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Some of the presentation ideas have been borrowed from:
Prof. Simon King’s presentation on SPSS http://spcc.csd.uoc.gr/SPCC2017/SummerSchoolCrete_2017_KingI.pdf 
Dr. Vassilis Tsiaras’ presentation on LDMs http://spcc.csd.uoc.gr/SPCC2017/SummerSchoolCrete_2017_TsiarasI.pptx
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TTS problem

Keep an eye on him.

Text Text-to-speech 
system Speech
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Speech as a linear sequence of units

keep an eye on him
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Speech as a linear sequence of units

keep an eye on him

sil k iy p ae n ay aa n hh ih m sil

• There are no actual hard boundaries though
• In speech recognition, this allows us to join models of small units (e.g. phonemes) to make models of 

larger units (e.g. words)
• In speech synthesis, this enables a concatenative approach to synthesis.
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Concatenative synthesis

• Based on concatenating together small units to produce an utterance
• Done using a time-domain joining algorithm
• Very natural sounding speech
• Requires a large database of speech
• Not really possible to do voice adaptation or conversion
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Concatenative synthesis

sil k iy p ae n ay aa n hh ih m sil
Keep an eye on him
VB DET NN PP PRN

Keep an eye on him.

Front-end Waveform 
generator

Concatenative TTS

Text Speechlinguistic 
specification
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Statistical parametric speech synthesis

• Speech is generated from statistical models rather than from stored 
exemplars
• Statistical models capture the probability distribution of the acoustic 

features, given the linguistic specification
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Classic three stage pipeline

sil k iy p ae n ay aa n hh ih m sil
Keep an eye on him
VB DET NN PP PRN

Keep an eye on him.

Front-end
Waveform 
generator

aka vocoder
Text Speech

linguistic 
specification

Statistical 
model

acoustic features

• Front-end could be same as in concatenative synthesis
• Linguistic specification is encoded as linguistic features
• Statistical model produces acoustic features given linguistic features
• Waveform generator is NOT same as in concatenative synthesis
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sil k iy p ae n ay aa n hh ih m sil
Keep an eye on him
VB DET NN PP PRN

Keep an eye on him.

Text Speechlinguistic 
specification

seq-to-seq
regression

acoustic features

• The problem boils down to a sequence-to-sequence regression
• Length of linguistic feature sequence is much less than acoustic feature sequence length
• Speech waveform is difficult to model directly

Regression model

Feature extraction Feature extraction
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Front-end text analysis

• part-of-speech (POS) tagging and syntactic analysis
• word segmentation
• text normalization
• e.g. Room no. 4202 at 40 St. George st.

Room number forty two o two at forty saint George street.
• prosody prediction
• finding word pronunciations
• e.g. : The record shows that he did not read the conditions.

• generating linguistic features and feature vectors
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Linguistic features
Keep an eye on him. : sil k iy p ae n ay aa n hh ih m sil

xx~xx-#+k=iy:1_0/A/0_0_0/B/0-0-0:1-0&1-1#1-1$1-1>0-0<0-0|0/C/0+0+0/D/0_0/E/0+0:1+0&1+0#0+0/F/0_0/G/0_0/H/0=0:1=1&0/I/0_0/J/5+5-1

xx~#-k+iy=p:1_3/A/0_0_0/B/1-1-3:1-1&1-5#1-5$1-3>0-1<0-2|iy/C/1+0+2/D/0_0/E/content+1:1+5&1+2#0+2/F/det_1/G/0_0/H/5=5:1=1&L-L%/I/0_0/J/5+5-1

