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Abstract— We present a novel spatial planning system that
automatically generates machining plans with stable fixtures
to fabricate complex geometries. Given a cutting tool, the
system initially finds all tool poses that do not cut into the
desired part geometry, and constructs the maximal volume
removable from a raw stock according to the tool’s degrees
of freedom. The planning space is then defined as the product
space of all available tools and their associated maximal removal
volumes. A sequence of machining operations to iteratively
remove material from a raw stock is generated by searching
the planning space and finding successive machining steps
that minimize manufacturing time or cost. For each step, a
vise or modular fixture is automatically assembled such that
the part is stable and the fixture assembly does not interfere
with tool motion. Process planning is an inverse problem and
multiple feasible solutions exist to machine the part if it is
deemed manufacturable by the system. The system generates
and visualizes several qualitatively distinct fabrication plans for
an engineer to choose from. The chosen plan is sent to a tool
path planner to generate machining instructions. We will show
several examples of rapid and automatic end-to-end machining
process planning on complex geometries to demonstrate the
scalability and practicality of our system.

I. INTRODUCTION

A. Machining Process Planning

Computer aided manufacturing process planning is the
mapping of design specifications into a sequence of manufac-
turing operations and accompanying instructions to fabricate
a product. In machining, the sequence consists of individual
setups where a part is fixtured and a cutting tool is pro-
grammed to strategically remove material without colliding
with surrounding tooling. Given the nominal (perfect form)
design and manufacturing constraints, process planning is an
inverse problem that attempts to find a sequence of setups
such that the manufactured part is equivalent (up to tolerance)
to the designed shape. The problem is ill-posed because a
solution may not exist if the part is non-manufacturable, or
multiple solutions may exist if the part is manufacturable.

It was recognized quite early[19] that subsets of solid
models called features could be parameterized and annotated
with manufacturing information including datums, toler-
ances, machining operations, and material properties. Conse-
quently machining process planning using features evolved
into a vast area of academic research over the last three
decades, and has been considered the de-facto approach to
map CAD geometry to CAM instructions. However, despite
these research efforts, today’s commercial product lifecycle
management systems have limited support for automatic

feature based process planning, and production floors largely
still rely on operator expertise to manually transform design
models into manufacturing plans. This is due in part to
shortcomings of feature-based process planning approaches.

B. Challenges in feature based process planning

There is no consistent definition of a feature across design
and manufacturing, but in practice features are assumed to
represent ‘engineering intent’ interpreted in an an application
specific manner [21], [22], [4]. For example assembly design
features seen in CAD systems represent mating surfaces
between parts and are not in one-one correspondence with
features in machining process planning, where boundaries
of features are assumed to coincide with machined sur-
faces. Process planners depend on recognizing and extracting
machining features from a solid model so that they may
be mapped to a relevant set of manufacturing processes.
Automatic feature recognition for machining comprises a
large body of work with notable techniques including volume
decomposition [28], [11], [5], analysis of the boundary repre-
sentation graph [10], [30], and rule based pattern recognition
[1], [27] among others. See [9], [8] for a comprehensive
review of challenges in recognizing manufacturing features.

Most feature recognition techniques are restricted to
pocket milled, drilled, and turned features. For such features,
accessibility analysis [23], [29] outlines the candidate set
of orientations in which a part may be machined. Process
planners are usually rule based systems [6], [24] that assign
a variety of cutting tools and operations to each acces-
sible feature. When parts can be fabricated by indepen-
dently machining all recognized features, for example in
the case of 2.5d milling, such process planners are quite
effective. However, the main challenge in feature based
process planning is scalability to a large class of parts,
especially when designs consist of interacting features [26],
machinable regions not classified as manufacturing features,
or regions requiring combinations of machining operations
in multiple orientations. In these cases, when the material
volume to be machined is decomposed into features, the
subvolumes created may not be manufactureable, or may be
difficult to identify as manufactureable, while an alternative
decomposition could yield different results.

