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Abstract

Enterprises routinely use data protection techniques to
achieve business continuity in the event of failures. To
ensure that backup and recovery goals are met in the
face of the steep data growth rates of modern workloads,
data protection systems need to constantly evolve. Re-
cent studies show that these systems routinely miss their
goals today. However, there is little work in the literature
to understand why this is the case.

In this paper, we present a study of 40,000 enterprise
data protection systems deploying Symantec NetBackup,
a commercial backup product. In total, we analyze over
a million weekly reports which have been collected over
a period of three years. We discover that the main rea-
son behind inefficiencies in data protection systems is
misconfigurations. Furthermore, our analysis shows that
these systems grow in bursts, leaving clients unprotected
at times, and are often configured using the default pa-
rameter values. As a result, we believe there is poten-
tial in developing automated, self-healing data protection
systems that achieve higher efficiency standards. To aid
researchers in the development of such systems, we use
our dataset to identify trends characterizing data protec-
tion systems with regards to configuration, job schedul-
ing, and data growth.

1 Introduction

Studies analyzing the characteristics of storage systems
are an important aid in the design and implementation of
techniques that can improve the performance and robust-
ness of these systems. In the past 30 years, numerous
file system studies have investigated different aspects of
desktop and enterprise systems [2, 6, 7, 19, 30, 39, 47,
51, 55, 56]. However, little work has been published
to provide insight in the characteristics of backup sys-
tems, focusing on deduplication rates [52], and the char-
acteristics of the file systems storing the backup images
[66]. With this study, we look into the backup applica-
tion generating these images, their internal structure, and
the characteristics of the jobs that created them.

Modern data growth rates and shorter recovery win-

dows are driving the need for innovation in the area of
data protection. Recent surveys of CIOs and IT profes-
sionals indicate that 90% of businesses use more than
two backup products [18], and only 28% of backup jobs
complete within their scheduled window [34, 65]. The
goal of this study is to investigate how data protection
systems are configured and operate. Our analysis shows
that the inefficiency of backup systems is largely at-
tributed to misconfigurations. We believe automating
configuration management can help alleviate these con-
figuration issues significantly. Our findings motivate and
support research on automated data protection [22, 27],
by identifying trends in data protection systems, and re-
lated directions for future research.

Our study is based on a million weekly reports col-
lected in a span of three years, from 40,000 enterprise
backup systems, also referred to as domains in the rest
of the paper. Each domain is a multi-tiered network of
backup servers deploying Symantec NetBackup [61], an
enterprise backup product. To the best of our knowledge,
this dataset is the largest in existing literature in terms of
both the number of domains, and the time span covered.
As a result, we are able to analyze the characteristics of
a diverse domain population, and its evolution over time.

First, we investigate how backup domains are config-
ured. Identifying common growth trends is useful for
provisioning system resources, such as network or stor-
age bandwidth, to accommodate future growth. We find
that the population of protected client machines grows
in bursts and rarely shrinks. Furthermore, domains pro-
tect data of a single type, such as database files or virtual
machines, regardless of domain size. Overall, our find-
ings suggest that automated configuration is an important
and feasible direction for future research to accommo-
date growth bursts in the number of protected clients.

The configuration of a backup system, with regards to
job frequency and scheduling, is also an important con-
tributor to resource consumption. Understanding com-
mon practices employed by systems in the field can give
us better insight in the load that these systems face, and
the characteristics of that load. To derive these trends, we
analyzed 210 million jobs performing a variety of tasks,
ranging from data backup and recovery, to management
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Characteristic Observation Section Previous work
System setup The initial configuration period of backup domains is at least 3 weeks. 4.1 None
Protected clients Clients tend to be added to a domain in groups, on a monthly basis. 4.2 None

Backup policies
82% of backup domains protect one type of data. 4.3 None
The number of backup job policies in a domain remains mostly fixed. Also, 79% of
clients subscribe to a single policy. 4.4 None

Job frequency
Full backups tend to occur every few days, while incremental ones occur daily.
Recovery operations occur for few domains, on a weekly or monthly basis. 5.2 None

Users prefer default scheduling windows during weekdays, resulting in nightly bursts of
activity. 5.3 None

Job sizes Incremental and full backups tend to be similar to each other in terms of size and
number of files. Recovery jobs restore either few files and bytes, or entire volumes. 6.1 Considers file

sizes instead [66]
Deduplication
ratios

Deduplication can result in the reduction of backup image sizes by more than 88%,
despite average job sizes ranging in the tens of gigabytes. 6.2 We confirm their

findings [66]

Data retention Incremental backups are retained for weeks, while full backups are retained for months
and retention depends on their scheduling frequency. 6.3 We confirm their

findings [66]

Table 1: A summary of the most important observations of our study.

of backup archives. We find that jobs occur in bursts,
due to the preference of default scheduling parameters by
users. Moreover, job types are strongly correlated to spe-
cific days and times of the week. To avoid these bursts
of activity, we expect future backup systems to follow
more flexible scheduling plans based on data protection
guarantees and resource availability [4, 26, 48].

Finally, successful resource provisioning for backup
storage capacity requires data growth rate knowledge.
Our results show that jobs in the order of tens of GBs are
the norm, even with deduplication ratios of 88%. Also,
retention periods for these jobs are selected as a function
of backup frequency, and backups are performed at inter-
vals significantly shorter than the periods for which they
are retained. Thus, future data protection offering faster
backup and recovery times through the use of snapshots
[1, 22], will have to be designed to handle significant data
churn, or employ these mechanisms selectively.

We summarize the most important observations of our
study in Table 1. Note that a policy (see Section 2.2)
refers to a predefined set of configuration parameters spe-
cific to an application. The rest of the paper is organized
as follows. In Section 2, we provide an overview of the
evolution of backup systems. Section 3 describes the
dataset used in this study. Sections 4 through 6 present
our analysis results on backup domain configuration, job
scheduling, and data growth, respectively. Finally, we
discuss directions for research on next-generation data
protection systems, supported by our findings, in Section
7, and conclude in Section 8.

