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Abstract

Hidden Markov Models (HMMs) have been the state-of-the-arttechniques for
acoustic modeling despite their unrealistic independenceassumptions and the very
limited representational capacity of their hidden states.There are many proposals
in the research community for deeper models that are capableof modeling the
many types of variability present in the speech generation process. Deep Belief
Networks (DBNs) have recently proved to be very effective for a variety of ma-
chine learning problems and this paper applies DBNs to acoustic modeling. On
the standard TIMIT corpus, DBNs consistently outperform other techniques and
the best DBN achieves a phone error rate (PER) of 23.0% on the TIMIT core test
set.

1 Introduction

A state-of-the-art Automatic Speech Recognition (ASR) system typically uses Hidden Markov Mod-
els (HMMs) to model the sequential structure of speech signals, with local spectral variability mod-
eled using mixtures of Gaussian densities. HMMs make two main assumptions. The first assumption
is that the hidden state sequence can be well-approximated using a first order Markov chain where
each stateSt at timet depends only onSt−1. Second, observations at different time steps are as-
sumed to be conditionally independent given a state sequence. Although these assumptions are not
realistic, they enable tractable decoding and learning even with large amounts of speech data. Many
methods have been proposed for relaxing the very strong conditional independence assumptions of
standard HMMs (e.g. [1, 2, 3, 4]). Substantial research effort has been devoted to going beyond
the “beads-on-a-string” view of speech to representing structure in speech above the level of the
phonetic segment [5, 6, 7]. This has led to promising resultsusing segment- and landmark-based
methods for phone recognition (e.g, [8, 9]).

The limited representational capacity of HMMs prevents them from modeling streams of interact-
ing knowledge sources in the speech signal which may requiredeeper architectures with multiple
layers of representations. The work in [10] proposes a hierarchical framework where each layer is
designed to capture a set of distinctive feature landmarks.For each feature, a specialized acoustic
representation is constructed in which that feature best expresses itself. In [11], a probabilistic gen-
erative model is introduced where the dynamic structure in the hidden vocal tract resonance space
is used to characterize long-span contextual influence across phonetic units. Feedforward neural
networks were used in other multilayer frameworks, such as the TRAP architecture [12]. The TRAP
architecture uses a one second long feature vector that describes segments of temporal evolution of
critical-band spectral densities within a single criticalband. Sub-word posterior probabilities are
estimated using feedforward neural networks for each critical band which are merged to produce
the final estimation of posterior probabilities using another feedforward neural network in the last
layer. In [13], the split temporal context system is introduced which modifies the TRAP system by
including splits over time as well as over frequency bands inthe middle layer of the system before
the final merger neural network.
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In this work, we propose using Deep Belief Networks (DBNs) [14] to model the spectral variabil-
ities in speech. DBNs are probabilistic generative models that are composed of multiple layers of
stochastic latent variables with Restricted Boltzmann Machines (RBMs) as their building blocks.
DBNs have a greedy layer-wise unsupervised learning algorithm as well as a discriminative fine-
tuning procedure for optimizing performance on classification tasks.

DBNs and related models have been used successfully for hand-written character recognition [14,
15], 3-D object recognition [16], information retrieval [17, 18], motion capture data modeling [19,
20], and machine transliteration [21].

2 Deep belief networks

Learning is difficult in densely connected, directed beliefnets that have many hidden layers because
it is difficult to infer the posterior distribution over the hidden variables, when given a data vector,
due to the phenomenon of explaining away. Markov chain MonteCarlo methods [22] can be used
to sample from the posterior, but they are typically very time-consuming.

In [14] complementary priors were used to eliminate the explaining away effects producing a train-
ing procedure which is equivalent to training a sequence of restricted Boltzmann machines (RBMs)
[23]. An RBM is a bipartite graph in which visible units that represent observations are connected
to binary, stochastic hidden units using undirected weighted connections. They are restricted in the
sense that there are no visible-visible or hidden-hidden connections. RBMs have an efficient training
procedure which makes them suitable as building blocks for Deep Belief Networks (DBNs).

