing Systems 4 (NIPS 4), pages
912–919. Morgan Kaufman Publishers, 1991.

[3] M Ranzato, A Krizhevsky, and G Hinton. Factored 3-way restricted Boltzmann machines for
modeling natural images. In Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS 2010), volume 9, pages 621–628. JMLR W&CP, 2010.

[4] Ruslan Salakhutdinov and Geoffrey Hinton. Replicated Softmax: an Undirected Topic Model.
In Advances in Neural Information Processing Systems 22 (NIPS 2009), pages 1607–1614,
2009.

[5] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey E Hinton. Restricted Boltzmann machines
for collaborative filtering. In ICML 2007, 2007.

[6] M Welling, M Rosen-Zvi, and G E Hinton. Exponential Family Harmoniums with an Appli-
cation to Information Retrieval. In NIPS 17. MIT Press, 2005.

[7] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy Layer-Wise
Training of Deep Networks. In Advances in Neural Information Processing Systems 19 (NIPS
19), pages 153–160, Vancouver, Canada, 2007. MIT Press.

8

Training Restricted Boltzmann Machines
on Word Observations

George E. Dahl (University of Toronto)

Ryan P. Adams (Harvard University)

Hugo Larochelle (Université de Sherbrooke)

Introduction
• Words are intrinsically high dimensional objects

(nb. of dimensions = vocabulary size)

• This poses two challenges to RBM training:

1. naive RBM parametrization has a lot of parameters
(solution: factorize weights)

2. sampling-based training (CD, PCD) is very expensive

• We show Metropolis Hastings can be used as an efficient and effective
approximation for sampling word observations during training

• The learning update we propose takes time independent of the
vocabulary size

RBM with K-ary observations

Metropolis Hastings
1. Sample from to get a proposed word

(can be a smoothed unigram model)

2. Replace current word by with probability

3. For proposals from a fixed distribution (e.g. smoothed unigram) the
alias method lets us generate proposals in constant time (linear setup cost)

h

v

h

v1 1 0 1 0 1 0 1 0 0 0 1{ {

v1:3 v4:6

RBM with binary
observations

RBM with K-ary
observations

pair of 3-ary
observations

n = 2,K = 3

((
Figure 1: Illustration of an RBM with binary observations (left) and K-ary observations, for n = 2
and K = 3 (right).

v⇤ by the appropriate integral in Z). From the new joint distribution, conditionals can be derived.
In fact, Equation 3 remains the same and only Equation 4 changes. Other cases require changes
to the energy function itself. For example, to model real valued observations vi � R, a quadratic
containment term 0.5v2

i must be added to the energy function of Equation 1, for each visible unit.
The conditional over each visible unit given the hidden layer activities then becomes a Gaussian.

For K-ary observations, i.e. observations belonging to a finite set of K possible discrete values or
symbols, we can maintain the same energy function as in 1 by encoding each observation in a “one-
hot” or “one out of K” representation and concatenating the representations of all observations to
construct v. In other words, for n separate K-ary observations, the visible units v will be partitioned
into n groups of K binary units. Using the notation va:b to refer to the subvector made of elements
from index a to index b, the ith observation will then be encoded by the group of visible units
v(i�1)K+1:iK . The one-hot encoding is enforced by constraining each group of units v(i�1)K+1:iK

to contain only a single 1-valued unit, the others being set to 0 (i.e.
�iK

j=(i�1)K+1 vj = 1 is always
true). The difference between RBMs with binary and K-ary observations is illustrated in Figure 2.

To simplify the notation, we define the following notational shortcuts. We will refer to the ith group
of visible units as vi = v(i�1)K+1:iK . Similarly, we will refer to the biases and weights associated
with those units as bi = b(i�1)K+1:iK and Wi = W(i�1)K+1:iK,·. We will also denote with ek

the one-hot vector with its kth component set to 1.

The conditional distribution over the visible layer then becomes

p(v|h) =
n⇥

i=1

p(vi|h), p(vi = ek|h) =
exp(bi⇥ek + h⌅Wiek)

�K
k�=1 exp(bi⇥ek� + h⌅Wiek�)

, (8)

i.e. each group vi has a multinomial distribution given the hidden layer. Because the multinomial
probabilities are given by a softmax nonlinearity, the group of units vi are referred to as softmax
units [4].

3 Difficulty of Training on Word Observations

While in the binary case the number of observations is equal to the size of the visible layer, in the
K-ary case the size of the visible layer is K times the number of observations. Hence, for very
large values of K, the visible layer size can quickly become so large as to be problematic. This
is particularly true for word observations: in this setting, K is the vocabulary size, i.e. the number
of possible word types that can be observed. In typical NLP applications, K reaches the tens or
hundreds of thousands. In such a case, there are two issues to be addressed. The first already has a
good solution while the later is the subject of this work.