2 Background

Formally, backup is the process of making redundant
copies of data, so that it can be retrieved if the orig-
inal copy becomes unavailable. In the past 30 years,
however, data growth coupled with capacity and band-

width limitations have triggered a number of paradigm
shifts in the way backup is performed. Recently, data
growth trends have once again prompted efforts to re-
think backup [1, 9, 20, 22, 27]. This section underlines
the importance of field studies in this process (Section
2.1), putting our study in context, and describes the ar-
chitecture of modern backup systems (Section 2.2).

2.1 Evolution of backup and field studies
In the early 1990s, backup consisted of using simple
command-line tools to copy data to/from tape. A number
of studies tested and outlined the shortcomings of these
contemporary backup methods [38, 54, 69, 70]. The lim-
itations of this approach, which included scaling, archive
management, operating on online systems, and comple-
tion time, were subsequently addressed sufficiently by
moving to a client-server backup model [8, 11, 15, 16].
In this model, job scheduling, policy configuration, and
archive cataloging were all unified at the server side.

In the early 2000s, deduplicating storage systems were
developed [53, 67], which removed data redundancy,
lowering the cost of backup storage. Subsequently, Wal-
lace et al. [66] published a study that aims to characterize
backup storage characteristics by looking at the contents
and workload of file systems that store images produced
by backup applications such as NetBackup. A large
body of work used their results to simulate deduplicating
backup systems more realistically [41, 43, 44, 57, 62],
and was built on the motivation provided by the study’s
results [40, 42, 46, 58]. The authors analyze weekly re-
ports from appliances, while we analyze reports from
the backup application, which has visibility within the
archives and the jobs that created them. However, the
two studies overlap in three points. First, the dedupli-
cation ratios reported for backups confirm our findings.
Second, we report backup data retention as a configura-
tion parameter, while they report on file age, two distri-
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Figure 1: Architecture of a modern backup domain.

butions that overlap for popular values. Third, the aver-
age job sizes we report are 5-8 times smaller than the file
sizes reported in their study, likely because they take into
account all files in the file system storing the backup im-
ages. Overlaps between our study and previous work are
summarized in Table 1.

Recently, an ongoing effort has been initiated in the
industry to redefine enterprise data protection as a re-
sponse to modern data growth rates and shorter backup
windows [12, 18, 65]. Proposed deviations from the tra-
ditional model rely on data snapshots, trading manage-
ment complexity for faster job completion rates [22], and
a paradigm shift from backup to data protection policies,
in which users specify constraints on data availability as
opposed to backup frequency and scheduling [1]. The
latter paradigm allows the system to make decisions on
individual policy parameters that can increase global ef-
ficiency, while keeping misconfigurations to a minimum.
In this direction, previous work leverages predictive an-
alytics to configure backup systems [9, 20, 25]. We be-
lieve that all this work is promising, and that a study char-
acterizing the configuration and evolution of backup sys-
tems over time could aid in developing new approaches
and predictive models that ensure backup systems meet
their goals timely, while efficiently utilizing their re-
sources.

2.2 Anatomy of modern backup systems
Modern backup domains typically consist of three tiers
of operation: a master server, one or more storage
servers, and several clients, as shown in Figure 1a. The
domain’s master server maintains information on backup

images and backup policies. It is also responsible for
scheduling and monitoring backup jobs, and assigning
them to storage servers. Storage servers manage stor-
age media, such as tapes and hard drives, used to archive
backup images. By abstracting storage media manage-
ment in this way, clients can send data directly to their
corresponding storage server, avoiding a bandwidth bot-
tleneck at the master server. Finally, domain clients
can be desktops, servers, or virtual machines generating
data that is protected by the backup system against fail-
ures. In an alternative 2-tiered architecture model (Fig-
ure 1b), the storage servers are absent and the storage
media are directly managed by the master server. The
majority of enterprise backup software today, includ-
ing Symantec NetBackup, support the 3-tiered model
[3, 5, 13, 17, 21, 28, 32, 60, 68].

Performing a backup generally consists of a sequence
of operations, each of which is executed as an indepen-
dent job. Such jobs include: snapshots of the state of
data at a given point in time, copying data into a backup
image as part of a full backup, copying modified data
since the last backup as part of an incremental backup,
restoring data from a backup image as part of a recov-
ery operation, and managing backup images or backing
up the domain’s configuration as part of a management
operation. These jobs are typically employed in a prede-
fined order. For example, a full backup may be followed
by a management operation that deletes backup images
past their retention periods.

To be consistently backed up, or provide point-in-time
recovery guarantees, business applications may require
specific operations to take place. In these scenarios,
backup products offer predefined policies that are spe-
cific to individual applications. For instance, a Microsoft
Exchange Server policy will also backup the transaction
log, to capture any updates since the backup was initi-
ated. Users can further configure policies to specify the
characteristics of backups jobs, such as their frequency
and retention rate.

3 Dataset Information

Our analysis is based on telemetry reports collected from
customer installations of a commercial backup product,
Symantec NetBackup [61], in enterprise and regular pro-
duction environments. Reports are only collected from
customers who opted to participate in the telemetry pro-
gram, so our dataset represents a fraction of the customer
base. The reports contain no personal identifiable infor-
mation, or details about the data being backed up.