#~k-iy+p=ae:2_2/A/0_0_0/B/1-1-3:1-1&1-5#1-5$1-3>0-1<0-2|iy/C/1+0+2/D/0_0/E/content+1:1+5&1+2#0+2/F/det_1/G/0_0/H/5=5:1=1&L-L%/I/0_0/J/5+5-1

k~iy-p+ae=n:3_1/A/0_0_0/B/1-1-3:1-1&1-5#1-5$1-3>0-1<0-2|iy/C/1+0+2/D/0_0/E/content+1:1+5&1+2#0+2/F/det_1/G/0_0/H/5=5:1=1&L-L%/I/0_0/J/5+5-1
iy~p-ae+n=ay:1_2/A/1_1_3/B/1-0-2:1-1&2-4#2-4$2-3>1-1<1-1|ae/C/1+1+1/D/content_1/E/det+1:2+4&2+2#1+1/F/content_1/G/0_0/H/5=5:1=1&L-L%/I/0_0/J/5+5-1

p~ae-n+ay=aa:2_1/A/1_1_3/B/1-0-2:1-1&2-4#2-4$2-3>1-1<1-1|ae/C/1+1+1/D/content_1/E/det+1:2+4&2+2#1+1/F/content_1/G/0_0/H/5=5:1=1&L-L%/I/0_0/J/5+5-1

ae~n-ay+aa=n:1_1/A/1_0_2/B/1-1-1:1-1&3-3#3-3$2-2>1-1<2-2|ay/C/1+0+2/D/det_1/E/content+1:3+3&2+1#2+2/F/in_1/G/0_0/H/5=5:1=1&L-L%/I/0_0/J/5+5-1

n~ay-aa+n=hh:1_2/A/1_1_1/B/1-0-2:1-1&4-2#4-2$3-2>1-1<1-1|aa/C/1+1+3/D/content_1/E/in+1:4+2&3+1#1+1/F/content_1/G/0_0/H/5=5:1=1&L-L%/I/0_0/J/5+5-1

ay~aa-n+hh=ih:2_1/A/1_1_1/B/1-0-2:1-1&4-2#4-2$3-2>1-1<1-1|aa/C/1+1+3/D/content_1/E/in+1:4+2&3+1#1+1/F/content_1/G/0_0/H/5=5:1=1&L-L%/I/0_0/J/5+5-1

aa~n-hh+ih=m:1_3/A/1_0_2/B/1-1-3:1-1&5-1#5-1$3-1>1-0<2-0|ih/C/0+0+0/D/in_1/E/content+1:5+1&3+0#2+0/F/0_0/G/0_0/H/5=5:1=1&L-L%/I/0_0/J/5+5-1

n~hh-ih+m=#:2_2/A/1_0_2/B/1-1-3:1-1&5-1#5-1$3-1>1-0<2-0|ih/C/0+0+0/D/in_1/E/content+1:5+1&3+0#2+0/F/0_0/G/0_0/H/5=5:1=1&L-L%/I/0_0/J/5+5-1

hh~ih-m+#=xx:3_1/A/1_0_2/B/1-1-3:1-1&5-1#5-1$3-1>1-0<2-0|ih/C/0+0+0/D/in_1/E/content+1:5+1&3+0#2+0/F/0_0/G/0_0/H/5=5:1=1&L-L%/I/0_0/J/5+5-1

ih~m-#+xx=xx:1_0/A/0_0_0/B/0-0-0:1-0&1-1#1-1$1-1>0-0<0-0|0/C/0+0+0/D/0_0/E/0+0:1+0&1+0#0+0/F/0_0/G/0_0/H/0=0:1=1&0/I/0_0/J/5+5-1

Also called context-dependent phone.
These are encoded to numerical feature vectors.
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Speech production

• voiced sounds
• unvoiced sounds
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Source filter model

Pulse train 
generator

fundamental frequency (f0)

Random noise 
generator

gain

V/UV switch

aperiodic energy Time varying filter

Vocal tract parameters
(mel-cepstral coefficients)

outputs
u[n]

h[n]

x[n]
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One way of decomposing speech signal

spectral envelope 
analysis

f0 analysis

Aperiodicity analysis

speech signal f0 trajectory

mel-cepstral coefficients

Band aperiodicity coefficients

15vocoder analysis

vocoder synthesis



Mel-cepstral analysis

• Speech signal x[n] : discrete time signal, some sampling frequency 
e.g. 16 kHz 

• x[n]= u[n] ∗ h[n]
• where u[n] is the source excitation
• h[n] is the vocal tract impulse response

• Extract vocal tract characteristics from x[n]
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Short-term discrete Fourier transform (ST-DFT)

• window size e.g. 25 ms
• window shift e.g. 5 ms

speech signal
x[n]
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speech signal
x[n]