The first issue is the large number of parameters in the RBM. The number of rows of matrix W
grows linearly with K and, for large values of K, this matrix can become so big as to become too
large to be stored in memory. More importantly, with so many parameters to learn, overfitting can
become a serious issue. This problem was addressed by Bengio et al. [11] in the context of a neural

3

v1 = = v2

h

v

h

v1 1 0 1 0 1 0 1 0 0 0 1{ {

v1:3 v4:6

RBM with binary
observations

RBM with K-ary
observations

pair of 3-ary
observations

n = 2,K = 3

((

Figure 1: Illustration of an RBM with binary observations (left) and K-ary observations, for n = 2
and K = 3 (right).

v⇤ by the appropriate integral in Z). From the new joint distribution, conditionals can be derived.
In fact, Equation 3 remains the same and only Equation 4 changes. Other cases require changes
to the energy function itself. For example, to model real valued observations vi � R, a quadratic
containment term 0.5v2

i must be added to the energy function of Equation 1, for each visible unit.
The conditional over each visible unit given the hidden layer activities then becomes a Gaussian.

For K-ary observations, i.e. observations belonging to a finite set of K possible discrete values or
symbols, we can maintain the same energy function as in 1 by encoding each observation in a “one-
hot” or “one out of K” representation and concatenating the representations of all observations to
construct v. In other words, for n separate K-ary observations, the visible units v will be partitioned
into n groups of K binary units. Using the notation va:b to refer to the subvector made of elements
from index a to index b, the ith observation will then be encoded by the group of visible units
v(i�1)K+1:iK . The one-hot encoding is enforced by constraining each group of units v(i�1)K+1:iK

to contain only a single 1-valued unit, the others being set to 0 (i.e.
�iK

j=(i�1)K+1 vj = 1 is always
true). The difference between RBMs with binary and K-ary observations is illustrated in Figure 2.

To simplify the notation, we define the following notational shortcuts. We will refer to the ith group
of visible units as vi = v(i�1)K+1:iK . Similarly, we will refer to the biases and weights associated
with those units as bi = b(i�1)K+1:iK and Wi = W(i�1)K+1:iK,·. We will also denote with ek

the one-hot vector with its kth component set to 1.

The conditional distribution over the visible layer then becomes

p(v|h) =
n⇥

i=1

p(vi|h), p(vi = ek|h) =
exp(bi⇥ek + h⌅Wiek)

�K
k�=1 exp(bi⇥ek� + h⌅Wiek�)

, (8)

i.e. each group vi has a multinomial distribution given the hidden layer. Because the multinomial
probabilities are given by a softmax nonlinearity, the group of units vi are referred to as softmax
units [4].

3 Difficulty of Training on Word Observations

While in the binary case the number of observations is equal to the size of the visible layer, in the
K-ary case the size of the visible layer is K times the number of observations. Hence, for very
large values of K, the visible layer size can quickly become so large as to be problematic. This
is particularly true for word observations: in this setting, K is the vocabulary size, i.e. the number
of possible word types that can be observed. In typical NLP applications, K reaches the tens or
hundreds of thousands. In such a case, there are two issues to be addressed. The first already has a
good solution while the later is the subject of this work.

The first issue is the large number of parameters in the RBM. The number of rows of matrix W
grows linearly with K and, for large values of K, this matrix can become so big as to become too
large to be stored in memory. More importantly, with so many parameters to learn, overfitting can
become a serious issue. This problem was addressed by Bengio et al. [11] in the context of a neural

3

network language model. The neural network language model’s task is to learn the conditional dis-
tribution p(wn+t�1|wt, . . . , wn+t�2) of the nth word of an n-gram word window [wt, . . . , wn+t�1],
from the windows at all positions t in a training corpus. They proposed to learn, for each possible
word w, a real-valued vector representation dw of that word. Those real-valued vectors can then be
fed as inputs to the neural network, which can be trained to learn both the neural network’s weights
and the word representations. This approach can also be interpreted as imposing a specific fac-
torization of the neural network’s weight matrices, with some additional weight sharing across the
relative positions i of the words within the window. This solution can also be adopted for RBMs, as
described by Mnih and Hinton [12] and in Section 6.1.

The second issue is that sampling K-ary observations becomes very expensive for large K. The
main burden is computing the multinomial (softmax) probabilities (right hand of Equation 8), which
is an operation linear in K. Sampling from this multinomial is also linear in K on average. Sampling
repeadely can be made more efficient using the alias method [13] (see Section 4.1 for a description).
However, since the alias method first requires the construction of a data structure that itself takes
O(K) time, it is only useful when we want multiple samples from the same, fixed multinomial
distribution.