Report types. Each report in our dataset belongs to ex-
actly one of three types: installation, runtime, or domain
report. Reports of different types are collected at distinct
points in the lifetime of a backup domain. Installation
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Report type Metrics used in study
Installation Installation time

Runtime report
Job information: starting time, type, size,
number of files, client policy, deduplication
ratio, retention period

Domain report
Number and type of policies, number of
clients, number of storage media, number of
storage servers and appliances

Table 2: Telemetry report metrics used in the study.

reports are generated when the backup software is suc-
cessfully installed on a server, and can be used to de-
termine the time each server of a domain first came on-
line. Runtime reports are generated and transmitted on
a weekly basis from online domains, and contain daily
aggregate data about the backup jobs running on the sys-
tem. Domain reports are also generated and transmitted
on a weekly basis, and report daily aggregate metrics that
describe the configuration of the backup domain. The
telemetry report metrics used in this study are summa-
rized in Table 2.

Dataset size. The telemetry reports in our dataset were
collected over the span of 3 years (January 2012 to De-
cember 2014), across two major versions of the Net-
Backup software. We collected 1 million reports from
over 40,000 server installations deployed in 124 coun-
tries, on most modern operating systems.

Monitoring duration. The backup domains included
in our study were each monitored for 5.5 months on av-
erage, and up to 32 months. We elaborate on our strategy
for excluding some of the domains from our analysis in
Section 4.1. Note that the monitoring time is not always
equivalent to the total lifetime of the domain, as many of
these domains were still online at the time of this writing.

Architecture. While NetBackup supports the 3-tiered
architecture model, only 35% of domains in our dataset
use dedicated storage servers. The remaining domains
omit that layer, opting for a 2-tier system instead. Ad-
ditionally, while backup software can be installed on
any server, storage companies also offer Purpose-Built
Backup Appliances (PBBAs) [33]. 31% of domains
in our dataset represent this market by deploying Net-
Backup on Symantec PBBAs.

4 Domain configuration

This section analyzes the way backup domains are con-
figured with regards to their clients and backup policies.
We use the periodic telemetry reports to quantify the
growth rate of the number of clients and policies across
domains, and characterize the diversity of policy types
based on the type of data and applications they protect.
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Figure 2: The average number of clients, policies, and
storage media for a given week of operation, as a fraction
of the expected total, i.e. the overall mean. We begin
our analysis on the fourth week of operation, when these
quantities become relatively stable.

4.1 Initial configuration period
Observation 1: Backup domains take at least 3 weeks
to reach a stable configuration after installation.

The number of clients, policies, and storage media are
three characteristic factors of a backup domain’s config-
uration. These numbers fluctuate as resources are added
to, or removed from the domain. As we monitor domains
since their creation, we find the number of clients, poli-
cies, and storage media to be initially close to zero, and
then increase rapidly until the domain is properly config-
ured. After this initial configuration period, variability
for these numbers tends to be low over the lifetime of
each domain, with standard deviations less than 16% of
the corresponding mean.

To avoid having the initial weeks of operation affect
our results, we exclude them from our analysis. To esti-
mate the average configuration period length, we analyze
the number of clients, policies, and storage media in a
backup domain as a fraction of the overall mean, i.e. the
expected total. In Figure 2, we report the average frac-
tions for all domains that have been monitored for more
than 16 weeks. For example, a fraction of 0.47 for the
number of clients during the first week of operation, im-
plies that the number of clients at that time is 47% of the
domain’s expected total. With the exception of storage
media, which seem to be added to backup domains from
their first week of operation, we find that the number of
clients and policies tends to be significantly lower for the
first 3 weeks of operation. As a result, we choose to start
our analysis from the fourth week of operation.

4.2 Client growth rate
Observation 2: The number of clients in a domain in-
creases by an average of 7 clients every 3.7 months.

Clients are the producers of backup data, and the con-
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Figure 3: Distribution of the average rate at which the
number of clients changes, across all domains in our
dataset. On average, 93% of client population changes
are attributed to the addition of clients.

sumers of said data during recovery. As a result, the num-
ber of jobs running on a backup domain is directly pro-
portional to the number of clients in the domain, deeming
it important to quantify the rate at which their population
grows over time.

Once the initial configuration period for a backup do-
main has elapsed, we find that clients tend to be added
to, or removed from the domain in groups. Therefore,
we characterize a domain’s client population growth by
quantifying the average rate of change in the client pop-
ulation, the sign indicating an increase or decrease in the
population, and size of each change.

To estimate the rate at which the number of clients
change, we extract inter-arrival times between changes
through change-point analysis [37], a cost-benefit ap-
proach for detecting changes in time series. Then, we
estimate the average rate of change for a domain as the
average of these inter-arrival times. In Figure 3, we show
the distribution of the average rates of change, i.e. the av-
erage number of months between changes in the number
of clients across domains. For 42% of backup domains,
the number of clients remains fixed after the first 3 weeks
of operation, while on average the number of clients in
a domain changes every 3.7 months. Overall, we find
no strong correlation between the rate of change in the
number of clients, and the domain’s lifetime.

We further analyze the sign and size of each popula-
tion change. Of all events in which a domain’s client
population changes, 93% are attributed to the addition of
clients. However, 78% of domains never remove clients.
Regarding the size of each change, Figure 4 shows the
distribution of the average number of clients involved in
each change, across all domains in our study. On av-
erage, a domain’s population changes by 7.3 clients at
a time. The average standard deviation of the number
of clients over time is 13.1% of the corresponding ex-
pected value, indicating low variation overall. However,
the 95% confidence intervals (C.I.) for each mean (Fig-
ure 4), suggest that growth spurts as large as 2.16 times
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Figure 4: Distribution of the average number of clients
involved in each change of a domain’s client population,
across all domains in our dataset. The 95% confidence
intervals (C.I.) for each domain’s average are also shown.

Policy category Domains with at least 1 policy

File and block policy 61.24%
Database policy 20.34%
Virtual machine policy 15.13%
Application policy 13.52%
Metadata backup policy 31.93%

Table 3: Percentage of backup domains with at least one
policy of a given category. Less than a third of domains
protect the master server using a metadata backup policy.

the average value are possible, as this is the width of the
average 95% confidence interval.