ST-DFT
ℱ{x[n]}
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speech signal
x[n]

ST-DFT
ℱ{x[n]}

• x[n] = u[n] ∗ h[n] ⇒ℱ{x[n]} = ℱ{u[n]} × ℱ{h[n]}

• log(|ℱ{x[n]}|) = log(|ℱ{u[n]}|) + log(|ℱ{h[n]}|) 

logarithm of magnitude spectrum
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speech signal
x[n]

ST-DFT
ℱ{x[n]}

• This results in cepstrum (inverse of spectrum!)

log(|ℱ{x[n]}|)

frequency warping 
and Inverse DFT
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speech signal
x[n]

STFT
ℱ{x[n]}

• Filter out the slow moving component
• Called liftering (how creative is that)
• Result is mel-cepstral coefficients 
• Not same as MFCCs

log(|ℱ{x[n]}|) IDFT(log(|ℱ{x[n]}|))

due to spectral
envelope

due to source
excitation

Lifter
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speech signal

x[n]

STFT

ℱ{x[n]}
log(|ℱ{x[n]}|) IDFT(log(|ℱ{x[n]}|)) lifter

DFT

exponential

Reverse previous 

operations

Magnitude spectral 

envelope

What about phase information though?

• Minimum phase spectrum can easily be created 

from magnitude spectrum

• Use of algorithms e.g. Griffin-Lim

Mel-cepstral 

coefficients
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Band aperiodicity
• Aperiodic energy
• Reduced resolution by 

averaging across broad 
frequency bands

• Typically around 3 to 5 
bands (on a Mel scale)

23



STRAIGHT1 acoustic features

• Per each frame at a frame rate of typically every 5ms
• Mel-cepstral features (MCEPs or MGCs) : typically 40 or 60
• Fundamental frequency (f0) : one per frame

• Voiced-unvoiced binary feature
• Band-aperiodic features (BAPs) : typically 3-5 per frame

• These only correspond to vocoders like STRAIGHT1 or WORLD2

• Other vocoders like Magphase3, Vocaine4 have completely different 
set of features

24

1 H. Kawahara, “STRAIGHT, exploitation of the other aspect of VOCODER: Perceptually isomorphic decomposition of speech sounds,” Acoustical science and technology, vol. 27, no. 6, pp. 349– 353, 2006.
2 M. Morise, F. Yokomori, and K. Ozawa, “WORLD: A vocoder-based high-quality speech synthesis system for real-time applications,” IEICE Trans. on Information and Systems, vol. 99, no. 7, pp. 1877–1884, 2016.
3 F. Espic, C. Valentini-Botinhao, and S. King, “Direct Modelling of Magnitude and Phase Spectra for Statistical Parametric Speech Synthesis,” in Proc. Interspeech, Stockholm, Sweden, August, 2017.
4 Y. Agiomyrgiannakis “Vocaine the vocoder and applications in speech synthesis.” 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015): 4230-4234.



Regression between input and output

seq-to-seq
regression

Linguistic features Linguistic feature
vectors acoustic feature vectors

Some options are:
• Decision trees and HMMs
• Decision trees and LDMs
• Neural networks
• Neural seq-2-seq models e.g. with encoder and attention based decoder 
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Output generation overview

• For each “context-dependent” phone in the input, predict duration 
using a duration model
• Create a sequence of frames for that phone
• For example:

phone sil k iy p ae n ay aa n hh ih m sil
duration 10 12 18 10 32 29 60 34 27 29 21 15 10
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Context dependent phone model

1 2 3

• Inspired from ASR

• 3 or 5 state HMM phone model

• One HMM for each context dependent phone?