In the context of the neural network language model of Bengio et al. [11], this problem was ad-
dressed by introducing a fixed, directed binary tree factorizing the (conditional) multinomial distri-
bution over words [14]. Each leaf of the tree is associated with a single word. Let �w be the path
from the root to word w. The neural network then assigns probabilities p(�w,l|wt, . . . , wn+t�2) to
each left-right binary decision �w,l � {0, 1} along a path �w, and thus defines a distribution over all
possible root-leaf paths and thus also for all possible words. The product of probabilities over each
left/right decision in a path yields the probability of the leaf word. Mnih and Hinton [15] also inves-
tigated ways of learning the word tree, instead of fixing it using a knowledge base such as WordNet
(they also used a log-linear language model, as opposed to a neural network).

Unfortunately, this solution isn’t applicable to an RBM modeling the joint distribution of n words.
Introducing a directed tree breaks the undirected, symmetric nature of the interaction between the
visible and hidden units of the RBM. Once could use a (conditional) RBM to model the distribution
over binary decisions p(�w,l|wt, . . . , wn+t�2), similarly to Mnih and Hinton [15]. However, the end
result would not be an RBM model over n-gram word windows, nor would it even be a conditional
RBM over p(wn+t�1|wt, . . . , wn+t�2).

Yet, being able to deal with K-ary observations in the Boltzmann machine framework for large K
is crucial if we wish to allow related deep learning solutions (perhaps based on a variant of deep
Boltzmann machines [16]) to be applicable to NLP problems.

4 Metropolis Hastings for Softmax Units

We have argued that obtaining an exact sample from a large multinomial distribution with softmax
probabilities is too expensive to be used in the context of RBMs with word observations. However,
getting exact samples from such multinomials during training might in part be a waste of time. After
all, obtaining exact samples from the joint p(v,h) is not absolutely necessary to obtain a sufficiently
informative learning update, as demonstrated by the success of CD and PCD training.

Hence, instead of sampling exactly from the conditionals p(vi|h) within Gibbs sampling, we pro-
pose to use a small number of repeated steps of Metropolis Hastings (MH) sampling. Let q(vi)
be a proposal distribution (e.g. in our experiments a smoothed unigram estimate of the marginal
distribution over words), one step of MH sampling procedes as follows:

1. Sample from q(vi) the one-hot encoding ṽ of a proposed word
2. Replace the current state of vi by ṽ with probability:

min

�
1,

q(vi) exp(bi� ṽ + h⇥Wiṽ)
q(ṽ) exp(bi�vi + h⇥Wivi)

⇥

One such MH step is extremely fast to perform, hence we can afford to repeat it several times, before
moving to the sampling of other units within the global Gibbs sampling procedure.

4

network language model. The neural network language model’s task is to learn the conditional dis-
tribution p(wn+t�1|wt, . . . , wn+t�2) of the nth word of an n-gram word window [wt, . . . , wn+t�1],
from the windows at all positions t in a training corpus. They proposed to learn, for each possible
word w, a real-valued vector representation dw of that word. Those real-valued vectors can then be
fed as inputs to the neural network, which can be trained to learn both the neural network’s weights
and the word representations. This approach can also be interpreted as imposing a specific fac-
torization of the neural network’s weight matrices, with some additional weight sharing across the
relative positions i of the words within the window. This solution can also be adopted for RBMs, as
described by Mnih and Hinton [12] and in Section 6.1.

The second issue is that sampling K-ary observations becomes very expensive for large K. The
main burden is computing the multinomial (softmax) probabilities (right hand of Equation 8), which
is an operation linear in K. Sampling from this multinomial is also linear in K on average. Sampling
repeadely can be made more efficient using the alias method [13] (see Section 4.1 for a description).
However, since the alias method first requires the construction of a data structure that itself takes
O(K) time, it is only useful when we want multiple samples from the same, fixed multinomial
distribution.

In the context of the neural network language model of Bengio et al. [11], this problem was ad-
dressed by introducing a fixed, directed binary tree factorizing the (conditional) multinomial distri-
bution over words [14]. Each leaf of the tree is associated with a single word. Let �w be the path
from the root to word w. The neural network then assigns probabilities p(�w,l|wt, . . . , wn+t�2) to
each left-right binary decision �w,l � {0, 1} along a path �w, and thus defines a distribution over all
possible root-leaf paths and thus also for all possible words. The product of probabilities over each
left/right decision in a path yields the probability of the leaf word. Mnih and Hinton [15] also inves-
tigated ways of learning the word tree, instead of fixing it using a knowledge base such as WordNet
(they also used a log-linear language model, as opposed to a neural network).

Unfortunately, this solution isn’t applicable to an RBM modeling the joint distribution of n words.
Introducing a directed tree breaks the undirected, symmetric nature of the interaction between the
visible and hidden units of the RBM. Once could use a (conditional) RBM to model the distribution
over binary decisions p(�w,l|wt, . . . , wn+t�2), similarly to Mnih and Hinton [15]. However, the end
result would not be an RBM model over n-gram word windows, nor would it even be a conditional
RBM over p(wn+t�1|wt, . . . , wn+t�2).