4.3 Diversity of protected data
Observation 3: 82% of backup domains protect one
type of data, and only 32% of domains effectively protect
the master server’s state and metadata.

To provide consistent online backups, backup prod-
ucts offer optimizations for different application types,
implemented as dedicated policy types [14, 23, 59]. For
our analysis, we partitioned these policy types into four
categories. File and block policies are specifically tai-
lored for backing up raw device data blocks, or file and
operating system data and metadata, e.g. from NTFS,
AFS, or Windows volumes. Database policies are de-
signed to provide consistent online backups for specific
database management systems, such as DB2 and Oracle.
Virtual machine policies are tuned to backup and restore
VM images, from virtual environments such as VMware
or Hyper-V. Application policies specialize in backing up
state for client-server applications, such as Microsoft Ex-
change and Lotus Notes. Finally, a metadata backup pol-
icy can be setup to backup the master server’s state.

In Table 3, we show the probability that at least one
policy of a given category will be present in a backup do-
main. Since domains may deploy policies from multiple
categories, these percentages add up to more than 100%.
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backup domain, across all domains in the study. More
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the telemetry data.

Surprisingly, we find that only 32% of backup domains
register a metadata backup policy to protect the master
server’s data. While the remaining domains may employ
a different mechanism to backup the master server, guar-
anteeing no data inconsistencies while doing so is chal-
lenging. In any case, this result suggests that automat-
ically configured metadata backup policies should be a
priority for future backup systems.

We also look into the number of policy categories rep-
resented by each domain’s policies, to gauge the diver-
sity in the types of protected data. Interestingly, Figure
5 shows that 82% of domains deploy policies of a single
category (excluding metadata backup policies), and the
remaining domains mostly use policies of two distinct
categories. We further examine the number of distinct
policy types that are deployed in each domain. As shown
in Figure 6, domains tend to make use of a small number
of policy types. Specifically, 61% of the domains deploy
policies of only one, or two distinct types.

4.4 Backup policies
Observation 4: After the initial configuration period,
the number of policies in a domain remains mostly fixed
and 79% of clients subscribe to a single policy each.
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Figure 7: Distribution of the average number of policies
per backup domain. The 95% confidence intervals for
each average are also shown. Overall, the number of
policies remains stable over the lifetime of a domain.

Following from Section 4.2, the policies in a backup
domain, along with the number of clients, are indica-
tive of the domain’s load. Recall from Section 2.2, that
clients subscribe to policies which determine the char-
acteristics of backup jobs. Therefore, it is important to
quantify both the number of policies in a domain and
the characteristics of each, to effectively characterize the
domain’s workload. We defer an analysis of job charac-
teristics to the remainder of the paper, and focus here on
the number of policies in each domain.

In Figure 7, we show the distribution of the average
number of policies in a given backup domain, across
all domains in our dataset. Overall, we find that once
the initial configuration period is complete, the number
of backup policies in a domain remains mostly stable.
Specifically, the expected width of the 95% confidence
interval is 2.5% of the average number of policies.

Figure 7 also shows that the average backup domain
carries 30 backup policies, while 5% of domains carry
over 128. While each policy may represent a group of
clients with specific data protection needs, we find that
individual clients usually subscribe to a single policy. In
Figure 8, we show the distribution of the average number
of policies that each client subscribes to. More than 79%
of clients belong to only one policy, while 16% spend
some or most of their time unprotected (less than one
policy on average). The latter result, coupled with the
large number of policies in backup domains and the fact
that clients are added to a domain in groups (Section 4.2),
suggests that manual policy configuration might not be
ideal as a domain’s client population inflates over time.

5 Job scheduling

While the master server can reorder policy jobs to in-
crease overall system efficiency, it adheres to user pref-
erences that dictate when, and how often a job should be
scheduled. This section looks into the way that these pa-
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Figure 8: Distribution of the average number of poli-
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Job type Percentage of jobs
Incremental Backups 45.27%
Full Backups 31.20%
Snapshot Operations 12.61%
Management Operations 10.12%
Recovery Operations 0.80%

Table 4: Breakdown of all jobs in the dataset by type.

rameters are configured by users across backup domains,
and the workload generated in the domain as a result.

5.1 Job types
Recall from Section 2.2 that policies consist of a prede-
fined series of operations, each carried out by a separate
job. We collected data from 209.5 million jobs, and we
group them in five distinct categories: full and incremen-
tal backups, snapshots, recovery, and management oper-
ations. In Table 4, we show a breakdown of all jobs in
our dataset by job type. Across all monitored backup do-
mains, we find that 76% of jobs perform data backups,
having processed a total of 1.64 Exabytes of data, while
13% of jobs take snapshots of data. On the other hand,
less than 1% of jobs are tasked with data recovery, hav-
ing restored a total of 5.12 Petabytes of data. Finally,
10% of jobs are used to manage backup images, e.g. mi-
grate, duplicate, or delete them. Due to the data transfer
of backup images, these jobs processed 4.88 Exabytes of
data. We analyze individual job sizes in Section 6.

5.2 Scheduling frequency
Observation 5: Full backups tend to occur every 5
days or fewer. Recovery operations occur for few do-
mains, on a weekly or monthly basis.

A factor indicative of data churn in a backup domain
is the rate at which jobs are scheduled to backup, restore,
or manage backed-up data. To quantify the scheduling
frequency of different job types for a given domain, we
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Figure 9: Distribution of the average scheduling fre-
quency of different job types across backup domains.
Recovery operations are broken into two groups of do-
mains with more, and less than 5 recovery operations
each. Despite being of similar size, the characteristics
of each group differ significantly.

rely on the starting times of individual jobs. Specifi-
cally, starting times are used to estimate the average oc-
currence rate of different jobs of each domain policy, on
individual clients. In Figure 9, we show the distributions
of the scheduling frequency of different job types across
backup domains.

