
IMPROVEMENTS TO DEEP CONVOLUTIONAL NEURAL NETWORKS FOR LVCSR

Tara N. Sainath1, Brian Kingsbury1, Abdel-rahman Mohamed2, George E. Dahl2, George Saon1

Hagen Soltau1, Tomas Beran1, Aleksandr Y. Aravkin1, Bhuvana Ramabhadran1

1IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
2Department of Computer Science, University of Toronto

1{tsainath, bedk, gsaon, hsoltau, tberan, saravkin, bhuvana}@us.ibm.com,
2{asamir, gdahl}@cs.toronto.edu

ABSTRACT
Deep Convolutional Neural Networks (CNNs) are more powerful
than Deep Neural Networks (DNN), as they are able to better reduce
spectral variation in the input signal. This has also been confirmed
experimentally, with CNNs showing improvements in word error
rate (WER) between 4-12% relative compared to DNNs across a va-
riety of LVCSR tasks. In this paper, we describe different methods
to further improve CNN performance. First, we conduct a deep anal-
ysis comparing limited weight sharing and full weight sharing with
state-of-the-art features. Second, we apply various pooling strate-
gies that have shown improvements in computer vision to an LVCSR
speech task. Third, we introduce a method to effectively incorporate
speaker adaptation, namely fMLLR, into log-mel features. Fourth,
we introduce an effective strategy to use dropout during Hessian-free
sequence training. We find that with these improvements, particu-
larly with fMLLR and dropout, we are able to achieve an additional
2-3% relative improvement in WER on a 50-hour Broadcast News
task over our previous best CNN baseline. On a larger 400-hour
BN task, we find an additional 4-5% relative improvement over our
previous best CNN baseline.

1. INTRODUCTION

Deep Neural Networks (DNNs) are now the state-of-the-art in acous-
tic modeling for speech recognition, showing tremendous improve-
ments on the order of 10-30% relative across a variety of small and
large vocabulary tasks [1]. Recently, deep convolutional neural net-
works (CNNs) [2, 3] have been explored as an alternative type of
neural network which can reduce translational variance in the input
signal. For example, in [4], deep CNNs were shown to offer a 4-12%
relative improvement over DNNs across different LVCSR tasks. The
CNN architecture proposed in [4] was a somewhat vanilla architec-
ture that had been used in computer vision for many years. The goal
of this paper is to analyze and justify what is an appropriate CNN ar-
chitecture for speech, and to investigate various strategies to improve
CNN results further.

First, the architecture proposed in [4] used multiple convolu-
tional layers with full weight sharing (FWS), which was found to be
beneficial compared to a single FWS convolutional layer. Because
the locality of speech is known ahead of time, [3] proposed the use
of limited weight sharing (LWS) for CNNs in speech. While LWS
has the benefit that it allows each local weight to focus on parts of
the signal which are most confusable, previous work with LWS had
just focused on a single LWS layer [3], [5]. In this work, we do a
detailed analysis and compare multiple layers of FWS and LWS.

Second, there have been numerous improvements to CNNs in
computer vision, particularly for small tasks. For example, using
lp [6] or stochastic pooling [7] provides better generalization than
max pooling used in [4]. Second, using overlapping pooling [8] and
pooling in time [9] also improves generalization to test data. Fur-
thermore, multi-scale CNNs [6], that is, combining outputs from
different layers of the neural network, has also been successful in
computer vision. We explore the effectiveness of these strategies for
larger scale speech tasks.

Third, we investigate using better features for CNNs. Features
for CNNs must exhibit locality in time and frequency. In [4] it
was found that VTLN-warped log-mel features were best for CNNs.
However, speaker adapted features, such as feature space maximum
likelihood linear regression (fMLLR) features [10], typically give
the best performance for DNNs. In [4], the fMLLR transformation
was applied directly to a correlated VTLN-warped log-mel space.
However, no improvement was observed as fMLLR transformations
typically assume uncorrelated features. In this paper, we propose a
methodology to effectively use fMLLR with log-mel features. This
involves transforming log-mel into an uncorrelated space, applying
fMLLR in this space, and then transforming the new features back
to a correlated space.