2.1 Restricted Boltzmann machines

An RBM [figure 1-(a)] is a particular type of Markov Random Field (MRF) that has one layer of
binary stochastic hidden units and one layer of binary stochastic visible units, although the units need
not be Bernoulli random variables and can in fact have any distribution in the exponential family
[24]. Typically, all visible units are connected to all hidden units. The weights on the connections
and the biases of the individual units define a probability distribution over the binary state vectorsv

of the visible units via an energy function. The energy of thejoint configuration(v,h) is given by
[24]:

E(v,h; θ) = −
V∑

i=1

H∑

j=1

wijvihj −
V∑

i=1

bivi −
H∑

j=1

ajhj (1)

whereθ = (w,b,a) andwij represents the symmetric interaction term between visibleunit i and
hidden unitj while bi andaj are their bias terms.V andH are the numbers of visible and hidden
units. The probability that the model assigns to a visible vectorv is:

p(v; θ) =

∑
h

e−E(v,h)

∑
u

∑
h

e−E(u,h)
(2)

Since there are no hidden-hidden or visible-visible connections, the conditional distributionsp(v|h)
andp(h|v) are factorial and are given by:

p(hj = 1|v; θ) = σ(

V∑

i=1

wijvi + aj)

p(vi = 1|h; θ) = σ(
H∑

j=1

wijhj + bi), (3)

whereσ(x) = (1 + e−x)
−1. To train an RBM to model the joint distribution of data and class labels,

the visible vector is concatenated with a binary vector of class labels. The energy function becomes:
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E(v, l,h; θ) = −
V∑

i=1

H∑

j=1

wijhjvi −
L∑

y=1

H∑

j=1

wyjhj ly −
H∑

j=1

ajhj −
L∑

y=1

cyly −
V∑

i=1

bivi (4)

p(ly = 1|h; θ) = softmax(
H∑

j=1

wyjhj + cy). (5)

Furthermore,p(l|v) can be computed exactly using:

p(l|v) =

∑
h

e−E(v,l,h)

∑
l

∑
h

e−E(v,l,h)
. (6)

The value ofp(l|v) can be computed efficiently by exploiting the conditional independence of the
hidden units, which allows the hidden units to be marginalized out in a time that is linear in the
number of hidden units.
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(b) DBN

Figure 1: The DBN is composed of RBMs.

2.2 RBM training

2.2.1 Generative training of an RBM

Following the gradient of the joint likelihood function of data and labels, the update rule for the
visible-hidden weights is

∆wij = 〈vihj〉data − 〈vihj〉model (7)

The expectation〈vihj〉data is the frequency with which the visible unitvi and the hidden unithj are
on together in the training set and〈vihj〉model is that same expectation under the distribution defined
by the model. The term〈.〉model takes exponential time to compute exactly so the Contrastive
Divergence (CD) approximation to the gradient is used instead [15]. The new update rule becomes:

∆wij = 〈vihj〉data − 〈vihj〉1 (8)

where〈.〉1 represents the expectation with respect to the distribution of samples from running the
Gibbs sampler initialized at the data for one full step.

2.2.2 Discriminative training of a DBN using backpropagation

The RBM pretraining procedure of a DBN can be used to initialize the weights of a deep neural
network, which can then be discriminatively fine-tuned by backpropagating error derivatives. The
“recognition” weights of the DBN become the weights of a standard neural network.
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2.2.3 Hybrid training of an RBM

In cases where the RBM models the joint distribution of visible data and class labels, a hybrid train-
ing procedure can be used to fine-tune the generatively trained parameters. Since the log conditional
probability, log p(l|v), can be computed exactly, the gradient can also be computed exactly. The
update rule for the visible-hidden weights is

∆wij =

H∑

j=1

σ(aj + wjy +

V∑

i=1

wijvi)vi −

L∑

l=1

H∑

j=1

σ(aj + wjl +

V∑

i=1

wijvi)p(l|v)vi (9)

To avoid model overfitting, we follow the gradient of a hybridfunctionf(v, l) which contains both
generative and discriminative components:

f(v, l) = αp(l|v) + p(v|l) (10)

In this casep(v|l) works as a regularizer and is learned by using the original labels with the recon-
structed data to infer the states of the hidden units at the end of the sampling step. Theα parameter
controls the emphasis given to the discriminative component of the objective function. Since the
original labels are used during hidden layer reconstruction for evaluatingp(v|l), the label biases are
updated using the gradient ofp(l|v) only.

2.3 DBN structure

Each layer of hidden units learns to represent features thatcapture higher order correlations in the
original input data [figure 1-(b)]. The key idea behind training a deep belief net by training a se-
quence of RBMs is that the model parameters,θ, learned by an RBM define bothp(v|h, θ) and the
prior distribution over hidden vectors,p(h|θ), so the probability of generating a visible vector,v,
can be written as:

p(v) =
∑

h

p(h|θ)p(v|h, θ) (11)

After learningθ, p(v|h, θ) is kept whilep(h|θ) can be replaced by a better model that is learned by
treating the hidden activity vectors produced from the training data as the training data for another
RBM. This replacement improves a variational lower bound onthe probability of the training data
under the composite model [14]. So a DBN can be viewed as an RBMthat defines a prior over the
top layer of hidden variables in a directed belief net, combined with a set of “recognition” weights
to perform fast approximate inference.