• Number of context-dependent phones are extremely large

• Either a few examples per phone or no example at all

• Sharing parameters between various states, i.e. two context-dependent phones p1 and p2 can 

have same HMM
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Clustering 

• Decision tree based clustering solves two problems:
• Sharing parameters between context-dependent phones
• Mapping linguistic feature vector to an HMM

• Clustering done based on linguistic features

Context dependent phone Set of observation vectorsDecision Tree HMM

28

Duration 
model
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All examples

vowel to the right?

y n

nasal to the left?

fricative to the right?

y n y n

/ae/ to the left? /i/ to the right?

y n y n

vowel to the left?

y n

• Standard decision tree 
clustering algorithm

• We already have a 
question list and all the 
answers

• Fit an HMM state to 
each of the leaf node 
examples

• This even works for 
contexts with no 
examples at all



Training HMMs

• Initially training data is aligned to phone sequence using HMM forced 
alignment.
• All examples of a given phone are used to create a decision tree. 
• Thus each given phone according to its context has a corresponding 

HMM.
• HMM outputs are usually Gaussian distributed or a mixture of 

Gaussians.
• Fitting an HMM involves estimating the distribution parameters e.g. 

mean and variance from the corresponding examples.
• HMMs are used in conjunction with decision trees
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What about duration?

• Assume some duration distribution for each context-dependent 
phone e.g. Gaussian distribution
• Create another decision tree to map the context-dependent phone to 

duration distribution
• Use corresponding examples to find distribution parameters
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Parameter generation

• Get the HMMs corresponding to each of the context-dependent 
phones
• Concatenate all the HMM states
• Find the number of frames to generate for each HMM state
• Emit the observation vectors according to maximum likelihood
• Observation vectors are modeled using Gaussian distribution
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Trajectory generation

33

time
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Smoothing the trajectory

• Observation vectors to include not just the parameter values but also 
velocity and acceleration
• Called deltas and double-deltas
• !" = $%&'($%)'

*
• !!" = !%&'(!%)'

*
• Take these into consideration during generation: maximum likelihood 

parameter generation (MLPG)
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Parameter generation
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Linear Dynamical Models 

• Class of continuous state space models with a linear state evolution 
equation.
• Continuous vector hidden state !"
• State space is n dimensional while observation space is m

dimensional
• For an LDM #
• state evolution: !" = %&!"'( + *", *" ~- .&, /&
• Observation generation: 0" = 1&!" + 2", 2" ~- 3&, 4&
• Initial state: !( ~- .(,&, /(,&
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Linear Dynamical Models 
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!"#$ !" !"%$&
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(

&

( (

HMM modeling HMM with dynamic
features modeling

LDM modeling
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2 dimensional state space 3 dimensional observation space
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2 dimensional state space 3 dimensional observation space

• State, and consequently observation, vector converges if state transition matrix is ‘well-behaved’



Kalman filtering

• Inferring state !" given observations #$:"
• Similar is smoothing which infers &" given all observations #$:'

40
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prediction
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Learning LDM parameters

41

Expectation

Kalman filtering & 
smoothing to find 
sufficient statistics

Maximization

Use the sufficient statistics 
to get parameter estimates 

such that likelihood of 
observations is maximized

Using good old 
EM algorithm



Second order LDM

• Current state depends on two previous states
• For an second order LDM !

• Can be written as a first order LDM
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Second order LDM trajectory (n = 1) First order LDM trajectory (n = 1)



Why second order LDMS?

• Are more flexible
• Are more smooth
• Can reduce the number of parameters. It was found that SO-LDM 

with diagonal transition matrices ! & # can provide results similar to 
full transition matrix of FO-LDM
• Thus reduction from n2 to 2n per LDM
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LDMs for TTS motivation

• The movement of the various articulators can be characterized by a 
critically damped spring-mass system.

• This can be expressed as a discrete-time system

• If articulators are considered to 
operate in a lower dimensional 
subspace than acoustic features,
we get:
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LDMs for TTS
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Feature generation

47

!" !# !$ !% !& !' !( !) !* !"+ !"" !"# !"$ !"% !"& !"' !"(

," ,"(,"',"&,"%,$ ,%,# ,& ,' ,( ,) ,* ,"+ ,"" ,"# ,"$

LDM sequence

state sequence

Observation
sequence

An external duration model determines the number of frames for each LDM



Training LDMs for TTS

• Club together all the segments belonging to one LDM
• Train LDM on this set of segments
• HMMs are still convenient to force align and segment the training 

data
• Switching LDMs can be used for forced alignment and segmentation
• Decision tree clustering can be done using HMMs or LDMs (LDM 

clustering is very slow)
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Neural speech synthesis