Finally, we investigate the role of rectified linear units (ReLU)
and dropout for Hessian-free (HF) sequence training [11] of CNNs.
In [12], ReLU+dropout was shown to give good performance for
cross-entropy (CE) trained DNNs but was not employed during HF
sequence-training. However, sequence-training is critical for speech
recognition performance, providing an additional relative gain of 10-
15% over a CE-trained DNN [11]. During CE training, the dropout
mask changes for each utterance. However, during HF training, we
are not guaranteed to get conjugate directions if the dropout mask
changes for each utterance. Therefore, in order to make dropout
usable during HF, we keep the dropout mask fixed per utterance for
all iterations of conjugate gradient (CG) within a single HF iteration.

Results with the proposed strategies are first explored on a 50-hr
English Broadcast News (BN) task. We find that there is no differ-
ence between LWS and FWS with multiple layers for an LVCSR
task. Second, we find that various pooling strategies that gave im-
provements in computer vision tasks, do not help much in speech.
Third, we observe that improving the CNN input features by includ-
ing fMLLR gives improvements in WER. Finally, fixing the dropout
mask during the CG iterations of HF lets us use dropout during HF
sequence training and avoids destroying the gains from dropout ac-
crued during CE training. Putting together improvements from fM-
LLR and dropout, we find that we are able to obtain a 2-3% relative

reduction in WER compared to the CNN system proposed in [4]. In
addition, on a larger 400-hr BN task, we can also achieve a 4-5%
relative improvement in WER.

The rest of this paper is organized as follows. Section 2 de-
scribes the basic CNN architecture in [4] that serves as a starting
point to the proposed modifications. In Section 3, we discuss ex-
periments with LWS/FWS, pooling, fMLLR and ReLU+dropout for
HF. Section 4 presents results with the proposed improvements on a
50 and 400-hr BN task. Finally, Section 5 concludes the paper and
discusses future work.

2. BASIC CNN ARCHITECTURE

In this section, we describe the basic CNN architecture that was in-
troduced in [4], as this will serve as the baseline system which we
improve upon. In [4], it was found that having two convolutional lay-
ers and four fully connected layers, was optimal for LVCSR tasks.
We found that a pooling size of 3 was appropriate for the first con-
volutional layer, while no pooling was used in the second layer. Fur-
thermore, the convolutional layers had 128 and 256 feature maps re-
spectively, while the fully connected layers had 1,024 hidden units.
The optimal feature set used was VTLN-warped log-mel filterbank
coefficients, including delta + double delta. Using this architecture
for CNNs, we were able to achieve between 4-12% relative improve-
ment over DNNs across many different LVCSR tasks.

In this paper, we explore feature, architecture and optimization
strategies to improve the CNN results further. Preliminary experi-
ments are performed on a 50-hr English Broadcast News task [11].
The acoustic models are trained on 50 hours from the 1996 and
1997 English Broadcast News Speech Corpora. Results are reported
on the EARS dev04f set. Unless otherwise noted, all CNNs are
trained with cross-entropy, and results are reported in a hybrid setup.

3. ANALYSIS OF VARIOUS STRATEGIES FOR LVCSR

3.1. Limited vs. Full Weight Sharing

In speech recognition tasks, the characteristics of the signal in low-
frequency regions are very different than in high frequency regions.
This allows a limited weight sharing (LWS) approach to be used
for convolutional layers [3], where weights only span a small local
region in frequency. LWS has the benefit that it allows each local
weight to focus on parts of the signal which are most confusable, and
perform discrimination within just that small local region. However,
one of the drawbacks is that it requires setting by hand the frequency
region each filter spans. Furthermore, when many LWS layers are
used, this limits adding additional full-weight sharing convolutional
layers, as filter outputs in different bands are not related and thus the
locality constraint required for convolutional layers is not preserved.
Thus, most work with LWS up to this point has looked at LWS with
one layer [3], [5].

Alternatively, in [4], a full weight sharing (FWS) idea in convo-
lutional layers was explored, similar to what was done in the image
recognition community. With that approach, multiple convolutional
layers were allowed and it was shown that adding additional con-
volutional layers was beneficial. In addition, using a large number
of hidden units in the convolutional layers better captures the differ-
ences between low and high frequency components.