C. Contributions and paper outline

In this paper, we demonstrate a new, feature-free approach
for automatic process planning that adopts an alternative



viewpoint of computing the maximal machinable volume
in any accessible orientation. Using properties of the con-
figuration space of tool motions, the approach scales to
complex part and tool geometry, dramatically reduces the
search space using appropriate heuristics, and facilitates rapid
computations. As a result, process plans can be computed
using commodity compute hardware in less than a minute
even for very complex parts with many features. The paper
is organized as follows: 1. A set theoretic formulation of
the maximal volume machinable from a fixtured stock by
a tool moving in its configuration space (Section III). 2.
Efficient algorithms to compute maximal machinable vol-
umes (Section IV). 3. Set covering and search algorithms
over maximal machinable volumes to determine qualitatively
distinct process plans (Section V). 4. Automatic selection and
assembly of fixtures for individual machining steps in a plan
(Section VI).

II. MATHEMATICAL PRELIMINARIES

We define and compute collision free rigid motions of
cutting tools in the configuration space SE(3) of rigid
motions. Subsets of SE(3) are termed filters and readers
are referred to [15], [14] for rigorous analysis of properties
involving the action of filters on solids for spatial planning.
We use two important operations relating solids and filters:
• Dilation [16], [14], or sweep, of a solid X by a filterM

is defined as δ(M, X) =
⋃
m∈M Xm where Xm represents

the solid X transformed by a rigid transformation m.
• Configuration space obstacle [13], [23] S�T of solids

S, T is the filter consisting of all transformations of the
moving solid T that cause collision with the stationary solid
S. Every h 6∈ S � T is said to be feasible. When the
moving solid T is translating in a fixed orientation, the filter
S � T = S ⊕ T−1 is the translational configuration space
obstacle of S and T , seen in robot motion planning problems.
Here ⊕ denotes the Minkowski sum [20] and T−1 represents
the scaling of all coordinates in T by −1.

III. MAXIMAL MACHINABLE VOLUMES

In this Section, we consider the problem of determining
the maximal volume that is machinable from raw stock by a
collection of tools, with the goal of manufacturing a part of
interest. Each staging model, which is the remaining uncut
metal before a machining operation, is typically re-fixtured
in several orientations to enable the cutting tool to machine
the entire part surface. We use standard techniques of acces-
sibility analysis [23], [29] to determine the orientations to be
used in the planner. Given a pair (S, P ) where S represents
a fixtured raw stock or a staging model and P represents
the part to be manufactured, let T represent the tool that is
selected to machine P from S.

A. Translating Tools

We now formulate the problem of determining the largest
subset of S that may be removed by T without interfering
with P . To simplify exposition, we will initially consider
the problem of determining the maximal machinable volume

from a stationary stock using a translating tool. This situation
is manifested in practice, for example, when three axis
milling machines are used to cut metal from fixtured stock.
The configuration space of the unconstrained tool is R3.

For the part P to be manufacturable, it is a basic re-
quirement that S is placed within the set of positions that a
reference point on the tool T can reach in this orientation.
The maximal filter of feasible transformations applicable to
the tool to avoid cutting into P is the complement of the
configuration space obstacle

F = (P ⊕ T−1)c (1)

Equation 1 outlines the largest subset of R3 that is
applicable to the tool in the chosen orientation. However, in
practice machining is going to be limited by the workspace,
or the set of positions and orientations achievable by the tool.
In the current situation involving a fixed orientation, we are
only concerned with the set of all reachable positions, or
the reachable workspace of the tool. Denoting the reachable
workspace as R, the maximal set K ⊂ R3 of translations
applicable to the tool is revised as

K = F ∩R (2)

K is the maximal filter representing all translations ap-
plicable to the tool T without interfering with the part P .
Therefore the dilation δ(K, T ) represents the sweep of the
tool by the maximal filter within the workspace without
interfering with P . Finally, the maximal volume machinable
from the raw stock (or staging model) S is given by

V = δ(K, T ) ∩ S (3)

B. Rotating and Translating Tools

We now assume a tool T moves according to transforma-
tions in a filter W called the workspace, which is a full-
dimensional subset of SE(3). The reachable workspace R
is the projection of W into R3 and represents all positions
that can be achieved by some orientation of the tool. The
positions and orientations achievable by T during its motion
are described in terms of the location of a coordinate frame
attached to the tool.

