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Buried under data analyses

• Data collection is cheap => datasets grow exponentially
• Cluster computing makes it easy to analyze large datasets

• Queries can span entire datasets
• Data is often re-accessed

• Queries running on the same large datasets
• Leads to significant data reuse
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• Data reuse should improve performance due to caching
• Problem: We find that jobs see no benefits from reuse

• Working sets do not fit in the page cache
• Jobs consume data independently of one another

Goal: Jobs should consume data cached across the
cluster first, not evict it

Quartet Architecture

Finding what is in the cache
• Watchers: DataNode daemons that listen for changes in

node cache
• Duet kernel module reports on additions, removals etc. in the cache

[SOSP15]
• Quartet Manager: Central agent that aggregates

watcher updates

Cache-aware scheduling
1 Application Master reports blocks of interest to Quartet
Manager

2 Quartet Manager informs Application Master on cached
blocks

3 Application Master schedules tasks with cached blocks first

Experimental results

• Implemented on Spark and Hadoop MapReduce
• 24 nodes with a total of 384 GB of memory
• Simple IO-bound application
• 2 jobs with 100% input overlap ran sequentially
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Figure 1: Cache hit ratio
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Figure 2: Runtime reduction

Vanilla (baseline) misses sharing opportunities
• Uninformed replica selection

• 40-45% of cache hit rate with resident dataset
• Processing order independent of cache content

• Close to no reuse from cache on large datasets
Quartet improves the efficiency of Hadoop and Spark

• Cache hit rate increased to 92-98%
• Up to 45% reduction of runtime