2.4 Using DBNs for phone recognition

In order to apply DBNs with fixed input and output dimensionality to phone recognition, a context
window of n successive frames of feature vectors is used to set the states of the visible units of the
lower layer of the DBN which produces a probability distribution over the possible labels of the
the central frame. To generate phone sequences, a sequence of probability distributions over the
possible labels for each frame are fed into a standard Viterbi decoder.

We employed two general types of DBN architectures. Both types use greedy layer-wise Contrastive
Divergence (CD) pretraining for initializing weights. Thefirst architecture [figure 2-(a)] adds a final
layer of variables that represent the desired outputs then performs a purely discriminative fine-tuning
phase using backpropagation. We refer to this architectureas “BP-DBN.” The second type used an
RBM associative memory for the final layer to model the joint density of the labels and inputs
[figure 2-(b)]. For fine-tuning, derivatives of the hybrid objective function in 10 are followed. Only
the discriminative component of the weight updates is propagated back through the earlier layers in
the network during the fine-tuning stage. We refer to this architecture as “AM-DBN.”

2.5 Generalized softmax (GSM) output layer

When the number of possible classes is very large and the distribution of frequencies for differ-
ent classes is far from uniform, it may sometimes be advantageous to use a different encoding for
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(b)A 3-layer AM-DBN

Figure 2: The DBN architectures used in this work.

the class targets than the standard one-of-K softmax encoding [25]. It is quite straightforward to
use an arbitrary fixed binary code for each class. Suppose we represent each class with its ownq-
dimensional code vector and thus we haveq output units for our model. Letz be theq-dimensional
column vector generated by the network for a certain input speech segment;z needs to be trans-
formed into a vector of class posterior probabilities. IfCj is the row vector holding the code for
classj, then the expression for the probability the model assigns to classt givenz becomes

P (t|θ, z) =
eCtz

∑
j eCjz

(12)

If we allow Cj to be thejth row of the identity matrix, we recover the normal softmax expression.

3 Experimental setup

3.1 TIMIT corpus

Phone recognition experiments were performed on the TIMIT corpus1. The 462 speaker training set
was used. All SA records (i.e., identical sentences for all speakers in the database) were removed as
they could bias the results. A development set of 50 speakerswas used for model tuning. Results are
reported using the 24-speaker core test set. The speech was analyzed using a 25-ms Hamming win-
dow with 10-ms between the left edges of successive frames. In all the experiments, we represented
the speech using 12th-order Mel frequency cepstral coefficients (MFCCs) and energy, along with
their first and second temporal derivatives. The data were normalized to have zero mean and unit
variance over the entire corpus. All experiments used a context window of 11 frames as the visible
states. We used 183 target class labels (i.e., 3 states for each one of the 61 phones). After decoding,
starting and ending silences were removed and the 61 phone classes were mapped to a set of 39
classes as in [26] for scoring. All of our experiments used a bigram language model over phones,
estimated from the training set. The decoder parameters were tuned to optimize performance on the
development set for each run using grid search.

3.2 Computational setup

Training DBNs of the sizes used in this paper is quite computationally expensive. Training was
accelerated by exploiting a graphics processor. A single pass over the entire training set during
pretraining took about 5 minutes. An epoch of fine-tuning with backpropagation took around 13
minutes. The discriminative gradient computation for hybrid training was substantially more ex-
pensive. Each epoch of hybrid fine-tuning took around an hour. These time estimates represent the

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1.
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largest architecture running on one of the GPUs in a NVIDIA Tesla S1070 system, using the library
in [27].

4 Experiments

For all experiments, the Viterbi decoder parameters (i.e. the word insertion probability, the language
model scale factor) were optimized on the development set and then the best performing setting was
used to compute the phone error rate (PER) for the core test set.

Figure 3 explores the effect of varying the number of hidden layers in the model. The BP-DBN
architecture is used with 2048 hidden units per layer. All models use the same fixed random binary
code matrix to convert the 128 network output units into probabilities over the target 183 states’
labels.
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Figure 3: The effect of the model depth on PER.

Adding a second layer significantly reduces the PER as shown in figure 3. By adding more layers,
the PER on the development set starts to plateau while the PERon the test stays between 23% and
24% after adding the4th layer. This motivates the decision to restrict most of the experiments to
four and five layer models.

Phone error rates (PER) for four-layer architectures with different hidden layer sizes are presented
in table 1.