Yet, being able to deal with K-ary observations in the Boltzmann machine framework for large K
is crucial if we wish to allow related deep learning solutions (perhaps based on a variant of deep
Boltzmann machines [16]) to be applicable to NLP problems.

4 Metropolis Hastings for Softmax Units

We have argued that obtaining an exact sample from a large multinomial distribution with softmax
probabilities is too expensive to be used in the context of RBMs with word observations. However,
getting exact samples from such multinomials during training might in part be a waste of time. After
all, obtaining exact samples from the joint p(v,h) is not absolutely necessary to obtain a sufficiently
informative learning update, as demonstrated by the success of CD and PCD training.

Hence, instead of sampling exactly from the conditionals p(vi|h) within Gibbs sampling, we pro-
pose to use a small number of repeated steps of Metropolis Hastings (MH) sampling. Let q(vi)
be a proposal distribution (e.g. in our experiments a smoothed unigram estimate of the marginal
distribution over words), one step of MH sampling procedes as follows:

1. Sample from q(vi) the one-hot encoding ṽ of a proposed word
2. Replace the current state of vi by ṽ with probability:

min

�
1,

q(vi) exp(bi� ṽ + h⇥Wiṽ)
q(ṽ) exp(bi�vi + h⇥Wivi)

⇥

One such MH step is extremely fast to perform, hence we can afford to repeat it several times, before
moving to the sampling of other units within the global Gibbs sampling procedure.

4

network language model. The neural network language model’s task is to learn the conditional dis-
tribution p(wn+t�1|wt, . . . , wn+t�2) of the nth word of an n-gram word window [wt, . . . , wn+t�1],
from the windows at all positions t in a training corpus. They proposed to learn, for each possible
word w, a real-valued vector representation dw of that word. Those real-valued vectors can then be
fed as inputs to the neural network, which can be trained to learn both the neural network’s weights
and the word representations. This approach can also be interpreted as imposing a specific fac-
torization of the neural network’s weight matrices, with some additional weight sharing across the
relative positions i of the words within the window. This solution can also be adopted for RBMs, as
described by Mnih and Hinton [12] and in Section 6.1.

The second issue is that sampling K-ary observations becomes very expensive for large K. The
main burden is computing the multinomial (softmax) probabilities (right hand of Equation 8), which
is an operation linear in K. Sampling from this multinomial is also linear in K on average. Sampling
repeadely can be made more efficient using the alias method [13] (see Section 4.1 for a description).
However, since the alias method first requires the construction of a data structure that itself takes
O(K) time, it is only useful when we want multiple samples from the same, fixed multinomial
distribution.

In the context of the neural network language model of Bengio et al. [11], this problem was ad-
dressed by introducing a fixed, directed binary tree factorizing the (conditional) multinomial distri-
bution over words [14]. Each leaf of the tree is associated with a single word. Let �w be the path
from the root to word w. The neural network then assigns probabilities p(�w,l|wt, . . . , wn+t�2) to
each left-right binary decision �w,l � {0, 1} along a path �w, and thus defines a distribution over all
possible root-leaf paths and thus also for all possible words. The product of probabilities over each
left/right decision in a path yields the probability of the leaf word. Mnih and Hinton [15] also inves-
tigated ways of learning the word tree, instead of fixing it using a knowledge base such as WordNet
(they also used a log-linear language model, as opposed to a neural network).

Unfortunately, this solution isn’t applicable to an RBM modeling the joint distribution of n words.
Introducing a directed tree breaks the undirected, symmetric nature of the interaction between the
visible and hidden units of the RBM. Once could use a (conditional) RBM to model the distribution
over binary decisions p(�w,l|wt, . . . , wn+t�2), similarly to Mnih and Hinton [15]. However, the end
result would not be an RBM model over n-gram word windows, nor would it even be a conditional
RBM over p(wn+t�1|wt, . . . , wn+t�2).

Yet, being able to deal with K-ary observations in the Boltzmann machine framework for large K
is crucial if we wish to allow related deep learning solutions (perhaps based on a variant of deep
Boltzmann machines [16]) to be applicable to NLP problems.

4 Metropolis Hastings for Softmax Units

We have argued that obtaining an exact sample from a large multinomial distribution with softmax
probabilities is too expensive to be used in the context of RBMs with word observations. However,
getting exact samples from such multinomials during training might in part be a waste of time. After
all, obtaining exact samples from the joint p(v,h) is not absolutely necessary to obtain a sufficiently
informative learning update, as demonstrated by the success of CD and PCD training.