Assuming this frame is initially aligned with the global
reference frame with respect to which transformations are
described, W also describes positions and orientations of
the tool with respect to the absolute frame of reference. The
origin of each frame is the reference point of T and indicates
the special point of contact between the tool and the stock
which will be used to outline the allowable spatial locations
of the tool for manufacturability.

The maximal volume that is machinable from a raw stock
by a rotating and translating T is formulated by extending
Equations 1 and 2 to SE(3). Computations in SE(3) can
be broken down into smaller three dimensional computations
owing to the product structure of SE(3) = R3oSO(3) [14]
where SO(3) represents the group of spatial rotations. In
practice this implies the maximal filter applicable to T to



avoid cutting into P is

F =
⋃

r∈SO(3)

(P ⊕ T−1r )c (4)

Equation 4 suggests that to compute all (6d) non-colliding
tool motions we rotate the tool according to orientations r in
the workspace and apply Equation 2 repeatedly to compute
and accumulate 3d maximal machinable volumes.

In high axis machining, typically available machine tool
orientations are provided per axis. Five axis machines have
rotational degrees of freedom about two axes of rotation,
in addition to the three translational motions. If rotations
about the available axes are denoted Oθ and Oφ, the subset
of SO(3) for which Equation 4 needs to be computed is
given by O =

⋃
θ∈Oθ,φ∈Oφ

(θ · φ) ∪ (φ · θ) owing to the
non-commutativity of spatial rotation composition. Here ·
represents composition of rotations, for example by matrix
or quaternion multiplication.

IV. COMPUTING MAXIMAL MACHINABLE VOLUMES

Minkowski sum, dilation, and configuration space obstacle
calculations form a large body of research in solid model-
ing, because of applications in spatial planning [15], [12].
In general, boundary representations of these shapes are
harder to compute than lower level representations such as
sampled point sets. Using implicit representation of shapes
on sampled regular grids provides a unified framework to
use properties of convolutions, Fourier transforms, and other
signal and image processing algorithms to implement these
operations [16]. In the general case where no assumptions
are made on part and tool geometry, these algorithms can be
efficiently applied to compute maximal machinable volumes
by directly implementing Equations 3 and 4. Figure 1 shows
an example of a maximal machinable volume computed
using this approach for a complex part and tool combination.

Fig. 1. Computing the maximal machinable volume that a translating
shaping tool can machine without colliding with the final part

We now describe an algorithm to compute Equation 1
when T is a translating axisymmetric milling tool and does
not possess undercut features when viewed along its spin
axis. Many cutting tools such as end mills and ball mills are
built this way and so the special case has significant practical
value. Furthermore the implementation of the algorithm
exploits dimensional reduction making it faster in practice
than evaluating full dimensional computations.

Consider a feasible translation of an oriented undercut-
free tool T . At every point v ∈ ∂T there exists a u ∈ ∂P
such that the vector v − u is parallel to the spin axis and
the segment λv + (1− λ)u, λ ∈ [0, 1] is entirely in P c. See
Figure 2. Every such u is said to be visible from the tool.

Fig. 2. Left: u is visible from tool. Right: not visible from tool, λ /∈ [0, 1]

We will use the fact that the distance between v and u
can be computed easily using height maps. The value of the
height map at a point q on a plane with normal parallel to
the spin axis is the distance from q to the point p ∈ ∂P
visible from q. We implement height maps using standard z-
buffer hidden surface removal with orthographic projection
[3], where the height map is computed on the camera plane
located at infinity.

An infinitesmally thin tool can be represented as a ray,
in which case the height map of the part represents the
maximum collision-free translation along the tool spin axis
for every point (x, y) on the camera plane. For a tool
with thickness, the height map of the part is therefore an
upper bound on the possible collision-free translation. The
important insight is that by moving away from the part
an infinitely long, undercut free tool can only transition
from a colliding to a non-colliding state. Therefore, we
may determine the maximum collision-free translation of
the tool along z by starting at the visible surface of the
part determined by the z-buffer algorithm and translating
away from the part by the maximum penetration depth. The
algorithm is presented graphically in Figure 3.