Overall, we find that the average frequency of recovery
operations differs depending on their number. In Figure
9, we show the distributions of the recovery frequency
for two domain groups having recovered data more, and
less than 5 times. The former group consists of 337 do-
mains that recovered data 17 times on average, and the
latter consists of 262 domains with 3 recovery operations
on average. By definition, our analysis excludes an addi-
tional 676 domains that initiate recovery only once. For
domains with multiple events, the distribution of their
frequency spans 1-2 weeks, with an average of 6 days.
On the other hand, domains with fewer recovery opera-
tions perform them significantly less frequently, up to 2
months apart and every 24 days on average. Since recov-
ery operations are initiated manually by users, we have
no accurate way of pinpointing their cause. These re-
sults, however, suggest that frequent recovery operations
may be attributed to disaster recovery testing, while in-
frequent ones may be due to actual disasters. Interest-
ingly, both domain groups are equally small, but when
domains with a single recovery event are factored in, the
group of infrequent recovery operations doubles in size.

In the case of backup jobs, the general belief is that
systems in the field rely on weekly full backups, comple-
mented by daily incremental backups [11, 36, 67]. Our
results confirm this assumption for incremental backups,
which take place every 1-2 days in 81% of domains.
Daily incremental backups are also the default option
in NetBackup. For full backups, however, our analysis
shows that only 17% of domains perform them every 6-8
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Figure 10: Tukey boxplots (without outliers) that repre-
sent the average size of full backup jobs, for different job
scheduling frequencies. Means for each boxplot are also
shown. Frequent full backups seem to be associated with
larger job sizes, suggesting that they may be preferred as
a response to high data churn.

days on average. Instead, the majority of domains per-
form full backups more often: 15% perform them every
1-2 days, and 57% perform them every 2-6 days. This
is despite the fact that weekly full backups is the default
option. As expected, management operations take place
on a daily or weekly basis, since they usually follow (or
precede) an incremental or full backup operation. Snap-
shot operations display a similar trend to full backups, as
they are mostly used by clients in lieu of the latter.

Of the 65% of domain policies that perform full back-
ups every 6 days or fewer, only 33% also perform in-
cremental backups at all. On the other hand, 76% of
policies that perform weekly full backups also rely on
incremental backups. To determine whether full back-
ups are performed frequently to accommodate high data
churn, we group average full backup sizes per client pol-
icy according to their scheduling frequency, and present
the results as a series of boxplots in Figure 10. Note
that regardless of frequency, full backups tend to be small
(medians in the order of a few gigabytes), due to the effi-
ciency of deduplication. However, the larger percentiles
of each distribution show that larger backup sizes tend
to occur when full backups are taken more frequently
than once per week. While this confirms our assump-
tion of high data churn for a fraction of the clients, the
remaining small backup sizes could also be attributed
to overly conservative configurations, a sign that policy
auto-configuration is an important feature for future data
protection systems.

5.3 Scheduling windows
Observation 6: Users prefer default scheduling win-
dows during weekdays, resulting in nightly bursts of ac-
tivity. Default values are overridden, however, to avoid
scheduling jobs during the weekend.

Another important factor for characterizing the work-
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Figure 11: Probability density function for scheduling
policy jobs at a given hour of a given day of the week.
Policies tend to be configured using the default schedul-
ing windows at 6pm and 12am, resulting in high system
load during those hours.

load of a backup system is the exact time jobs are sched-
uled. A popular belief is that backup operations take
place late at night or during weekends, when client sys-
tems are expected to be idle [15, 66]. In Figure 11, we
show our findings for all the jobs in our dataset. The
presented density function was computed by normalizing
the number of jobs that take place in a given domain, to
prevent domains with more jobs from affecting the over-
all trend disproportionately. We note that this normaliza-
tion had minimal effect on the result, which suggests that
the presented trend is common across domains.

The hourly scheduling frequency is similar for each
day, although there is less activity during the weekend.
We also find that the probability of a job being sched-
uled is highest starting at 6pm and 12am on a weekday.
We attribute the timing of job scheduling to customers
using the default scheduling windows suggested by Net-
Backup, which start at 6pm and 12am every day. The
choice to exclude weekends, however, seems to be an
explicit choice of the user. This result suggests that auto-
mated job scheduling, where the only constraints would
be to leverage device idleness [4, 26, 48], would be more
practical, allowing the system to schedule jobs so that
such activity bursts are avoided.

While Figure 11 merges all job types, different jobs
exhibit different scheduling patterns, as shown in Figure
9. Our data, however, does not allow a matching of job
types to scheduling times at a granularity finer than the
day on which the job was scheduled. Thus, we partition
jobs based on their type, and in Figure 12 we show the
probability that a job of a given type will be scheduled on
a given day of the week. We find that incremental back-
ups are scheduled to complement full backups, as they
tend to get scheduled from Monday to Thursday, while
full backups are mostly scheduled on Fridays. Note that
the latter does not contradict our previous result of full
backups that take place more often than once a week,
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given day of the week, based on its type. Incremental
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Figure 13: Distribution of the average job size of a given
job type across backup domains, after the data has been
deduplicated at the client side. Incremental backups re-
semble full backups in size.

as the probability of scheduling full backups any other
day is still comparatively high. Recovery operations also
take place within the week, with a slightly higher proba-
bility on Tuesdays (which we confirmed as not related to
Patch Tuesday [49]). Finally management operations do
not follow any particular trend and are equally likely to
be scheduled on any day of the week.

6 Backup data growth

Characterizing backup data growth is crucial for estimat-
ing the amount of data that needs to be transferred and
stored, which allows for efficient provisioning of stor-
age capacity and bandwidth. Towards this goal, we ana-
lyze the sizes and number of files of different job types,
and their deduplication ratios across backup domains. Fi-
nally, we look into the time that backup data is retained.