• For feed-forward models, replace the decision tree with neural 
network

• Linguistic feature sequence length is much shorter than acoustic 
feature sequence length
• Up-sample the input sequence to same time-scale as output 

sequence
• Get wider context by stacking together multiple inputs

49

Neural networkLinguistic feature
vector sequence

acoustic feature vector
sequence



Recurrent or hybrid models

• In order to get more context into account, use recurrent neural 
networks (LSTMs, GRUs, etc.) or a hybrid of the two

50

Feed-
forwardLSTMFeed-

forwardInput features output features



LDMs as simple RNNs

• LDMs have no non-linearity involved
• State progresses without any external input being fed into them at 

each time step
• LDMs are somewhat similar to a decoder in an encoder-decoder RNN 

architecture: !" can be considered encoded vector, but in LDMs, it is 
only fed in the beginning
• #$ = &' (#$)" + + ; -$ = &.(0#$ + 1)

51



Evaluation
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Models were evaluated based on MCD and PESQ



Example of parameter trajectory generated by various models 



Some more neural speech synthesis models
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• Encoder decoder model with attention
• Encoder encodes the input phonemes or characters into some embeddings to remove the hand-engineered input 

features
• Attention corresponds to the alignment between input and output features (remember they operate on different 

time scales)
• Decoder serves as an acoustic model to generate acoustic features
• Advantages:

• No need of input hand-engineered features
• No explicit duration model
• No need of external alignment
• There could be dialect and speaker embeddings to be conditioned upon

• Examples: char2wav1, voiceloop2

Encoder DecoderInput phones attention

Feature embeddings

output features Vocoder waveform

1 J. Sotelo, et al. Char2wav: End-to-end Speech Synthesis. (2017).
2 Y. Taigman, L. Wolf, A. Polyak, and E. Nachmani. Voice synthesis for in-the-wild speakers via a phonological loop. CoRR, abs/1707.06588, 2017. URL http://arxiv.org/abs/1707.06588.



Combining various TTS components

55

• Traditional TTS system has three modules:
• Front-end
• Acoustic model
• Vocoder

• Neural TTS models have tried to combine a 
few of them:
• Tacotron1 combines front end and acoustic 

model, so that it can take normalized text as 
input

• Wavenet2 combines acoustic model and 
vocoder, and produced raw waveform directly

Front-end Vocoder
Acoustic 
model

Front-end Vocoder
Acoustic 
model

1. Y. Wang, RJ. Skerry-Ryan, D. Stanton, Y. Wu, R.J. Weiss, N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyrgiannakis, R. Clark, and R. A. Saurous, Tacotron: Towards end-
to-end speech synthesis. In Proceedings of Interspeech, August 2017

2. A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” CoRR, 
vol. abs/1609.03499, 2016.



Neural Vocoders

• Traditional vocoders can be replaced with neural vocoders.

• Input is some sort of acoustic features and output is a waveform

• Huge memory of neural vocoder prevents any artifacts which would 

normally occur in signal-processing based vocoders

• Most popular examples are Wavenet based vocoders. Wavenet uses 

dilated convolutions and produces samples autoregressively

• More recently there has been parallel Wavenet1

• Another example is SampleRNN2
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1. A. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu, G. Driessche, E. Lockhart, L. C. Cobo, F. Stimberg, N. Casagrande, D. Grewe, S. Noury, S. Dieleman, E. Elsen, H. 

Kalchbrenner, H. Zen, A. Graves, H. King, T. Walters, D. Belov, and D. Hassabis. Parallel WaveNet: Fast high-fidelity speech synthesis. CoRR, abs/1711.10433, 2017.

2. S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville and Y. Bengio. Samplernn: An unconditional end-to-end neural audio generation model. arXiv preprint 

arXiv:1612.07837, 2016.



Conclusions

• Statistical parametric speech synthesis essentially maps input 
linguistic features to output acoustic features
• HMMs have been historically the most popular TTS models
• LDMs are more flexible can perform better than HMMs
• Neural networks synthesize speech of better quality, but LDMs 

require less working memory
• There has been a shift in paradigm from classical three stage pipeline 

to more ‘end-to-end’ systems
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Thank You!
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