Since multiple convolutional layers are critical for good perfor-
mance in WER, in this paper we explore doing LWS with multiple
layers. Specifically, the activations from one LWS layer have local-
ity preserving information, and can be fed into another LWS layer.

Results comparing LWS and FWS are shown in Table 1. Note these
results are with stronger VTLN-warped log-mel+d+dd features, as
opposed to previous LWS work which used simpler log-mel+d+dd.

For both LWS and FWS, we used 2 convolutional layers, as this
was found in [4] to be optimal. First, notice that as we increase the
number of hidden units for FWS, there is an improvement in WER,
confirming our belief that having more hidden units with FWS is
important to help explain variations in frequency in the input signal.
Second, we find that if we use LWS but match the number of param-
eters to FWS, we get very slight improvements in WER (0.1%). It
seems that both LWS and FWS offer similar performance. Because
FWS is simpler to implement, as we do not have to choose filter lo-
cations for each limited weight ahead of time, we prefer to use FWS.
Because FWS with 5.6M parameters (256/256 hidden units per con-
volution layer) gives the best tradeoff between WER and number of
parameters, we use this setting for subsequent experiments.

Method Hidden Units in Conv Layers Params WER
FWS 128/256 5.1M 19.3
FWS 256/256 5.6M 18.9
FWS 384/384 7.6M 18.7
FWS 512/512 10.0M 18.5
LWS 128/256 5.4M 18.8
LWS 256/256 6.6M 18.7

Table 1. Limited vs. Full Weight Sharing

3.2. Strategies from Computer Vision

In this section, we explore various strategies that have been success-
ful in computer vision tasks, including various pooling ideas and
multi-scale CNNs.

3.2.1. Type of Pooling

Pooling is an important concept in CNNs which helps to reduce
spectral variance in the input features. The work in [4] explored
using max pooling as the pooling strategy. Given a pooling region
Rj and a set of activations {a1, . . . a|Rj |} ∈ Rj , the operation for
max-pooling is shown in Equation 1.

sj = max
i∈Rj

ai (1)

One of the problems with max-pooling is that it can overfit the
training data, and does not necessarily generalize to test data. Two
pooling alternatives have been proposed to address some of the prob-
lems with max-pooling, lp pooling [6] and stochastic pooling [7].

lp pooling looks to take a weighted average of activations ai in
pooling region Rj , as shown in Equation 2.

sj =

∑
i∈Rj

api

 1
p

(2)

p = 1 can be seen as a simple form of averaging while p = ∞ cor-
responds to max-pooling. One of the problems with average pooling
is that all elements in the pooling region are considered, so areas of
low-activations may downweight areas of high activation. lp pooling
for p > 1 is seen as a tradeoff between average and max-pooling. lp
pooling has shown to give large improvements in error rate in com-
puter vision tasks compared to max pooling [6].

Stochastic pooling is another pooling strategy that addresses the
issues of max and average pooling. In stochastic pooling, first a set
of probabilities p for each region j is formed by normalizing the
activations across that region, as shown in Equation 3.

pi =
ai∑

k∈Rj
ak

(3)

sj = al where l ∼ P (p1, p2, . . . p|Rj |) (4)

A multinomial distribution is created from the probabilities and
the distribution is sampled based on p to pick the location l and
corresponding pooled activation al. This is shown by Equation 4.
Stochastic pooling has the advantages of max-pooling but prevents
overfitting due to the stochastic component. Stochastic pooling has
also shown huge improvements in error rate in computer vision [7].

Given the success of lp and stochastic pooling, we compare both
of these strategies to max-pooling on an LVCSR task. Results for
the three pooling strategies are shown in Table 2. Stochastic pooling
seems to provide improvements over max and lp pooling, though the
gains are slight. Unlike vision tasks, in appears that in tasks such as
speech recognition which have a lot more data and thus better model
estimates, generalization methods such as lp and stochastic pooling
do not offer great improvements over max pooling.

Method WER
Max Pooling 18.9

Stochastic Pooling 18.8
lp pooing 18.9

Table 2. Results with Different Pooling Types

3.2.2. Overlapping Pooling

The work presented in [4] did not explore overlapping pooling in
frequency. However, work in computer vision has shown that over-
lapping pooling can improve error rate by 0.3-0.5% compared to
non-overlapping pooling [8]. One of the motivations of overlapping
pooling is to prevent overfitting.