6.1 Job sizes and number of files
Observation 7: Incremental and full backups tend to be
similar in size and files transferred, due to the effective-
ness of deduplication, or misconfigurations. Recovery
jobs restore either a few files, or entire volumes.
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Figure 14: Distributions of average number of files trans-
ferred per job, across different job types. The trends are
consistent with those for job sizes (Figure 13).

An obvious factor when estimating a domain’s data
growth is the size of backup jobs. In Figure 13, we show
the distributions of the average number of bytes trans-
ferred for different job types across all domains, after the
data has been deduplicated at the client. Averages for
each operation are shown in the legend, and marked on
the x axis. Snapshot operations are not included, as they
do not incur data transfer.

Surprisingly, incremental backups resemble full back-
ups in size. Although the distribution of full backups
is skewed toward larger job sizes, 29% of full backups
on domains that also perform incremental backups tend
to be equal or smaller in size than the latter, 21% range
from 1− 1.5 times the size of incremental backups, and
the remainder range from 1.5− 106 times. We attribute
the small size difference to three reasons. First, systems
with low data churn can achieve high deduplication rates,
which are common as we show in Section 6.2. Second,
misconfigured policies or volumes that do not support
incremental backups often fall back to full backups, as
suggested by support tickets. Third, maintenance appli-
cations, such as anti-virus scanners, can update file meta-
data making unchanged files appear modified. Overall,
the average backup job sizes in Figure 13 are 5-8 times
smaller than the file sizes reported by Wallace et al. [66],
likely due to their study considering the sizes of all files
in the file system storing the backup images.

Since recovery operations can be triggered by users to
recover an entire volume or individual files, the distribu-
tion of recovery job sizes is not surprising. 32% of recov-
ery jobs restore less than 1GB, while the average job can
be as large as 51GB. Finally, management operations,
which consist mostly of metadata backups (95.7%), but
also backup image (1.5%) and snapshot (2.8%) duplica-
tion operations, are much smaller than all other opera-
tions, as expected.

Figure 14 shows the distributions of the average num-
ber of files transferred for different job types in each do-
main. Similar to job sizes, the average number of files
transferred per incremental backup is 31% smaller than
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Figure 15: Distributions of the average daily deduplica-
tion ratio of different job types, across backup domains.
Incremental and full backups observe high deduplication
ratios, while the uniqueness of metadata backups (man-
agement operations) makes them harder to deduplicate.

that for full backups, and both job types are characterized
by similar CDF curves. Recovery operations transfer as
many files as full backups on average, yet the majority
transfer fewer than 200 files. This is in line with our
results on recovery job sizes. Given that large recovery
jobs also occur less frequently, these results suggest that
most recovery operations are not triggered as a disaster
response, but rather to recover data lost due to errors, or
to test the recoverability of backup images. Management
operations, being mostly metadata backups, transfer sig-
nificantly fewer files than other job types on average.

6.2 Deduplication ratios
Observation 8: Deduplication can result in the reduc-
tion of backup image sizes by more than 88%, despite
average job sizes ranging in the tens of gigabytes.

For clients that use NetBackup’s deduplication solu-
tion, we analyzed the daily deduplication ratios of jobs,
i.e. the percentage by which the number of bytes trans-
ferred was reduced due to deduplication. Figure 15
shows the distributions of the average daily deduplication
ratio for management operations, full, and incremental
backups across backup domains. Recovery and snapshot
jobs are not included as the notion of deduplication does
not apply. Since deduplication happens globally across
backup images, deduplication ratios for backups tend to
increase after the first few iterations of a policy. In gen-
eral, sustained deduplication ratios as high as 99% are
not unusual. Across all domains in our dataset, however,
the average daily deduplication ratio is 88-89%, for both
full and incremental backups. It is interesting to note that
despite such high deduplication ratios, jobs in the order
of tens of gigabytes are common (Figure 13), suggesting
that even for daily incremental jobs, the actual job sizes
are an order of magnitude larger in size. These results
are in agreement with previous work [66], which reports
average deduplication ratios of 91%.

0
10
20
30
40
50
60
70
80
90

100

1 
da

y 2 3

1 
we

ek 2 3

1 
m

o 2 3 6

1 
ye

ar 2 3 5

Retention period

C
um

. p
er

ce
nt

ag
e 

of
 jo

bs

Management operations
(Mean: 16 days)
Incremental backups
(Mean: 25 days)
Full backups
(Mean: 40 days)
Snapshot operations
(Mean: 37 days)

Figure 16: Distributions of retention period lengths for
different job types. 3% of jobs have infinite retention pe-
riods. Incremental backups are typically retained for al-
most half the time of full backups, the majority of which
are retained for months.

Finally, for management operations the average dedu-
plication ratio is 68%. Since only 1.1% of domains that
use deduplication enable it for management operations,
we do not attach much importance to this result. For
the reported domains, however, it can be attributed to the
uniqueness of metadata backups, which do not share files
with other backup images on the same backup domain
and consist of large binary files.

6.3 Data retention
Observation 9: Incremental backups are retained for
weeks, while full backups are retained for months and
retention depends on their scheduling frequency.

Another factor characteristic of backup storage growth
is the retention time for backup images, which is a con-
figurable policy parameter. Once a backup image ex-
pires, the master server deletes it from backup storage.
We have analyzed the retention periods assigned to each
job in our telemetry reports, and show the distributions
of retention period lengths for different job types in Fig-
ure 16. Our initial observation is that job retention pe-
riods coincide with the values available by default in
NetBackup, although users can specify custom periods.
These values range from 1 week to 1 year, and corre-
spond to the steps in the CDF shown. While federal laws,
such as HIPAA [63] and FoIA [64], require minimum re-
tention from a few years up to infinity for certain types
of data. In our case, 3% of jobs are either assigned cus-
tom retention periods longer than 1 year, or are retained
indefinitely. On the other extreme, only 3% of jobs are
assigned custom retention periods shorter than 1 week.
Previous work confirms our findings, by reporting simi-
lar ages for backup image files [66].