After computing the maximum feasible translation of the
tool for every (x, y) (which implements Equation 2), we
dilate that heightmap by the heightmap of the tool to get
the heightmap of the sweep of the tool, i.e. the heightmap
RH(x, y) of the removal volume. By ignoring rotation about
the tool’s spin axis due to axisymmetry, or when the tool is
represented by its rotational sweep about the spin axis, we
remove a degree of freedom and implement the height map in
two dimensions using standard image processing algorithms.
The maximal machinable volume is the set of all points
(x, y, z) where z ≤ RH(x, y). Therefore we obtain a three
dimensional voxel representation of the maximal machinable
volume (Equation 3) using image calculations.

Note that while z-buffer algorithms have been used to
compute rasterized tool paths after process planning ([3],
[25]), we use the voxel representation of maximal machin-
able volume as the input to a search algorithm that rapidly
evaluates process plans that may be then fed to a tool path
planning algorithm.



Fig. 3. 1D Example of tool sweep calculation using height maps. Upper-
left: tool at (X,Y, Z = 0), Upper-right: tool Z initialized to part heightmap
value, Middle-left: tool translated away from part by the penetration depth,
Middle-right: tool at (X,Y, Zmax) for all (X,Y ), Bottom-left: Zmax for
all (X,Y ), Bottom-right: the removal heightmap, i.e. the Zmax heightmap
dilated by the shape of the tool

Fig. 4. An automatically computed process plan. The plan shows how
material is iteratively removed from staging models to the finished part. Each
step of the plan involves reorienting the staging model from the previous step
and removing the maximal machinable volume in the specified orientation.

V. COMPUTING PROCESS PLANS FROM MAXIMAL
MACHINABLE VOLUMES

A. Problem Definition

We cast the problem of generating a valid process plan as
a planning problem, as studied in the artificial intelligence
community [7], and solve it using a variant of weighted A∗

search [18]. That is, we cast it as the problem of finding a
sequence of actions from a set of available actions A, called
the plan, that, starting in a known initial state I , reaches a
state where a goal condition G(s) is met. We do so while
minimizing a cost function C(a, s) that describes the cost of
executing a particular action a in a particular state s.

A state S is a tuple 〈V, T, θ〉 where V is a set of voxels
(“voxel volume”) describing the remaining material to be
removed, T is the current tool or ⊥ to indicate that no tool
is being held by the machine currently, and θ is the current
rotation applied to the tool with respect to the voxel volume.

Fig. 5. Qualitatively distinct plan compared to Figure 4.

The voxel volume VI in the initial state I is the negative of
the part S with respect to its bounding box1, T = ⊥, and
θ = (0◦, 0◦).

An action is a tuple 〈V, T, θ〉 where V is the set of voxels
corresponding to Equation 3, i.e., the maximal sub-volume
of the initial removal volume that can be removed using the
tool T in orientation θ. The effects of an action are described
by the transition function τ(s, a) that, given a state and an
action returns the successor state, s′.

τ(〈Vs, Ts, θs〉, 〈Va, Ta, θa〉) = 〈Vs \ Va, Ta, θa〉

The action removes from the set of remaining voxels V all
the voxels the given tool can reach in its given orientation.
Note that the successor state assumes the tool and tool
orientation of the action. This means that an action can imply
a reorientation of the tool holder relative to the part, or,
equivalently, a part orientation relative to the tool holder. This
implicit change is taken into account by the cost function,
which recognizes that reorienting the part takes time, denoted
tθ(θa, θs), as an additional setup will be required that needs
to be prepared. Similarly, if the machine does not have
an automatic tool changer, then a tool change can incur
additional time-cost, tT (Ta, Ts). The cost function is

C(〈Vs, Ts, θs〉, 〈Va, Ta, θa〉) =
tV (Vs ∩ Va, Ta) + tT (Ta, Ts) + tθ(θa, θs)

where tV (V, T ) is a function that estimates the time to
remove the volume V using tool T [2].The goal condition
G(s) is simply that the set of remaining voxels is empty:
G(〈Vs, Ts, θs〉) ≡ Vs = ∅.