Table 3 compares overlapping and non-overlapping pooling on
an LVCSR speech task. One thing to point out is that because over-
lapping pooling has many more activations, in order to keep the ex-
periment fair, the number of parameters between non-overlapping
and overlapping pooling was matched. The table shows that there
is no difference in WER between overlapping or non-overlapping
pooling. Again, on tasks with a lot of data such as speech, regu-
larization mechanisms such as overlapping pooling, do not seem to
help compared to smaller computer vision tasks.

Method WER
Pooling No Overlap 18.9

Pooling with Overlap 18.9

Table 3. Pooling With and Without Overlap

3.2.3. Pooling in Time

Most previous CNN work in speech explored pooling in frequency
only ([4], [3], [5]), though [13] did investigate CNNs with pooling
in time, but not frequency. However, most CNN work in vision per-
forms pooling in both space and time [6], [8]. In this paper, we do a
deeper analysis of pooling in time for speech. One thing we must en-
sure with pooling in time in speech is that there is overlap between

the pooling windows. Otherwise, pooling in time without overlap
can be seen as subsampling the signal in time, which degrades per-
formance. Pooling in time with overlap can thought of as a way to
smooth out the signal in time, another form of regularization.

Table 4 compares pooling in time for both max, stochastic and
lp pooling. We see that pooling in time helps slightly with stochas-
tic and lp pooling. However, the gains are not large, and are likely
to be diminished after sequence training. It appears that for large
tasks with more data, regularizations such as pooling in time are not
helpful, similar to other regularization schemes such as lp/stochastic
pooling and pooling with overlap in frequency.

Method WER
Baseline 18.9

Pooling in Time, Max 18.9
Pooling in Time, Stochastic 18.8

Pooling in Time, lp 18.8

Table 4. Pooling in Time

3.2.4. Multi-Scale CNN/DNN

The information captured in each layer of a neural network varies
from more general to more specific concepts. For example, in speech
lower layers focus more on speaker adaptation and higher layers fo-
cus more on discrimination. In this section, we look to combine
inputs from different layers of a neural network to explore if com-
plementarity between different layers could potentially improve re-
sults further. This idea, known as multi-scale neural networks [6]
has been explored before for computer vision.

Specifically, we look at combining the output from 2 fully-
connected and 2 convolutional layers. This output is fed into 4 more
fully-connected layers, and the entire network is trained jointly. This
can be thought of as combining features generated from a DNN-style
and CNN-style network. Note for this experiment, the same input
feature, (i.e., log-mel features) were used for both DNN and CNN
streams. Results are shown in Table 5. A small gain is observed
by combining DNN and CNN features, again much smaller than
gains observed in computer vision. However, given that a small
improvement comes at the cost of such a large parameter increase,
and the same gains can be achieved by increasing feature maps in the
CNN alone (see Table 1), we do not see huge value in this idea. It
is possible however, that combining CNNs and DNNs with different
types of input features which are complimentary, could potentially
show more improvements.

Method Params WER
CNN alone 5.6M 18.9

Multi-scale CNN/DNN 9.5M 18.6

Table 5. Multi-scale CNN vs DNN

3.3. Improved Speaker-Adapted Features

In this section, we describe improvements to CNN input features.

3.3.1. Algorithm Description

Since CNNs model correlation in time and frequency, they require
the input feature space to have this property. This implies that com-
monly used feature spaces, such as Linear Discriminant Analysis,

cannot be used with CNNs. In [4], it was shown that a good feature
set for CNNs was VTLN-warped log-mel filter bank coefficients.

Feature-space maximum likelihood linear regression (fMLLR)
[10] is a popular speaker-adaptation technique used to reduce vari-
ability of speech due to different speakers. The fMLLR transforma-
tion applied to features assumes that either features are uncorrelated
and can be modeled by diagonal covariance Gaussians, or features
are correlated and can be modeled by a full covariance Gaussians.

While correlated features are better modeled by full-covariance
Gaussians, full-covariance matrices dramatically increase the num-
ber of parameters per Gaussian component, oftentimes leading to pa-
rameter estimates which are not robust. Thus fMLLR is most com-
monly applied to a decorrelated space. When fMLLR was applied
to the correlated log-mel feature space with a diagonal covariance
assumption, little improvement in WER was observed [4].

