Opportunistic Storage Maintenance

George Amvrosiadis, Angela Demke Brown, Ashvin Goel
UNIVERSITY OF

University of Toronto TORONTO

Importance and challenges of storage maintenance

Storage maintenance task characteristics * Problem: maintenance impacts applications
— Run periodically in the background — Causes cache pollution, longer disk seek times

— Access large amounts of data

_ Operate in the user or kernel level * Solution: Schedule tasks during idle times

* Maintenance tasks offer critical guarantees * Challenge: Too little idle time available

Guarantee Periodic maintenance task — Less idle time in the cloud
Reliability Scrubbing, Write Verification — Maintenance takes too much time

Availability Backup, Data reorganization * Full backups are performed every 1-4 days

Performance |Layout optimization * 10 hours to scan an enterprise 6TB HDD

Security Virus scanning — Too many tasks, working independently

Storage Deduplication, Total I/O proportional to number of tasks
Efficiency Garbage collection

The Opportunistic Storage Maintenance Model

Goal: Reduce maintenance I/O by enabling tasks to work synergistically

Maintenance tasks often access same data * Duet exposes page cache info to tasks

— Caching should be able to exploit data reuse — Tracks changes to the status of cached pages

Problem: Cached data is replaced before * Tasks poll to receive page events
reuse — Use events to process data more efficiently

Insight: Tasks can process data in any order * Example: file defragmentation task

— Uses Added, Removed page events to track

Approach: Adapt task processing to operate cached file pages

on cached data first | | |
— Processes files with most cached pages first

The Duet Framework

Algorithm example_task()
while True do Fetch any new

/* Process files opportunistically */ page events
while True do /
duet_fetch(sid, events)

Use events to
update priority
queue of files with
most cached pages

Page status Description
Added Page added in cache
Removed Page removed from cache

Dirtied Dirty bit set for page Application layer
Flushed Dirty bit cleared for page

prioqueue_update(sid, pq, events)

file +— prioqueue_dequeue(pq)
handle_file(file) \

end

file < pick_next_file() — :
handle_file(file) \ Pick file in task’s
standard order
end
Procedure handle_file(file) .
Duet hooks Y Defrag task if duet_check_done(sid, file) then return Ensure file

' processfile(file) - rohcaessr;:dbszpore
e FE S BYEmE duet_set_done(sid, file) P

Backup task

User level

© 0 N O s W N+

-
= O

e
(Y

Page cache layer . File system layer

Evaluation Results

Single task alongside workload Running multiple tasks together

(Scrubbing, Backup, and Defragmentation)
—~ 100

)

—
o
o

—— 25% overlap
—»— 50% ovérlap
—%—75% overlap-
—<l>— 100% overlap/$

~
(&)
~
(6)

25% overlap
50% overlap
5% overlap
100% overlap

i i i i i i i T T
10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Device utilization (%) Device utilization (%)

N
&)
N
6)

o + + ++ _|_ ______ +. _______ ._|

/0O saved by Duet (%
3

/0 saved by Duet (%
S

o

* Maintenance I/O is reduced based on: * Tasks can piggyback on one another

— Data overlap with workload, higher device utilization — Running 3 tasks together reduces |/O by up to 80%

Duet exploits all opportunities to save 1/0 — Less idle time is needed for maintenance

Contact
- w Duet source code
eorge Amvrosiadis

Dept. of Computer Science, University of Toronto glth u b CO m/ga mvrosi/d uet
><| gamvrosi@cs.toronto.edu B www.cs.toronto.edu/~gamuvrosi