Hence, instead of sampling exactly from the conditionals p(vi|h) within Gibbs sampling, we pro-
pose to use a small number of repeated steps of Metropolis Hastings (MH) sampling. Let q(vi)
be a proposal distribution (e.g. in our experiments a smoothed unigram estimate of the marginal
distribution over words), one step of MH sampling procedes as follows:

1. Sample from q(vi) the one-hot encoding ṽ of a proposed word
2. Replace the current state of vi by ṽ with probability:

min

�
1,

q(vi) exp(bi� ṽ + h⇥Wiṽ)
q(ṽ) exp(bi�vi + h⇥Wivi)

⇥

One such MH step is extremely fast to perform, hence we can afford to repeat it several times, before
moving to the sampling of other units within the global Gibbs sampling procedure.

4

network language model. The neural network language model’s task is to learn the conditional dis-
tribution p(wn+t�1|wt, . . . , wn+t�2) of the nth word of an n-gram word window [wt, . . . , wn+t�1],
from the windows at all positions t in a training corpus. They proposed to learn, for each possible
word w, a real-valued vector representation dw of that word. Those real-valued vectors can then be
fed as inputs to the neural network, which can be trained to learn both the neural network’s weights
and the word representations. This approach can also be interpreted as imposing a specific fac-
torization of the neural network’s weight matrices, with some additional weight sharing across the
relative positions i of the words within the window. This solution can also be adopted for RBMs, as
described by Mnih and Hinton [12] and in Section 6.1.

The second issue is that sampling K-ary observations becomes very expensive for large K. The
main burden is computing the multinomial (softmax) probabilities (right hand of Equation 8), which
is an operation linear in K. Sampling from this multinomial is also linear in K on average. Sampling
repeadely can be made more efficient using the alias method [13] (see Section 4.1 for a description).
However, since the alias method first requires the construction of a data structure that itself takes
O(K) time, it is only useful when we want multiple samples from the same, fixed multinomial
distribution.

In the context of the neural network language model of Bengio et al. [11], this problem was ad-
dressed by introducing a fixed, directed binary tree factorizing the (conditional) multinomial distri-
bution over words [14]. Each leaf of the tree is associated with a single word. Let �w be the path
from the root to word w. The neural network then assigns probabilities p(�w,l|wt, . . . , wn+t�2) to
each left-right binary decision �w,l � {0, 1} along a path �w, and thus defines a distribution over all
possible root-leaf paths and thus also for all possible words. The product of probabilities over each
left/right decision in a path yields the probability of the leaf word. Mnih and Hinton [15] also inves-
tigated ways of learning the word tree, instead of fixing it using a knowledge base such as WordNet
(they also used a log-linear language model, as opposed to a neural network).

Unfortunately, this solution isn’t applicable to an RBM modeling the joint distribution of n words.
Introducing a directed tree breaks the undirected, symmetric nature of the interaction between the
visible and hidden units of the RBM. Once could use a (conditional) RBM to model the distribution
over binary decisions p(�w,l|wt, . . . , wn+t�2), similarly to Mnih and Hinton [15]. However, the end
result would not be an RBM model over n-gram word windows, nor would it even be a conditional
RBM over p(wn+t�1|wt, . . . , wn+t�2).

Yet, being able to deal with K-ary observations in the Boltzmann machine framework for large K
is crucial if we wish to allow related deep learning solutions (perhaps based on a variant of deep
Boltzmann machines [16]) to be applicable to NLP problems.

4 Metropolis Hastings for Softmax Units

We have argued that obtaining an exact sample from a large multinomial distribution with softmax
probabilities is too expensive to be used in the context of RBMs with word observations. However,
getting exact samples from such multinomials during training might in part be a waste of time. After
all, obtaining exact samples from the joint p(v,h) is not absolutely necessary to obtain a sufficiently
informative learning update, as demonstrated by the success of CD and PCD training.

Hence, instead of sampling exactly from the conditionals p(vi|h) within Gibbs sampling, we pro-
pose to use a small number of repeated steps of Metropolis Hastings (MH) sampling. Let q(vi)
be a proposal distribution (e.g. in our experiments a smoothed unigram estimate of the marginal
distribution over words), one step of MH sampling procedes as follows:

1. Sample from q(vi) the one-hot encoding ṽ of a proposed word
2. Replace the current state of vi by ṽ with probability:

min

�
1,

q(vi) exp(bi� ṽ + h⇥Wiṽ)
q(ṽ) exp(bi�vi + h⇥Wivi)

⇥

One such MH step is extremely fast to perform, hence we can afford to repeat it several times, before
moving to the sampling of other units within the global Gibbs sampling procedure.

4

RBM with Word Representations
• We used MH to train a K-ary RBM, with factored weights that

incorporate word representations, on n-gram windowsa single bias vector b⇤ that is used at all positions (bi = b⇤ ⇤i). The energy function becomes

E(v,h) = �c⌅h +
n⌅

i=1

�b⇤
⇥
vi � h⌅ Ui D⌅ vi (10)

with conditional distributions

p(h|v) =
⇧

j

p(hj |v), p(hj = 1|v) = sigm

�
cj +

n⌅

i=1

Ui
j· D

⌅ vi

⇥
(11)

p(v|h) =
n⇧

i=1

p(vi|h), p(vi = ek|h) =
exp(b⇤

⇥
ek + h⌅Ui D⌅ ek)

⇤K
k�=1 exp(b⇤⇥ek� + h⌅Ui D⌅ ek�)

(12)

where Ui
j· refers to the jth row vector of Ui. The gradients with respect to this parametrization are

easily derived from Equation 7.

