
Quartet: Harmonizing task scheduling and
caching for cluster computing

Francis Deslauriers, Peter McCormick, George Amvrosiadis, Ashvin Goel, Angela Demke-Brown
University of Toronto

Buried under data analyses

• Data collection is cheap => datasets grow exponentially
• Cluster computing makes it easy to analyze large datasets

• Queries can span entire datasets
• Data is often re-accessed

• Queries running on the same large datasets
• Leads to significant data reuse

1

10

100

1,000

10,000

100,000

1 100 10,000 1,000,000

F
ile

 a
c
c
e
s
s
 f

re
q

u
e
n
c
y

Input file rank by descending access frequency

CC-b

CC-c

CC-d

CC-e

FB-2010

Facebook, and Cloudera customers [VLDB’12]

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative distribution

of input paths

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f
p
a
th

 a
c
c
e
s
s
e
s

OpenCloud

M45

WebMining

CMU academic
clusters [VLDB’13]

• Data reuse should improve performance due to caching
• Problem: We find that jobs see no benefits from reuse

• Working sets do not fit in the page cache
• Jobs consume data independently of one another

Goal: Jobs should consume data cached across the
cluster first, not evict it

Quartet Architecture

Finding what is in the cache
• Watchers: DataNode daemons that listen for changes in

node cache
• Duet kernel module reports on additions, removals etc. in the cache

[SOSP15]
• Quartet Manager: Central agent that aggregates

watcher updates

Cache-aware scheduling
1 Application Master reports blocks of interest to Quartet
Manager

2 Quartet Manager informs Application Master on cached
blocks

3 Application Master schedules tasks with cached blocks first

Experimental results

• Implemented on Spark and Hadoop MapReduce
• 24 nodes with a total of 384 GB of memory
• Simple IO-bound application
• 2 jobs with 100% input overlap ran sequentially

 256GB 512GB 1024GB
0

20

40

60

80

100

C
ac

he
 h

it
ra

te
 (

%
)

Job size

Vanilla Hadoop Vanilla Spark Quartet Hadoop Quartet Spark

112GB 107GB

240GB
251GB

 22GB
 3GB

262GB
287GB

 1GB 0GB

249GB
284GB

Figure 1: Cache hit ratio

 256GB 512GB 1024GB
0

20

40

60

80

100

N
or

m
al

iz
ed

 r
un

tim
e

of
 s

ec
on

d
jo

b
(%

)

Job size

Vanilla Hadoop Vanilla Spark Quartet Hadoop Quartet Spark

 75.5%

 62.8%

 72.8%

 30.5%

 94.0%

100.8%

 81.6%

 56.5%

 96.5%
 99.1%

 90.8%

 78.1%

Figure 2: Runtime reduction

Vanilla (baseline) misses sharing opportunities
• Uninformed replica selection

• 40-45% of cache hit rate with resident dataset
• Processing order independent of cache content

• Close to no reuse from cache on large datasets
Quartet improves the efficiency of Hadoop and Spark

• Cache hit rate increased to 92-98%
• Up to 45% reduction of runtime

