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Dr. Vassilis Tsiaras’ presentation on LDMs http://spcc.csd.uoc.gr/SPCC2017/SummerSchoolCrete _2017_Tsiarasl.pptx



TTS problem

Text-to-speech
Text >
system

Keep an eye on him.




Speech as a linear sequence of units

?

keep an eye on him




Speech as a linear sequence of units

sil k |yp ae n ay aa n hh ih m sil

* There are no actual hard boundaries though

In speech recognition, this allows us to join models of small units (e.g. phonemes) to make models of
larger units (e.g. words)

In speech synthesis, this enables a concatenative approach to synthesis.




Concatenative synthesis

* Based on concatenating together small units to produce an utterance
* Done using a time-domain joining algorithm

* Very natural sounding speech

* Requires a large database of speech

* Not really possible to do voice adaptation or conversion



Concatenative synthesis

Concatenative TTS

Waveform

Text — -
Imgwstlc generator SpeeCh
specification
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Statistical parametric speech synthesis

* Speech is generated from statistical models rather than from stored
exemplars

e Statistical models capture the probability distribution of the acoustic
features, given the linguistic specification



Classic three stage pipeline

Waveform

Text Front-end odel generator Speech
aka vocoder

Statistical

linguistic aco
specification

silkiypaenayaan sil
Keep an on
VB DET PP

ustic features

Keep an eye on him.

* Front-end could be same as in concatenative synthesis

e Linguistic specification is encoded as linguistic features

 Statistical model produces acoustic features given linguistic features
* Waveform generator is NOT same as in concatenative synthesis



Regression model

seq-to-seq Feature extraction

Feature extraction

regression

. . . H f
Text |,n$loj,5t|'c acoustic .ears Speech
specification ‘

Keep an eye on him silkiypaenayaan sil
- Keep an on
VB DET PP

* The problem boils down to a sequence-to-sequence regression
* Length of linguistic feature sequence is much less than acoustic feature sequence length
e Speech waveform is difficult to model directly
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Front-end text analysis

 part-of-speech (POS) tagging and syntactic analysis
* word segmentation

* text normalization
* e.g. Room no. 4202 at 40 St. George st.
Room number forty two o two at forty saint George street.

* prosody prediction

* finding word pronunciations
e e.g.: The record shows that he did not read the conditions.

e generating linguistic features and feature vectors



Linguistic features

Keep an eye on him. :sil k ie n ay aa n hh ih msil
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Also called context-dependent phone.
These are encoded to numerical feature vectors.
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Speech production

* voiced sounds

unvoiced sounds

—

Hard palate

Nasal cavity \\\\\v

Nostril
Lip
Tongue
Teeth

Oral (or buccal) cavity

Jaw

Soft palate .
{velum)

Pharyngeal

Trachea

Lung

cavity
Larynx

Esophagus

Diaphragm i 7/—\
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Source filter model

fundamental frequency (f,)

Vocal tract parameters
(mel-cepstral coefficients)

Pulse train

generator

V/UV switch

v

u[n]

aperiodic energy Y Time varying filter > outputs

x[n]

h[n]

Random noise gain

generator

source filter
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One way of decomposing speech signal

speech signal

4= vocoder synthesis

spectral envelope

analysis

f,analysis

Aperiodicity analysis

vocoder analysis EE—)

— mel-cepstral coefficients

— f,trajectory

— Band aperiodicity coefficients
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Mel-cepstral analysis

* Speech signal x[n] : discrete time signal, some sampling frequency
e.g. 16 kHz

e X[n]=u[n] * h[n]
 where u[n] is the source excitation
* h[n]is the vocal tract impulse response

e Extract vocal tract characteristics from x[n]



speech signal

Short-term discrete Fourier transform (ST-DFT)

X[n]

l

window size e.g. 25 ms
window shift e.g. 5 ms

SAMPLES

SPECTRAL
FRAMES

. ,- .
¥ ' v
.

||'}. 4”

FET

FET

@%f
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speech signal ST-DFT
x[n] Fixn]}
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speech signal ST-DFT
x[n] Fixn]}

|

logarithm of magnitude spectrum

—>

i
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* x[n] =u[n] x h[n] > F{x[n]} = F{u[n]} X F{h[n]}

« log(|Fix[nl}l) = log(| F{uln]}|) + log(| F{hIn]}])
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—
-
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speech signal ST-DFT
x[n] Fixn]}

> log(|Fix[n]})

|

frequency warping
and Inverse DFT

z%‘ "MHTVMV%Q&

" [ | e |

—]
—
-

’V\
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* This results in cepstrum (inverse of spectrum!)