Semi-tied covariance matrices (STCs) [14] have been used to
decorrelate the feature space so that it can be modeled by diagonal
Gaussians. STC offers the added benefit in that it allows a few full
covariance matrices to be shared over many distributions, while each
distribution has its own diagonal covariance matrix.

In this paper, we explore applying fMLLR to correlated features
(such as log-mel) by first decorrelating them such that we can ap-
propriately use a diagonal Gaussian approximation with fMLLR. We
then transform the fMLLR features back to the correlated space so
that they can be used with CNNs.

The algorithm to do this is described as follows. First, starting
from correlated feature space f , we estimate an STC matrix S to
map the features into an uncorrelated space. This mapping is given
by transformation 5

Sf (5)
Next, in the uncorrelated space, an fMLLR M matrix is esti-

mated, and is applied to the STC transformed features. This is shown
by transformation 6

MSf (6)
Thus far, transformations 5 and 6 demonstrate standard trans-

formations in speech with STC and fMLLR matrices. However, in
speech recognition tasks, once features are decorrelated with STC,
further transformation (i.e. fMLLR, fBMMI) are applied in this
decorrelated space, as shown in transformation 6. The features are
never transformed back into the correlated space.

However for CNNs, using correlated features is critical. By mul-
tiplying the fMLLR transformed features by an inverse STC matrix,
we can map the decorrelated fMLLR features back to the correlated
space, so that they can be used with a CNN. The transformation we
propose is given in transformation 7

S−1MSf (7)

3.3.2. Results

Results with the proposed fMLLR idea are shown in Table 6. Notice
that by applying fMLLR in a decorrelated space, we can achieve a
0.5% improvement over the baseline VTLN-warped log-mel system.
This gain was not possible in [4] when fMLLR was applied directly
to correlated log-mel features.

Feature WER
VTLN-warped log-mel+d+dd 18.8

proposed fMLLR + VTLN-warped log-mel+d+dd 18.3

Table 6. WER With Improved fMLLR Features

3.4. Rectified Linear Units and Dropout

At IBM, two stages of Neural Network training are performed. First,
DNNs are trained with a frame-discriminative stochastic gradient de-
scent (SGD) cross-entropy (CE) criterion. Second, CE-trained DNN
weights are re-adjusted using a sequence-level objective function
[15]. Since speech is a sequence-level task, this objective is more
appropriate for the speech recognition problem. Numerous studies
have shown that sequence training provides an additional 10-15%
relative improvement over a CE trained DNN [11], [4]. Using a 2nd
order Hessian-free (HF) optimization method is critical for perfor-
mance gains with sequence training compared to SGD-style opti-
mization, though not as important for CE-training [11].

Rectified Linear Units (ReLU) and Dropout [16] have recently
been proposed as a way to regularize large neural networks. In fact,
ReLU+dropout was shown to provide a 5% relative reduction in
WER for cross-entropy-trained DNNs on a 50-hr English Broadcast
News LVCSR task [12]. However, subsequent HF sequence training
[11] that used no dropout erased some of these gains, and perfor-
mance was similar to a DNN trained with a sigmoid non-linearity
and no dropout. Given the importance of sequence-training for neu-
ral networks, in this paper, we propose a strategy to make dropout
effective during HF sequence training. Results are presented in the
context of CNNs, though this algorithm can also be used with DNNs.

3.4.1. Hessian-Free Training

One popular 2nd order technique for DNNs is Hessian-free (HF) op-
timization [17]. Let θ denote the network parameters, L(θ) denote a
loss function, ∇L(θ) denote the gradient of the loss with respect to
the parameters, d denote a search direction, and B(θ) denote a Hes-
sian approximation matrix characterizing the curvature of the loss
around θ. The central idea in HF optimization is to iteratively form
a quadratic approximation to the loss and to minimize this approxi-
mation using conjugate gradient (CG).

