
Poster Print Size:
This poster template is 50” high
by 25” wide and is printed at
144% for a 72” high by 36” wide
poster. It can be used to print any
poster with a 6:3 aspect ratio.

Placeholders:
The various elements included in
this poster are ones we often see
in medical, research, and scientific
posters. Feel free to edit, move,
add, and delete items, or change
the layout to suit your needs.
Always check with your
conference organizer for specific
requirements.

Image Quality:
You can place digital photos or
logo art in your poster file by
selecting the Insert, Picture
command, or by using standard
copy & paste. For best results, all
graphic elements should be at
least 150-200 pixels per inch in
their final printed size. For
instance, a 1600 x 1200 pixel
photo will usually look fine up to
8“-10” wide on your printed
poster.

To preview the print quality of
images, select a magnification of
100% when previewing your
poster. This will give you a good
idea of what it will look like in
print. If you are laying out a large
poster and using half-scale
dimensions, be sure to preview
your graphics at 200% to see
them at their final printed size.

Please note that graphics from
websites (such as the logo on
your hospital's or university's
home page) will only be 72dpi
and not suitable for printing.

[This sidebar area does not print.]

Opportunistic Storage Maintenance
George Amvrosiadis, Angela Demke Brown, Ashvin Goel

University of Toronto

Contact Duet source code
George Amvrosiadis
Dept. of Computer Science, University of Toronto
 gamvrosi@cs.toronto.edu  www.cs.toronto.edu/~gamvrosi

Importance and challenges of storage maintenance

The Opportunistic Storage Maintenance Model

Evaluation Results

• Storage maintenance task characteristics

– Run periodically in the background

– Access large amounts of data

– Operate in the user or kernel level

• Maintenance tasks offer critical guarantees

Guarantee Periodic maintenance task

Reliability Scrubbing, Write Verification

Availability Backup, Data reorganization

Performance Layout optimization

Security Virus scanning

Storage
Efficiency

Deduplication,
Garbage collection

• Problem: maintenance impacts applications

– Causes cache pollution, longer disk seek times

• Solution: Schedule tasks during idle times

• Challenge: Too little idle time available

– Less idle time in the cloud

– Maintenance takes too much time

• Full backups are performed every 1-4 days

• 10 hours to scan an enterprise 6TB HDD

– Too many tasks, working independently

• Total I/O proportional to number of tasks

Application layer

File system layer

Backup task

User level

Kernel

The Duet Framework

github.com/gamvrosi/duet

Page cache layer

Duet kernel module

• Inode #
• Page offset
• Page status

Pending page events

… …
Ensure file

hasn’t been
processed before

Defrag task Duet hooks

Page status Description

Added Page added in cache

Removed Page removed from cache

Dirtied Dirty bit set for page

Flushed Dirty bit cleared for page

Use events to
update priority

queue of files with
most cached pages

Fetch any new
page events

Pick file in task’s
standard order

• Duet exposes page cache info to tasks

– Tracks changes to the status of cached pages

• Tasks poll to receive page events

– Use events to process data more efficiently

• Example: file defragmentation task

– Uses Added, Removed page events to track
cached file pages

– Processes files with most cached pages first

• Maintenance I/O is reduced based on:

– Data overlap with workload, higher device utilization

Single task alongside workload
(Backup)

Running multiple tasks together
(Scrubbing, Backup, and Defragmentation)

• Tasks can piggyback on one another

– Running 3 tasks together reduces I/O by up to 80%

• Maintenance tasks often access same data

– Caching should be able to exploit data reuse

• Problem: Cached data is replaced before
reuse

• Insight: Tasks can process data in any order

• Approach: Adapt task processing to operate
on cached data first

Goal: Reduce maintenance I/O by enabling tasks to work synergistically

Duet exploits all opportunities to save I/O → Less idle time is needed for maintenance