speech signal STFT

n
»

x[n] Fi{x[nl}

Filter out the slow moving component
Called liftering (how creative is that)
Result is mel-cepstral coefficients

Not same as MFCCs

log(| F{x[n]}])

> IDFT(log(|F{x[nl}]))

l

Lifter

o

PO W S

0 50

100 150

due to spectral
envelope

due to source
excitation

200
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A 4

speech signal STFT , , :
x[n] Fix[n]} log(|F{x[n]}) IDFT(log(| F{x[n]}|)) Ilfier

Reverse previous Mel-cepstral
operations coefficients

DFT

v

exponential

i \ - //"""“'K:3o_\\ Kk _;ﬂ“avﬁwfﬁfﬁ ~ . M
. . . , Magnitude spectral
envelope

What about phase information though?
*  Minimum phase spectrum can easily be created
from magnitude spectrum

' ' ' 1 | e Use of algorithms e.g. Griffin-Lim
0 1000 2000 3000 4000'5QOO 6000 7000 8000 22
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Band aperiodicity

Aperiodic energy
Reduced resolution by
averaging across broad
frequency bands
Typically around 3to 5
bands (on a Mel scale)
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STRAIGHT! acoustic features

* Per each frame at a frame rate of typically every 5ms
* Mel-cepstral features (MCEPs or MGCs) : typically 40 or 60

* Fundamental frequency (f,) : one per frame
* Voiced-unvoiced binary feature

* Band-aperiodic features (BAPs) : typically 3-5 per frame
* These only correspond to vocoders like STRAIGHT! or WORLD?

* Other vocoders like Magphase?, Vocaine* have completely different
set of features

1 H. Kawahara, “STRAIGHT, exploitation of the other aspect of VOCODER: Perceptually isomorphic decomposition of speech sounds,” Acoustical science and technology, vol. 27, no. 6, pp. 349—- 353, 2006.

2 M. Morise, F. Yokomori, and K. Ozawa, “WORLD: A vocoder-based high-quality speech synthesis system for real-time applications,” IEICE Trans. on Information and Systems, vol. 99, no. 7, pp. 1877-1884, 2016.
3 F. Espic, C. Valentini-Botinhao, and S. King, “Direct Modelling of Magnitude and Phase Spectra for Statistical Parametric Speech Synthesis,” in Proc. Interspeech, Stockholm, Sweden, August, 2017.

4 Y. Agiomyrgiannakis “Vocaine the vocoder and applications in speech synthesis.” 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015): 4230-4234.



Regression between input and output

N Linguistic feat seg-to-se _
Linguistic features — Inguistic Teature 9 i 9 acoustic feature vectors
vectors regression

Some options are:

* Decision trees and HMMs

e Decision trees and LDMs

* Neural networks

* Neural seg-2-seq models e.g. with encoder and attention based decoder
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Output generation overview

* For each “context-dependent” phone in the input, predict duration
using a duration model

* Create a sequence of frames for that phone

* For example:

duration
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Context dependent phone model

a0 a0

& &

\ 4

=

A\ 4

N

A\ 4
<»>

* Inspired from ASR

3 or5state HMM phone model

* One HMM for each context dependent phone?

* Number of context-dependent phones are extremely large

* Either a few examples per phone or no example at all

* Sharing parameters between various states, i.e. two context-dependent phones p, and p, can
have same HMM
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Clustering

* Decision tree based clustering solves two problems:
* Sharing parameters between context-dependent phones
* Mapping linguistic feature vector to an HMM

* Clustering done based on linguistic features

Context dependent phone —

Decision Tree

Duration
model

Set of observation vectors
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All examples

vowel to the right?

AN

nasal to the left?

AN

/ae/ to the left?

/i/ to the right?

vowel to

Standard decision tree
clustering algorithm
We already have a
question list and all the
answers

Fit an HMM state to
each of the leaf node
examples

This even works for
contexts with no
examples at all
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Training HMMs

* Initially training data is aligned to phone sequence using HMM forced
alignment.

* All examples of a given phone are used to create a decision tree.

* Thus each given phone according to its context has a corresponding
HMM.

* HMM outputs are usually Gaussian distributed or a mixture of
Gaussians.

e Fitting an HMM involves estimating the distribution parameters e.g.
mean and variance from the corresponding examples.

* HMMs are used in conjunction with decision trees



What about duration?