6.2 Quantitative Evaluation

We evaluated the word representations learned by our model on a chunking task, following the setup
described in Turian et al. [18] to evaluate word representations. We used code released by the authors
of Turian et al. [18] as well as CRFSuite2. As in Turian et al. [18], we used data from the CoNLL-
2000 shared task. We used a scale of 0.1 for the word representation features (as [18] recommends)
and for each WRRBM model, tried L2 penalties � ⇥ {0.0001, 1.2, 2.4, 3.2} for CRF training. We
selected the single model with the best validation F1 score over all runs and evaluated it on the test
set. The model with the best validation F1 score used 3-gram word windows, � = 1.2, 250 hidden
units, a learning rate of 0.01, and during CD training used one step of MTMH with 100 proposals
to update the negative data. This model achieved a validation F1 score of 94.32 and a test F1 score
of 93.94. Both of these scores are higher than the baseline of not using word representation features
(94.16 validation F1, 93.79 test F1) and a bit worse than the three word representations tried in [18]
(between 94.00 and 94.11 test F1). However, the reader should keep in mind that Turian et al. [18]
learned word embeddings on a different dataset and used a different and larger vocabulary, so our
results can’t be perfectly compared.

One advantage our model has over many other ways of inducing word representations is that it can
also, quite naturally, produce a feature vector for an entire n-gram. For the trigram model mentioned
above, we also tried adding the hidden unit activation probability vector as a feature for chunking.
For each word wi in the input sentence, we generated features using the hidden unit activation
probabilities for the trigram wi�1wiwi+1. No features were generated for the first and last word of
the sentence this way since no valid centered trigram existed. The hidden unit activation probability
features improved validation set F1 to 94.56 and test set F1 to 94.16, a test set result superior to
all word embedding results on chunking reported in Turian et al. [18] that do not combine multiple
word embeddings.

6.3 Qualitative Evaluation

As can be seen from table 1, the learned word representations capture a lot of information about
words. The words with the nearest feature vector to the word “could” are also modal verbs (“ca”
and “wo” are the result of tokenizing “can’t” and “won’t”). The model primarily learns word rep-
resentations that capture syntactic information (as do the representations studied in [18]) because it
only models short windows of text and needs to enforce local agreement. Thus, the words with the
closest feature vector to a given query word are generally the same part of speech and often have
an even more fine-grained syntactic similarity to the query word. For example, the word feature
vector for “japan” is much closer to the vector for “china” than the vector for “chinese” is. Never-
theless, some semantic information gets captured by the word representations, but only after similar
syntactic roles have been enforced.

Although not shown in table 1, the model consistently embeds the following natural groups of words
together (maintaining small intra-group distances): days of the week, words for single digit numbers,
months of the year, and abbreviations for months of the year. A 2D visualization of the word
representations generated by t-SNE [22] is provided at http://i.imgur.com/ZbrzO.png.

2http://www.chokkan.org/software/crfsuite/

7

• Unlike in Mnih and Hinton (2007), we model the joint
distribution of n-grams, not the conditional probability of the last
word given the n-1 previous words

• Can then use the hidden unit activities as n-gram representations

• We trained on 3-grams extracted from the English Gigaword
corpus (vocabulary of 100k words)

• Using the word representations and hidden activations as CRF
features helps on a chunking benchmark

Method Valid F1 Test F1

Without representations 94.16 93.79

WordRepRBM 94.82 94.10

WordRepRBM (+ hidden unit features) 95.01 94.44

Mnih and Hinton 94.63 94.00

Collobert and Weston 94.66 94.10

Brown clusters 94.67 94.11

Tu
ri

an
 e

t
al

. 2
01

0 {Mixing of Metropolis-Hastings

Nearest neighbors (word rep. space)

Chunking results

References
Turian, Ratinov and Bengio, Word representations: A simple and general method for semi-
supervised learning, 2010

Mnih and Hinton, Three new graphical models for statistical language modelling, 2007
Mnih and Hinton, A scalable hierarchical distributed language model, 2009
Collobert and Weston, A unified architecture for natural language processing: Deep neural
networks with multitask learning, 2008
Maas, Daly, Pham, Huang, Ng, and Potts, Learning Word Vectors for Sentiment Analysis, 2011

• The top-down conditional distribution becomes

a single bias vector b⇤ that is used at all positions (bi = b⇤ ⇤i). The energy function becomes

E(v,h) = �c⌅h +
n⌅

i=1

�b⇤
⇥
vi � h⌅ Ui D⌅ vi (10)

with conditional distributions

p(h|v) =
⇧

j

p(hj |v), p(hj = 1|v) = sigm

�
cj +

n⌅

i=1

Ui
j· D

⌅ vi

⇥
(11)

p(v|h) =
n⇧

i=1

p(vi|h), p(vi = ek|h) =
exp(b⇤

⇥
ek + h⌅Ui D⌅ ek)

⇤K
k�=1 exp(b⇤⇥ek� + h⌅Ui D⌅ ek�)

(12)

where Ui
j· refers to the jth row vector of Ui. The gradients with respect to this parametrization are

easily derived from Equation 7.