L(θ + d) ≈ L(θ) +∇L(θ)Td+
1

2
dTB(θ)d (8)

During each iteration of the HF algorithm, first, the gradient is
computed using all training examples. Second, since the Hessian
cannot be computed exactly, the curvature matrix B is approximated
by a damped version of the Gauss-Netwon matrix G(θ)+λI, where
λ is set via Levenberg-Marquardt. Then, Conjugate gradient (CG)
is run for multiple-iterations until the relative per-iteration progress
made in minimizing the CG objective function falls below a certain
tolerance. During each CG iteration, Gauss-Newton matrix-vector
products are computed over a sample of the training data.

3.4.2. Dropout

Dropout is a popular technique to prevent over-fitting during neu-
ral network training [16]. Specifically, during the feed-forward op-
eration in neural network training, dropout omits each hidden unit
randomly with probability p. This prevents complex co-adaptations
between hidden units, forcing hidden units to not depend on other
units. Specifically, using dropout the activation yl at layer l is given
by Equation 9, where yl−1 is the input into layer l, Wl is the weight
for layer l, b is the bias, f is the non-linear activation function (i.e.
ReLU) and r is a binary mask, where each entry is drawn from a
Bernoulli(p) distribution with probability p of being 1. Since dropout
is not used during decoding, the factor 1

1−p
used during training en-

sures that at test time, when no units are dropped out, the correct
total input will reach each layer.

yl = f

(
1

1− pW
l(rl−1 ∗ yl−1) + bl

)
(9)

3.4.3. Combining HF + Dropout

Conjugate gradient tries to minimize the quadratic objective func-
tion given in Equation 8. For each CG iteration, the damped Gauss-
Netwon matrix, G(θ), is estimated using a subset of the training
data. This subset is fixed for all iterations of CG. This is because if
the data used to estimate G(θ) changes, we are no longer guaranteed
to have conjugate search directions from iteration to iteration.

Recall that dropout produces a random binary mask for each pre-
sentation of each training instance. However, in order to guarantee
good conjugate search directions, for a given utterance, the dropout
mask per layer cannot change during CG. The appropriate way to
incorporate dropout into HF is to allow the dropout mask to change
for different layers and different utterances, but to fix it for all CG
iterations while working with a specific layer and specific utterance
(although the masks can be refreshed between HF iterations).

As the number of network parameters is large, saving out the
dropout mask per utterance and layer is infeasible. Therefore, we
randomly choose a seed for each utterance and layer and save this
out. Using a randomize function with the same seed guarantees that
the same dropout mask is used per layer/per utterance.

3.4.4. Results

We experimentally confirm that using a dropout probability of p =
0.5 in the 3rd and 4th layers is reasonable, and the dropout in all
other layers is zero. For these experiments, we use 2K hidden units
for the fully connected layers, as this was found to be more beneficial
with dropout compared to 1K hidden units [12].

Results with different dropout techniques are shown in Table 7.
Notice that if no dropout is used, the WER is the same as sigmoid, a
result which was also found for DNNs in [12]. By using dropout but
fixing the dropout mask per utterance across all CG iterations, we
can achieve a 0.6% improvement in WER. Finally, if we compare
this to varying the dropout mask per CG training iteration, the WER
increases. Further investigation in Figure 1 shows that if we vary the
dropout mask, there is slow convergence of the loss during training,
particularly when the number of CG iterations increases during the
later part of HF training. This shows experimental evidence that if
the dropout mask is not fixed, we cannot guarantee that CG iterations
produce conjugate search directions for the loss function.

Non-Linearity WER
Sigmoid 15.7

ReLU, No Dropout 15.6
ReLU, Dropout Fixed for CG Iterations 15.0

ReLU, Dropout Per CG Iteration 15.3

Table 7. WER of HF Sequence Training + Dropout

Finally, we explore if we can reduce the number of CE iterations
before moving to sequence training. A main advantage of sequence
training is that it is more closely linked to the speech recognition
objective function compared to cross-entropy. Using this fact, we
explore how many iterations of CE are actually necessary before
moving to HF training. Table 8 shows the WER for different CE
iterations, and the corresponding WER after HF training. Note that
HF training is started and lattices are dumped using the CE weight
that is stopped at. Notice that just by annealing two times, we can

0 5 10 15 20 25
0.1

0.11

0.12

0.13

0.14

0.15

0.16

HF Iteration

L
o
s
s

Dropout Fixed Per CG

Dropout Varied Per CG

Fig. 1. Held-out Loss With Dropout Techniques

achieve the same WER after HF training, compared to having the
CE weights converge. This points to the fact that spending too much
time in CE is unnecessary. Once the weights are in a relatively de-
cent space, it is better to just jump to HF sequence training which is
more closely matched to the speech objective function.