* Assume some duration distribution for each context-dependent
phone e.g. Gaussian distribution

* Create another decision tree to map the context-dependent phone to
duration distribution

* Use corresponding examples to find distribution parameters



Parameter generation

* Get the HMMs corresponding to each of the context-dependent
phones

* Concatenate all the HMM states

* Find the number of frames to generate for each HMM state

* Emit the observation vectors according to maximum likelihood
e Observation vectors are modeled using Gaussian distribution



parameter value

Trajectory generation

C Q0 0
® @ @

A

time




Smoothing the trajectory

e Observation vectors to include not just the parameter values but also
velocity and acceleration

e Called deltas and double-deltas

Ct+1—Ct-1
.At: t+2t

A —As_
.AAt — i,“+12 t—1

* Take these into consideration during generation: maximum likelihood
parameter generation (MLPG)



Parameter generation
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Linear Dynamical Models

e Class of continuous state space models with a linear state evolution
equation.

* Continuous vector hidden state x;

* State space is n dimensional while observation space is m
dimensional
* For an LDM q
* state evolution: x; = Fyx;_1 + w;, we ~ N(gq, Qq)
* Observation generation: y; = Hyxt + v¢, v~ N(uq,Rq)
* Initial state: x; ~ N(gl’q, Ql,q)



Linear Dynamical Models
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10

-10 +

-15

-10

2 dimensional state space

20

25

3 dimensional observation space
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10

-10 +

-15

-10

-5 0 5 10 15 20 25

2 dimensional state space 3 dimensional observation space

State, and consequently observation, vector converges if state transition matrix is ‘well-behaved’
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Kalman filtering

* Inferring state x; given observations y;.;
 Similar is smoothing which infers x; given all observations y;.r

I I
@ Vk V@\
I — ——

prediction

refinement




Learning LDM parameters

Expectation

Kalman filtering &
smoothing to find
sufficient statistics

Using good old
EM algorithm

Maximization

Use the sufficient statistics
to get parameter estimates
such that likelihood of
observations is maximized
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Second order LDM

e Current state depends on two previous states

* For an second order LDM q
T =i +Goxi_o +wy wy ~ N(g,. Q)

Y :qut‘F’Ut ) vtNN(:uq-Rq)

x1 ~N(g14.Q14) , xo ~ N(go.q,Q0.q)
e Can be written as a first order LDM

:B; = F,J);_l + wy w; ~ ./\/'(glq Q,)
T, F G g
where, x; = . F' = : g =
Ti—1 I 0 0

y; = H'z) + v,

where, H' = [H 0] . vy ~N(p, R)
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Why second order LDMS?

 Are more flexible
* Are more smooth

e Can reduce the number of parameters. It was found that SO-LDM
with diagonal transition matrices F & G can provide results similar to
full transition matrix of FO-LDM

* Thus reduction from n?to 2n per LDM



LDMs for TTS motivation

* The movement of the various articulators can be characterized by a
critically damped spring-mass system.
d*x(t) da(t)
dt? dt

+ 20 + ¢*(2(t) — u) = w(t)

* This can be expressed as a discrete-time system
Tii1 = 201 — O’ q + (1 — gb)Qu + wy

e |f articulators are considered to

. . . xp = F'wi_y +w; w; ~N(g'. Q')
operate in a lower dimensional 2 2
. N ' 20— ;o (I=¢)*u
subspace than acoustic features, "= LJ b= [1 . 1 9= [ . 1

we get: o0 o

0 O

Q=

:| ’ Y = dia‘g(qj)lsngs ---3¢71) ’ Q — dlag(QlQQ "'sQH)



LDMs for TTS

4 Y Preprocessing &
transcribing

Input Text

. Y,

4 ™ Vocoder

Speech synthesis

Wavetorm

- J

Linguistic
Features

J

Decision tree
mapping

A 4

4 ) Feature

Phonetic extraction
Transcriptions

AN Y,

4 N LDM feature
Acoustic generation
Features

N Y,

N
Sequence of

LDMs
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Feature generation

LDM sequence {
state sequence () @@ a@aa aaa aa a@ a@ &

\

Observation

sequence Yi| Y2 | |V3| (Ya| |V5| V6| |Y7| |V8| [Yo| Vio| V11| V12| V13| V14| YVis| Vie| P17

An external duration model determines the number of frames for each LDM



Training LDMs for TTS

* Club together all the segments belonging to one LDM
* Train LDM on this set of segments

* HMMs are still convenient to force align and segment the training
data

» Switching LDMs can be used for forced alignment and segmentation

* Decision tree clustering can be done using HMMs or LDMs (LDM
clustering is very slow)



Neural speech synthesis

* For feed-forward models, replace the decision tree with neural

network
Linguistic feature N | t K acoustic feature vector
vector sequence sllell el sequence

* Linguistic feature sequence length is much shorter than acoustic
feature sequence length