Table 1:The effect of layer size on PER

Model devset testset
1024 units 21.94% 23.46%
2048 units 22.00% 23.36%
3072 units 21.74% 23.54%

We generally focused our computational resources on experiments with2048 units per hidden layer
since the performance was not significantly different for different numbers of units per layer.

To check the effect of using the Generalized softmax (GSM) inthe output layer of the network,
we compared its performance to the standard 183-way softmaxoutput layer. Both a 4 hidden layer
model using a 128-dimensional GSM and the same architectureusing a standard softmax achieved
22% PER on the development set. On the core test set, The PER ofthe GSM model is 23.36%
while the standard Softmax PER is 23.9%. The 128-dimensional GSM model can be viewed as a 5
layer DBN with a final layer of fixed weights. To be clear on the main source of improvement, we
compared the 128-dimensional GSM model to a 5 layer DBN with afinal layer of 128 hidden units
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and a 5 layer DBN with 2048 units in each layer. Table 2 shows that having a “bottleneck” at the
last layer of the DBN is useful to combat overfitting and to encourage the model to share features
between different classes. Since all but the output layer weights in a BP-DBN-style architecture are
pretrained, a learned bottleneck substantially reduces the number of parameters that do not receive
the benefits of pretraining. If we simply use a random fixed binary code for classes, although the
model still has almost as many weights that aren’t pretrained as an architecture without a bottleneck,
the model is forced to share features between classes because each output code bit is on for a random
subset of approximately half of the classes. Either making the last hidden layer substantially smaller
than the other layers or using a fixed (not learned) transformation between the DBN output units and
the actual 183 classes was sufficient for achieving good results, even with minimal weight decay.
Additionally, we were unable to achieve as strong results inpreliminary experiments using L2 weight
decay alone. Unsurprisingly, learning the weights betweenthe classes and the penultimate 128 unit
layer produced better results than using a fixed random binary matrix; however, using an unlearned
random transformation did not substantially degrade performance.

Table 2:The effect of GSM on PER

Model devset testset
128-dimensional GSM 22.00% 23.36%

4 layers + 128 hidden units 22.00% 23.00%
4 layers + 2048 hidden units 21.98% 23.73%
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Figure 4: The effect of bottleneck size on PER.

As shown in figure 4, the quality of the results was quite resilient to changes in the size of the final
hidden layer. In general, as long as there were at least64 hidden units in the fifth hidden layer,
phone error rates on the development set were practically indistinguishable. By examining results
on the core test set, although many of the differences are notstatistically significant, we note that
some reduction in the size of fifth layer compared to the fourth layer seems helpful.

Table 3 presents the PER achieved by using the AM-DBN architecture for 2048 and 3072 Associa-
tive Memory (AM) sizes on top of a 3 layer network with 2048 units for each layer. The AM-DBN
architecture, although not better than the BP-DBN architecture, has a nice mechanism for avoiding
overfitting without using a bottleneck which is important inmuch deeper belief networks.

Table 4 compares the best performing DBN model with previously reported results on the TIMIT
core test set2. The lowest PER on the core test set was observed using a 4 layer BP-DBN architecture
of 2048 hidden units per layer plus a bottleneck layer of 128 units before the 183-way softmax which
is a 1.4% absolute improvement in PER over the best reported method in the literature.

2In [13] a PER of 21.48% is reported on thecomplete test set of TIMIT. The speech units used are not the
same as the standard TIMIT definitions.
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Table 3:PERs using AM-DBN architecture

Model devset testset
3k AM 22.39 23.85
2k AM 22.52 23.96

Table 4:Reported results on TIMIT core test set

Method PER
Stochastic Segmental Models [28] 36%

Conditional Random Field [29] 34.8%
Large-Margin GMM [30] 33%

CD-HMM [4] 27.3%
Augmented conditional Random Fields [4] 26.6%

Recurrent Neural Nets [31] 26.1%
Bayesian Triphone HMM [32] 25.6%

Monophone HTMs [33] 24.8%
Heterogeneous Classifiers [34] 24.40%

Deep Belief Networks(DBNs) (this work) 23.0%

5 Conclusions and future work

In this work, two types of Deep Belief Network were investigated for acoustic modeling; the back-
propagation DBN (BP-DBN) and the associative memory DBN (AM-DBN) architectures. The ef-
fect of model depth and hidden layer size were investigated.Both architectures have mechanisms
to avoid overfitting. The use of a “bottleneck” in the last layer of the BP-DBN proved to help avoid
overfitting while hybrid generative and discriminative training prevent overfitting in the AM-DBN.
Both types of DBN beat other reported results on the TIMIT core test set for a wide variety of
choices of the number of hidden layers and the number of unitsper layer.
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