In particular, management operations (metadata back-
ups and backup image duplicates) are mostly retained for
1 week. Incremental backups are mostly retained for 2
weeks, the default option. Full backups and snapshots,
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on the other hand, are more likely retained for months.
Overall, 94% of jobs select a preset retention period from
NetBackup’s list, and 35% of jobs keep the default sug-
gestion of 2 weeks. This suggests that the actual reten-
tion period length is not a crucial policy parameter.

Finally, we find a strong correlation (Pearson’s r =
0.53) between the length of retention periods for full
backups, and the frequency with which they take place.
Specifically, we find that clients taking full backups less
frequently retain them for longer periods of time. On the
other hand, no such correlation exists for management
operations and incremental backups. This is because al-
most all data resulting from a management operation is
retained for 1 week (Figure 16), and almost all incre-
mental backups are performed with a frequency of 1-2
days apart (Figure 9). The correlation of retention period
length and frequency of full backup operations, coupled
with the preference for default values, may suggest that
retention periods are selected as a function of storage ca-
pacity, or that they are at least limited by that factor.

7 Insight: next-generation data protection

This section outlines five major directions for future
work on data protection systems. In each case, we iden-
tify existing literature and describe how our findings en-
courage future work.

Automated configuration and self-healing. To allevi-
ate performance and availability problems of data pro-
tection systems, existing work uses historical data to
perform automated storage capacity planning [9], data
prefetching and network scheduling [25]. Our findings
support this line of work. We have shown that backup do-
mains grow in bursts, and client policies are either con-
figured using default values, misconfigured, or not con-
figured at all. As a result, clients are left unprotected,
jobs are scheduled in bursts, and users are not warned of
imminent problems. To enable automated policy config-
uration and self-healing data protection systems, further
research is necessary.
Deduplication. Our findings confirm the efficiency of
deduplication at reducing backup image sizes. We fur-
ther show that in many systems, incremental backups are
replaced by frequent full, deduplicated backups. This is
likely due to the adoption of deduplication, which im-
proves on incremental backups by looking for duplicates
across all backup data in the domain. To completely re-
place incremental backups, however, it is necessary to
improve on the time required to restore the original data
from deduplicated storage, which directly affects recov-
ery times. Currently, this is an area of active research
[24, 35, 43, 50].
Efficient storage utilization. Our analysis shows that
job retention periods are selected as a function of backup

frequency, likely to ensure sufficient backup storage
space will be available. Additionally, 31% of domains
in our dataset use dedicated backup appliances (PBBAs),
a market currently experiencing growth [33]. We believe
that storage capacity in these dedicated systems should
be utilized fully, and retention periods should be dynam-
ically adjusted to fill it, providing the ability to recover
older versions of data. In this direction, related work on
stream-processing systems [29] could be adapted to the
needs of backup data.
Accident insurance. Most recovery operations in our
dataset appear to be small in both the number of files and
bytes they recover, compared to their respective backups.
This result suggests that recovery operations are mostly
triggered to restore a few files, or to test the integrity of
backup images. This motivates us to re-examine the re-
quirement of instant recovery for backup systems as a
problem of determining which data is more likely to be
recovered, and storing it closer to clients [40, 45].
Content-aware backups. Data protection strategies can
generate data at a rate up to 5 times higher than produc-
tion data growth [1]. This is due to the practice of creat-
ing multiple copies and backing up temporary files used
for test-and-development or data analytics processes,
such as the Shuffle stage of MapReduce tasks [10]. De-
pending on the storage interface used, it might be more
efficient to recompute these datasets rather than restor-
ing them from backup storage. Another challenge for
contemporary backup software is detecting data changes
since the last backup among PBs of data and billions of
files [31]. By augmenting data protection systems to ac-
count for data types and modification events, we can po-
tentially reduce the time needed to complete backup and
restore operations.

8 Conclusion
We investigated an extensive dataset representing a di-
verse population of enterprise data protection systems
to demonstrate how these systems are configured and
evolved over time. Among other results, our analysis
showed that these systems are usually configured to pro-
tect one type of data, and while their client population
growth is steady and bursty, their backup policies don’t
change. With regards to job scheduling, we find that
the popularity of default values can have an adverse ef-
fect on the efficiency of the system by creating bursty
workloads. Finally, we showed that full and incremental
backups tend to be similar in size and number of files,
as a result of efficient deduplication and misconfigura-
tions. We hope that our data and the proposed areas of
future research will enable researchers to simulate realis-
tic scenarios for building next generation data protection
systems that are easy to configure and manage.
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Performance of a Parallel Network Backup Manager,
1992.

[16] DA SILVA, J., AND GUTHMUNDSSON, O. The Amanda
Network Backup Manager. In Proceedings of the 7th
USENIX Conference on System Administration (1993),
LISA.

[17] DELL INC. Dell NetVault 10.0. http://software.

dell.com/products/netvault-backup, May 2014.

[18] DIMENSIONAL RESEARCH. The state of IT recov-
ery for SMBs. http://axcient.com/state-of-it-

recovery-for-smbs, Oct. 2014.

[19] DOUCEUR, J. R., AND BOLOSKY, W. J. A Large-scale
Study of File-system Contents. In Proceedings of the
1999 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (1999).

[20] DOUGLIS, F., BHARDWAJ, D., QIAN, H., AND SHI-
LANE, P. Content-aware Load Balancing for Distributed
Backup. In Proceedings of the 25th International Confer-
ence on Large Installation System Administration (2011),
LISA.

[21] EMC CORPORATION. EMC NetWorker 8.2. http://

www.emc.com/data-protection/networker.htm,
July 2014.

[22] EMC CORPORATION. EMC ProtectPoint: Protection
Software Enabling Direct Backup from Primary Storage
to Protection Storage, 2014.