* Up-sample the input sequence to same time-scale as output
seguence

* Get wider context by stacking together multiple inputs

49



Recurrent or hybrid models

* In order to get more context into account, use recurrent neural
networks (LSTMs, GRUs, etc.) or a hybrid of the two

Feed- Feed-

Input features output features

forward forward

50




LDMs as simple RNNs

* LDMs have no non-linearity involved

 State progresses without any external input being fed into them at
each time step

* LDMs are somewhat similar to a decoder in an encoder-decoder RNN
architecture: x; can be considered encoded vector, but in LDMs, it is
only fed in the beginning

* Xy = 0, (FX¢—q + 9); ¥: = 0, (Hxy + 1)



Evaluation

Models were evaluated based on MCD and PESQ

Model Details No. Param. | MCD | PESQ

214 order LDM diagonal F, G 2,804,230 4.06 2.62
214 order LDM full F,G 3,756,610 | 4.06 | 2.61
1% order LDM — 3,174,600 4.08 2.61
Autoregressive HMM - 1,058,200 4.43 2.53
Feed-forward NN 4 layers x 1024 units 3,819,560 3.71 2.68
Feed-forward NN 6 layers x 512 units 1,648,680 3.71 2.69
Hybrid LSTM + FF | 512 FF + 384 x 3 LSTM + 512 FF units | 4,070,440 3.62 | 2.73
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Example of parameter trajectory generated by various models



Some more neural speech synthesis models

* Encoder decoder model with attention

. ]IcEncoder encodes the input phonemes or characters into some embeddings to remove the hand-engineered input
eatures

. Attentio? c?rresponds to the alighment between input and output features (remember they operate on different
time scales

» Decoder serves as an acoustic model to generate acoustic features

* Advantages:
* No need of input hand-engineered features
* No explicit duration model
* No need of external alignment
* There could be dialect and speaker embeddings to be conditioned upon

* Examples: char2wav?, voiceloop?

'\“\\

.. atte ntion ™

Input phones output features Vocoder waveform

Feature embeddings

1 J. Sotelo, et al. Char2wav: End-to-end Speech Synthesis. (2017). 54
2 Y. Taigman, L. Wolf, A. Polyak, and E. Nachmani. Voice synthesis for in-the-wild speakers via a phonological loop. CoRR, abs/1707.06588, 2017. URL http://arxiv.org/abs/1707.06588.



Combining various TTS components

* Traditional TTS system has three modules:
* Front-end
e Acoustic model
* Vocoder

e Neural TTS models have tried to combine a

few of them: i
Front-end AEIBIE Vocoder
model

* Tacotron! combines front end and acoustic
model, so that it can take normalized text as
input

* Wavenet? combines acoustic model and

vocoder, and produced raw waveform directly Acoustic

Front-end Vocoder
model

1. Y. Wang, RJ. Skerry-Ryan, D. Stanton, Y. Wu, R.J. Weiss, N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyrgiannakis, R. Clark, and R. A. Saurous, Tacotron: Towards end-
to-end speech synthesis. In Proceedings of Interspeech, August 2017

2. A.vanden Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” CoRR, 55
vol. abs/1609.03499, 2016.



Neural Vocoders

* Traditional vocoders can be replaced with neural vocoders.
* Input is some sort of acoustic features and output is a waveform

* Huge memory of neural vocoder prevents any artifacts which would
normally occur in signal-processing based vocoders

* Most popular examples are Wavenet based vocoders. Wavenet uses
dilated convolutions and produces samples autoregressively

* More recently there has been parallel Wavenet?
* Another example is SampleRNN?

1. A.Oord,Y.Li, Il Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu, G. Driessche, E. Lockhart, L. C. Cobo, F. Stimberg, N. Casagrande, D. Grewe, S. Noury, S. Dieleman, E. Elsen, H.
Kalchbrenner, H. Zen, A. Graves, H. King, T. Walters, D. Belov, and D. Hassabis. Parallel WaveNet: Fast high-fidelity speech synthesis. CoRR, abs/1711.10433, 2017.

2. S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville and Y. Bengio. Samplernn: An unconditional end-to-end neural audio generation model. arXiv preprint
arXiv:1612.07837, 2016.



Conclusions

e Statistical parametric speech synthesis essentially maps input
linguistic features to output acoustic features

* HMMs have been historically the most popular TTS models
* LDMs are more flexible can perform better than HMMs

* Neural networks synthesize speech of better quality, but LDMs
require less working memory

* There has been a shift in paradigm from classical three stage pipeline
to more ‘end-to-end’ systems



Thank You!