6.2 Quantitative Evaluation

We evaluated the word representations learned by our model on a chunking task, following the setup
described in Turian et al. [18] to evaluate word representations. We used code released by the authors
of Turian et al. [18] as well as CRFSuite2. As in Turian et al. [18], we used data from the CoNLL-
2000 shared task. We used a scale of 0.1 for the word representation features (as [18] recommends)
and for each WRRBM model, tried L2 penalties � ⇥ {0.0001, 1.2, 2.4, 3.2} for CRF training. We
selected the single model with the best validation F1 score over all runs and evaluated it on the test
set. The model with the best validation F1 score used 3-gram word windows, � = 1.2, 250 hidden
units, a learning rate of 0.01, and during CD training used one step of MTMH with 100 proposals
to update the negative data. This model achieved a validation F1 score of 94.32 and a test F1 score
of 93.94. Both of these scores are higher than the baseline of not using word representation features
(94.16 validation F1, 93.79 test F1) and a bit worse than the three word representations tried in [18]
(between 94.00 and 94.11 test F1). However, the reader should keep in mind that Turian et al. [18]
learned word embeddings on a different dataset and used a different and larger vocabulary, so our
results can’t be perfectly compared.

One advantage our model has over many other ways of inducing word representations is that it can
also, quite naturally, produce a feature vector for an entire n-gram. For the trigram model mentioned
above, we also tried adding the hidden unit activation probability vector as a feature for chunking.
For each word wi in the input sentence, we generated features using the hidden unit activation
probabilities for the trigram wi�1wiwi+1. No features were generated for the first and last word of
the sentence this way since no valid centered trigram existed. The hidden unit activation probability
features improved validation set F1 to 94.56 and test set F1 to 94.16, a test set result superior to
all word embedding results on chunking reported in Turian et al. [18] that do not combine multiple
word embeddings.

6.3 Qualitative Evaluation

As can be seen from table 1, the learned word representations capture a lot of information about
words. The words with the nearest feature vector to the word “could” are also modal verbs (“ca”
and “wo” are the result of tokenizing “can’t” and “won’t”). The model primarily learns word rep-
resentations that capture syntactic information (as do the representations studied in [18]) because it
only models short windows of text and needs to enforce local agreement. Thus, the words with the
closest feature vector to a given query word are generally the same part of speech and often have
an even more fine-grained syntactic similarity to the query word. For example, the word feature
vector for “japan” is much closer to the vector for “china” than the vector for “chinese” is. Never-
theless, some semantic information gets captured by the word representations, but only after similar
syntactic roles have been enforced.

Although not shown in table 1, the model consistently embeds the following natural groups of words
together (maintaining small intra-group distances): days of the week, words for single digit numbers,
months of the year, and abbreviations for months of the year. A 2D visualization of the word
representations generated by t-SNE [22] is provided at http://i.imgur.com/ZbrzO.png.

2http://www.chokkan.org/software/crfsuite/

7

word
representations

position dependent
weights

shared
biases

network language model. The neural network language model’s task is to learn the conditional dis-
tribution p(wn+t�1|wt, . . . , wn+t�2) of the nth word of an n-gram word window [wt, . . . , wn+t�1],
from the windows at all positions t in a training corpus. They proposed to learn, for each possible
word w, a real-valued vector representation dw of that word. Those real-valued vectors can then be
fed as inputs to the neural network, which can be trained to learn both the neural network’s weights
and the word representations. This approach can also be interpreted as imposing a specific fac-
torization of the neural network’s weight matrices, with some additional weight sharing across the
relative positions i of the words within the window. This solution can also be adopted for RBMs, as
described by Mnih and Hinton [12] and in Section 6.1.

The second issue is that sampling K-ary observations becomes very expensive for large K. The
main burden is computing the multinomial (softmax) probabilities (right hand of Equation 8), which
is an operation linear in K. Sampling from this multinomial is also linear in K on average. Sampling
repeadely can be made more efficient using the alias method [13] (see Section 4.1 for a description).
However, since the alias method first requires the construction of a data structure that itself takes
O(K) time, it is only useful when we want multiple samples from the same, fixed multinomial
distribution.