[23] EMC CORPORATION. EMC NetWorker Appli-
cation Modules Data Sheet. http://www.emc.

com/collateral/software/data-sheet/h2479-

networker-app-modules-ds.pdf, January 2015.



USENIX Association 	 2015 USENIX Annual Technical Conference  163

[24] FU, M., FENG, D., HUA, Y., HE, X., CHEN, Z., XIA,
W., HUANG, F., AND LIU, Q. Accelerating Restore and
Garbage Collection in Deduplication-based Backup Sys-
tems via Exploiting Historical Information. In Proceed-
ings of the 2014 USENIX Conference on USENIX Annual
Technical Conference (2014).

[25] GIAT, A., PELLEG, D., RAICHSTEIN, E., AND RONEN,
A. Using Machine Learning Techniques to Enhance the
Performance of an Automatic Backup and Recovery Sys-
tem. In Proceedings of the 3rd Annual Haifa Experimen-
tal Systems Conference (2010), SYSTOR.

[26] GOLDING, R., BOSCH, P., STAELIN, C., SULLIVAN, T.,
AND WILKES, J. Idleness is not sloth. In Proceedings
of the USENIX 1995 Technical Conference Proceedings
(1995), TCON’95.

[27] HEWLETT-PACKARD. Rethinking backup and recovery
in the modern data center, November 2013.

[28] HEWLETT-PACKARD COMPANY. HP Data Protector
9.0.1. http://www.autonomy.com/products/data-

protector, August 2014.

[29] HILDRUM, K., DOUGLIS, F., WOLF, J. L., YU, P. S.,
FLEISCHER, L., AND KATTA, A. Storage Optimization
for Large-scale Distributed Stream-processing Systems.
Trans. Storage 3, 4 (Feb. 2008), 5:1–5:28.

[30] HSU, W. W., AND SMITH, A. J. Characteristics of
I/O Traffic in Personal Computer and Server Workloads.
Tech. rep., EECS Department, University of California,
Berkeley, 2002.

[31] HUGHES, D., AND FARROW, R. Backup Strategies for
Molecular Dynamics: An Interview with Doug Hughes.
Proc. USENIX ;login: 36, 2 (Apr. 2011), 25–28.

[32] IBM CORPORATION. IBM Tivoli Storage Manager
7.1. http://www.ibm.com/software/products/en/
tivostormana, November 2013.

[33] INTERNATIONAL DATA CORPORATION. Worldwide
Purpose-Built Backup Appliance (PBBA) Market Rev-
enue Increases 11.2% in the Third Quarter of 2014, Ac-
cording to IDC. http://www.idc.com/getdoc.jsp?

containerId=prUS25351414, December 2014.

[34] IRON MOUNTAIN. Data Backup and Recovery Bench-
mark Report. http://www.ironmountain.com/

Knowledge-Center/Reference-Library/View-by-

Document-Type/White-Papers-Briefs/I/Iron-

Mountain-Data-Backup-and-Recovery-

Benchmark-Report.aspx, 2013.

[35] KACZMARCZYK, M., BARCZYNSKI, M., KILIAN, W.,
AND DUBNICKI, C. Reducing Impact of Data Fragmen-
tation Caused by In-line Deduplication. In Proceedings of
the 5th Annual International Systems and Storage Confer-
ence (2012).

[36] KEETON, K., SANTOS, C., BEYER, D., CHASE, J.,
AND WILKES, J. Designing for Disasters. In Proceed-
ings of the 3rd USENIX Conference on File and Storage
Technologies (2004), FAST.

[37] KILLICK, R., AND ECKLEY, I. A. changepoint: An R
package for Changepoint Analysis. In Journal of Statisti-
cal Software (May 2013).

[38] KOLSTAD, R. A Next Step in Backup and Restore Tech-
nology. In Proceedings of the 5th USENIX Conference on
System Administration (1991), LISA.

[39] LEUNG, A. W., PASUPATHY, S., GOODSON, G., AND

MILLER, E. L. Measurement and Analysis of Large-
scale Network File System Workloads. In Proceedings of
the USENIX 2008 Annual Technical Conference (2008).

[40] LI, C., SHILANE, P., DOUGLIS, F., SHIM, H., SMAL-
DONE, S., AND WALLACE, G. Nitro: A Capacity-
Optimized SSD Cache for Primary Storage. In Proceed-
ings of the 2014 USENIX Annual Technical Conference
(2014), ATC.

[41] LI, M., QIN, C., LEE, P. P. C., AND LI, J. Convergent
Dispersal: Toward Storage-Efficient Security in a Cloud-
of-Clouds. In Proceedings of the 6th USENIX Workshop
on Hot Topics in Storage and File Systems (2014), Hot-
Storage.

[42] LI, Z., GREENAN, K. M., LEUNG, A. W., AND ZADOK,
E. Power Consumption in Enterprise-scale Backup Stor-
age Systems. In Proceedings of the 10th USENIX Con-
ference on File and Storage Technologies (2012), FAST.

[43] LILLIBRIDGE, M., ESHGHI, K., AND BHAGWAT, D.
Improving Restore Speed for Backup Systems that Use
Inline Chunk-Based Deduplication. In Proceeings of the
11th USENIX Conference on File and Storage Technolo-
gies (2013), FAST.

[44] LIN, X., LU, G., DOUGLIS, F., SHILANE, P., AND

WALLACE, G. Migratory Compression: Coarse-grained
Data Reordering to Improve Compressibility. In Proceed-
ings of the 12th USENIX Conference on File and Storage
Technologies (2014), FAST.

[45] LIU, J., CHAI, Y., QIN, X., AND XIAO, Y. PLC-
cache: Endurable SSD cache for deduplication-based pri-
mary storage. In Mass Storage Systems and Technologies
(MSST), 2014 30th Symposium on (2014).

[46] MEISTER, D., BRINKMANN, A., AND SÜSS, T. File
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