CE Iter # Times Annealed CE WER HF WER
4 1 20.8 15.3
6 2 19.8 15.0
8 3 19.4 15.0

13 7 18.8 15.0

Table 8. HF Seq. Training WER Per CE Iteration

4. RESULTS

In this section, we analyze CNN performance with the additions pro-
posed in Section 3, namely fMLLR and ReLU + dropout. Results are
shown on both a 50 and 400 hr English Broadcast News task.

4.1. 50-hour English Broadcast News

4.1.1. Experimental Setup

Following the setup in [4], the hybrid DNN is trained using speaker-
adapted, VTLN+fMLLR features as input, with a context of 9
frames. A 5-layer DNN with 1,024 hidden units per layer and a
sixth softmax layer with 2,220 output targets is used. All DNNs are
pre-trained, followed by CE training and then HF sequence-training
[11]. The DNN-based feature system is also trained with the same
architecture, but uses 512 output targets. A PCA is applied on top of
the DNN before softmax to reduce the dimensionality from 512 to
40. Using these DNN-based features, we apply maximum-likelihood
GMM training, followed by feature and model-space discriminative
training using the BMMI criterion. In order to fairly compare results
to the DNN hybrid system, no MLLR is applied to the DNN feature-
based system. The old CNN systems are trained with VTLN-warped
log-mel+d+dd features, and a sigmoid non-linearity. The proposed
CNN-based systems are trained with the fMLLR features described
in Section 3.3, and ReLU+Dropout discussed in Section 3.4.

4.1.2. Results

Table 9 shows the performance of proposed CNN-based feature and
hybrid systems, and compares this to DNN and old CNN systems.
The proposed CNN hybrid system offers between a 6-7% relative

improvement over the DNN hybrid, and a 2-3% relative improve-
ment over the old CNN hybrid system. While the proposed CNN-
based feature system offers a modest 1% improvement over the old
CNN-based feature system, this slight improvements with feature-
based system is not surprising all. We have observed huge relative
improvements in WER (10-12%) on a hybrid sequence trained DNN
with 512 output targets, compared to a hybrid CE-trained DNN.
However, after features are extracted from both systems, the gains
diminish down to 1-2% relative [18]. Feature-based systems use the
neural network to learn a feature transformation, and seem to satu-
rate in performance even when the hybrid system used to extract the
features improves. Thus, as the table shows, there is more potential
to improve a hybrid system as opposed to a feature-based system.

model dev04f rt04
Hybrid DNN 16.3 15.8

Old Hybrid CNN [4] 15.8 15.0
Proposed Hybrid CNN 15.4 14.7
DNN-based Features 17.4 16.6

Old CNN-based Features [4] 15.5 15.2
Proposed CNN-based Features 15.3 15.1

Table 9. WER on Broadcast News, 50 hours

4.2. 400 hr English Broadcast News

4.2.1. Experimental Setup

We explore scalability of the proposed techniques on 400 hours of
English Broadcast News [15]. Development is done on the DARPA
EARS dev04f set. Testing is done on the DARPA EARS rt04
evaluation set. The DNN hybrid system uses fMLLR features, with
a 9-frame context, and use five hidden layers each containing 1,024
sigmoidal units. The DNN-based feature system is trained with 512
output targets, while the hybrid system has 5,999 output targets. Re-
sults are reported after HF sequence training. Again, the proposed
CNN-based systems are trained with the fMLLR features described
in Section 3.3, and ReLU+Dropout discussed in Section 3.4.