In the context of the neural network language model of Bengio et al. [11], this problem was ad-
dressed by introducing a fixed, directed binary tree factorizing the (conditional) multinomial distri-
bution over words [14]. Each leaf of the tree is associated with a single word. Let �w be the path
from the root to word w. The neural network then assigns probabilities p(�w,l|wt, . . . , wn+t�2) to
each left-right binary decision �w,l � {0, 1} along a path �w, and thus defines a distribution over all
possible root-leaf paths and thus also for all possible words. The product of probabilities over each
left/right decision in a path yields the probability of the leaf word. Mnih and Hinton [15] also inves-
tigated ways of learning the word tree, instead of fixing it using a knowledge base such as WordNet
(they also used a log-linear language model, as opposed to a neural network).

Unfortunately, this solution isn’t applicable to an RBM modeling the joint distribution of n words.
Introducing a directed tree breaks the undirected, symmetric nature of the interaction between the
visible and hidden units of the RBM. Once could use a (conditional) RBM to model the distribution
over binary decisions p(�w,l|wt, . . . , wn+t�2), similarly to Mnih and Hinton [15]. However, the end
result would not be an RBM model over n-gram word windows, nor would it even be a conditional
RBM over p(wn+t�1|wt, . . . , wn+t�2).

Yet, being able to deal with K-ary observations in the Boltzmann machine framework for large K
is crucial if we wish to allow related deep learning solutions (perhaps based on a variant of deep
Boltzmann machines [16]) to be applicable to NLP problems.

4 Metropolis Hastings for Softmax Units

We have argued that obtaining an exact sample from a large multinomial distribution with softmax
probabilities is too expensive to be used in the context of RBMs with word observations. However,
getting exact samples from such multinomials during training might in part be a waste of time. After
all, obtaining exact samples from the joint p(v,h) is not absolutely necessary to obtain a sufficiently
informative learning update, as demonstrated by the success of CD and PCD training.

Hence, instead of sampling exactly from the conditionals p(vi|h) within Gibbs sampling, we pro-
pose to use a small number of repeated steps of Metropolis Hastings (MH) sampling. Let q(vi)
be a proposal distribution (e.g. in our experiments a smoothed unigram estimate of the marginal
distribution over words), one step of MH sampling procedes as follows:

1. Sample from q(vi) the one-hot encoding ṽ of a proposed word
2. Replace the current state of vi by ṽ with probability:

min

�
1,

q(vi) exp(bi� ṽ + h⇥Wiṽ)
q(ṽ) exp(bi�vi + h⇥Wivi)

⇥

One such MH step is extremely fast to perform, hence we can afford to repeat it several times, before
moving to the sampling of other units within the global Gibbs sampling procedure.

4

Sentiment Classification results
Method Test

LDA 67.42

LSA 83.96

Maas et al. “full” 87.44

Bag of words “bnc” 87.80

Maas et al. “full” + BoW “bnc” 88.33

Maas et al. “full” + BoW “bnc” + unlabeled data 88.89

5-gram WordRepRBM 87.42

5-gram WordRepRBM + BoW “bnc” 89.23

0 100 200 300 400 500
0

50

100

150

200
KL Convergence of M−H to Target

M−H Iterations

S
ym

m
e
tr

ic
 K

L
 D

iv
e
rg

e
n
ce

 (
b
its

)

0 100 200 300 400 500
0

10

20

30

40

50
Per−word KL Convergence

M−H Iterations

S
ym

m
e

tr
ic

 K
L

 D
iv

e
rg

e
n

ce
 (

b
its

)

Word 1
Word 2
Word 3
Word 4
Word 5

Left: Convergence of MH operator to the true conditional over the visible
units for 6 randomly chosen data cases, measured with symmetric KL

Right: For the slowest case on the left, convergence of MH operator to the
true conditional over the group of visible units for each word in the 5-gram

• The hidden state has a strong effect on the mixing

• Most groups mix well, but a few tend to mix very slowly

• More sophisticated proposal distributions might improve mixing

• Training class conditional “bag of 5-grams” WordRepRBMs helps
sentiment classification on the Large Movie Review dataset from
Maas et al.

• We use the average free energy of each RBM over a bag as features
for a discriminative classifier

• When combined with binary term frequency bag of word features,
the average free energies of the two RBMs over the 5-grams from a
document yield state of the art results on this dataset

Sampling proposed words in constant time
• Naïve implementations of sampling from a unigram distribution would be

linear in the vocabulary size
• The alias method samples in constant time by first transforming the

distribution into a uniform mixture of Bernoulli distributions over 2 words

0
0.1
0.2
0.3
0.4
0.5
0.6

1 2 3 4 5

A B C D E

0
0.1
0.2
0.3
0.4
0.5
0.6

1 2 3 4 5

A B C D E

100%
50%

75%
75%

25%

50%

50%50%

25%

