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A Conversant Computer?

I'm sorry Dave,
I'm afraid I can’t do that.
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The Minimal Requirements

“Open the pod
bay doors, HAL”
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I'm afraid | can't
do that.”
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Applications of CL

0 Grammar and style checking
1 Apple's Siri

" Search Engine

1 Machine translation
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Google Translate : Aninformal Experiment

1 Translating a literal phrase:

she took A she took
[ an apple | ‘}? BER—1 :F?%| ‘ an apple J

" Translating a multiword expression:

[ Sgewtg(ik H il AN H she walks up J
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Difficulty with Multiword Expressions

1 Multiword expression:

— two or more words that together form a single unit of
meaning

* “frying pan”
» “keep an eye out for”
e “shoot the breeze”

1 overall meaning # sum of the meaning of the components
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Light Verb Construction (LVC)

—

A multiword expression (in our case, verb + noun) where the
noun determines the primary meaning of the whole

LVC “give a sigh” “make a decision” “take a walk”
Literal “give a present” “make a cake” “take an apple”
1 Again.

— overall meaning # sum of the meaning of the components

1 However:
— the component meanings still contribute something to

the overall meaning
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ldentifying LVCs

—

Which of the following is a light verb construction?
* He gave a donation.
* |t took place over there.
* He gave her an advantage.

—

Motivates the question: can we do better than a simple
binary classification?

®

& UNIVERSITY OF TORONTO
,A:d FACULTY or ARTS &« SCIENCE




A More Appropriate Measure

1 Binary decision-making vs graded decision-making
— “Is this an LVC?” vs “How acceptable is this as an LVC?”

1 More formally:

— What is the probability that some verb + noun
combination forms an LVC?

0 New measure: Acceptability
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Measuring Acceptability

1 Linguistic studies suggest that a measure of LVC
acceptability should incorporate both frequency and

semantic similarity.

1 Hypothesis:
— a novel LV + noun is considered more acceptable if the
nounissimilar toanouninahigh-frequency LVC

1 Example:
— How acceptable is “take a saunter”?
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“take a saunter”

/
stroll

hike, walk

apple, \

banana,
aurian,

‘take] +

shower,
bath, wash, |

\_
C(take):{Q,Q, Q}

C(v): set of semantic classes of nouns that
can occur with verb v
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“take a saunter”

stroll
P(saunter belongs to | hike, walk,

P(saunterl@):high

P(n|c): probability that noun n belongs to class ¢
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“take a saunter”

stroll
hike, walk,

P (c|lv): probability that class ¢ forms
acceptable LVCs with v
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Measuring Acceptability
B
1 Acceptability:

— A probabilistic measure

1 Components
- C(v)
P(n|c)

— P, (c]v)
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Estimating Probabilities

1 We can't know the true probabilities. So we estimate.

» In order to estimate Pch(CM we need to know:
_P

e forallninclassc

e NIV)

— Estimate directly
* Why can't we do this for novel LVCs?

— Estimate indirectly
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Estimating Probabilities

1 We use a machine learning algorithm to estimate this
directly for frequent combinations :

— P _(n|v)

1 Using ~25 features drawing on linguistic properties of LVCs

— Examples:
* frequencies
* 3ssociation
 syntactic behavior
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Some Features of LVCs

1 We expect the noun and the verb in an LVC to have strong
associativity

1 We expect LVCs to have a preference for indefinite
V{4 77 V{4 77 )

determiners (“a” “an” ...
— consider:
* “make a speech” vs “make the speech”
— Which one occurs more often?
* ~16 million vs ~2 million Google hits
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Evaluation

1 Obtain human ratings (on some scale) of LVC acceptability

1 Goals:

— tointroduce a more appropriate (linguistically-
motivated) measure for identifying LVCs

— to be able to predict LVC acceptability of novel
expressions
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