4.2.2. Results

Table 10 shows the performance of the proposed CNN system com-
pared to DNNs and the old CNN system. While the proposed 512-
hybrid CNN-based feature system did improve (14.1 WER) over the
old CNN (14.8 WER), performance slightly deteriorates after CNN-
based features are extracted from the network. However, the 5,999-
hybrid CNN offers between a 13-16% relative improvement over
the DNN hybrid system, and between a 4-5% relative improvement
over the old CNN-based features systems. This helps to strengthen
the hypothesis that hybrid CNNs have more potential for improve-
ment, and the proposed fMLLR and ReLU+dropout techniques pro-
vide substantial improvements over DNNs and CNNs with a sigmoid
non-linearity and VTLN-warped log-mel features.

model dev04f rt04
Hybrid DNN 15.1 13.4

DNN-based Features 15.3 13.5
Old CNN-based Features [4] 13.4 12.2

Proposed CNN-based Features 13.6 12.5
Proposed Hybrid CNN 12.7 11.7

Table 10. WER on Broadcast News, 400 hrs

5. CONCLUSIONS

In this paper, we explored various strategies to improve CNN perfor-
mance. We incorporated fMLLR into CNN features, and also made
dropout effective after HF sequence training. We also explored var-
ious pooling and weight sharing techniques popular in computer vi-
sion, but found they did not offer improvements for LVCSR tasks.
Overall, with the proposed fMLLR+dropout ideas, we were able to
improve our previous best CNN results by 2-5% relative.

6. REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep
Neural Networks for Acoustic Modeling in Speech Recognition,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[2] Y. LeCun and Y. Bengio, “Convolutional Networks for Images, Speech,
and Time-series,” in The Handbook of Brain Theory and Neural Net-
works. MIT Press, 1995.

[3] O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn, “Applying
Convolutional Neural Network Concepts to Hybrid NN-HMM Model
for Speech Recognition,” in Proc. ICASSP, 2012.

[4] T.N. Sainath, A. Mohamed, B. Kingsbury, and B. Ramabhadran, “Deep
Convolutional Neural Networks for LVCSR,” in Proc. ICASSP, 2013.

[5] L. Deng, O. Abdel-Hamid, and D. Yu, “A Deep Convolutional Neural
Network using Heterogeneous Pooling for Trading Acoustic Invariance
with Phonetic Confusion,” in Proc. ICASSP, 2013.

[6] P. Sermanet, S. Chintala, and Y. LeCun, “Convolutional neural net-
works applied to house numbers digit classification,” in Pattern Recog-
nition (ICPR), 2012 21st International Conference on, 2012.

[7] M. Zeiler and R. Fergus, “Stochastic Pooling for Regularization of
Deep Convolutional Neural Networks,” in Proc. of the International
Conference on Representaiton Learning (ICLR), 2013.

[8] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems, 2012.

[9] Y. LeCun, F. Huang, and L. Bottou, “Learning Methods for Generic
Object Recognition with Invariance to Pose and Lighting,” in Proc.
CVPR, 2004.

[10] M.J.F. Gales, “Maximum likelihood linear transformations for HMM-
based Speech Recognition,” Computer Speech and Language, vol. 12,
no. 2, pp. 75–98, 1998.

[11] B. Kingsbury, T. N. Sainath, and H. Soltau, “Scalable Minimum Bayes
Risk Training of Deep Neural Network Acoustic Models Using Dis-
tributed Hessian-free Optimization,” in Proc. Interspeech, 2012.

[12] G.E. Dahl, T.N. Sainath, and G.E. Hinton, “Improving Deep Neural
Networks for LVCSR Using Rectified Linear Units and Dropout,” in
Proc. ICASSP, 2013.

[13] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.J Lang,
“Phoneme Recognition using Time-delay Neural Networks,” IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 37, no.
3, pp. 328–339, 1989.

[14] M.J.F. Gales, “Semi-tied Covariance Matrices for Hidden Markov
Models,” IEEE Transactions on Speech and Audio Processing, vol.
7, pp. 272–281, 1999.

[15] B. Kingsbury, “Lattice-Based Optimization of Sequence Classification
Criteria for Neural-Network Acoustic Modeling,” in Proc. ICASSP,
2009.

[16] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Improving Neural Networks by Preventing Co-
Adaptation of Feature Detectors,” The Computing Research Repository
(CoRR), vol. 1207.0580, 2012.

[17] J. Martens, “Deep learning via Hessian-free optimization,” in Proc.
Intl. Conf. on Machine Learning (ICML), 2010.

[18] T. N. Sainath, B. Kingsbury, and B. Ramabhadran, “Auto-Encoder
Bottleneck Features Using Deep Belief Networks,” in Proc. ICASSP,
2012.