B. Solution Approach

The search space for process planning problems is too
large to search exhaustively in practice. Considering only 8
required access directions, and 5 tools, we get a ramification
factor of 40, which means there are 4010 > 1e16 different
plans of length 10. We solve the process planning problem
in practice using a variant of weighted A∗ search, using the
number of remaining voxels to construct a heuristic function

1For cylindrical parts a bounding cylinder can be used, but for simplicity
of exposition in this paper we limit ourselves to boxes.
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Fig. 6. Notional shape of the search tree resulting in our search approach.

that can effectively guide the search. Additionally, we prune
the search by imposing an upper limit on the size of the
open-set (search frontier) to 1000. This causes the search
tree to take a shape as described in Figure 6. The search
will branch out quickly at first, but then become greedy
and only consider the best successor (i.e. most cost effective
action) of each state. This produces near-optimal plans in
practice because the heuristic is very good at estimating the
actual cost of removing the remaining material. Additionally,
we run a pure greedy search before we run this search,
to establish an upper bound on the cost of the best plan.
Greedy search is extremely fast, on the order of 0.1 seconds
in practice for grids with 2003 voxels, and the result can
be used as a bound for branch-and-bound, i.e., for pruning
candidate plans whose aggregate cost plus heuristic value
already exceed the bound. Combining these measures we
are able to compute process plans in usually less than 60
seconds for realistic 3-axis machined parts. Figures 4 and 5
show simplified examples found using this algorithm.

Also note that in comparison to feature based approaches,
where Boolean operations must be performed on boundary
representations, in our approach Booleans are reduced to
operations on binary sets, which are computed very quickly.

VI. FIXTURE PLANNING

Fixture planning is a largely experience driven activity
that focuses on determining precise workpiece clamping
according to process constraints such as collision avoidance
with the moving tool, accessibility to specific locations,
tolerances etc. It is a key part of machining process planning,
and offers significant scope for automation. We now briefly
discuss automatic workpiece holding using modular fixtures
and vises with emphasis on collision avoidance with moving
tools. In particular we show the algorithms to compute
maximal machinable volumes may be applied with some
modifications to compute vise fixtures.

A. Modular Fixtures

Rigorous analysis to automatically generate modular fix-
tures are discussed in our previous work [17]. Here we
briefly describe the salient points of automatic modular fix-
ture configuration relevant to process planning. Assuming a
polyhedral representation of staging models and the maximal
machinable volume, we apply principles of force and form
closure to assert that seven points on the boundary of the part
(outside the machinable volume) are necessary and sufficient
to grasp the staging model such that it remains immobile

under external forces and moments. Essentially, unit forces
applied to sample locations on the part boundary have an
associated moment about the part centroid, and the six-tuple
of the force and moment components defines a point or a
wrench in a six dimensional wrench space. Form closure
is equivalent to the condition that the 6 × 7 wrench matrix
(whose columns are sampled wrenches) has a nullspace with
purely positive coefficients. In [17] we show how the wrench
space may be partitioned and searched efficiently to rapidly
generate wrench matrices satisfying form closure.

Fig. 7. Automatic assembly of modular fixtures in form closure while
avoiding tool collision during machining. The base plate is extensible.

When friction between clamps and the part surface is
considered, four points are sufficient to guarantee form
closure. Tangent forces due to Coulomb friction may be
used to generate nullspaces with positive coefficients. The
coefficients of the wrench matrix may be thought of as
scaling factors applied to clamping forces, which are always
bounded in practice. Therefore under operating conditions
we use a restriction of form closure to force closure, which
bounds the total forces and moments that the fixtured part
can withstand.

We then map the chosen form/force closure configuration
to a catalog of modular fixtures including several types of
clamps (edge clamps, strap clamps, side clamps) and locator
pins to choose the proper arrangement of clamps to avoid tool
collisions. Modular fixtures offer the significant advantage of
reconfigurability but are often more expensive, labor-wise,
for a shop to assemble compared to solutions like vises.

B. Vise Fixturing

Vise fixturing is more popular in practice because of setup
convenience but only provides force closure which is usually
sufficient for practical situations. A pair of parallel plates
are mated against flat surfaces on the part and stock and
positioned to maximize the frictional clamping forces while
ensuring that the cutting tool will not collide with any part
of the vise. Given an orientation for the vise relative to the
part, we treat the vise jaws like undercut free tools so that
we may use z-buffer algorithms as in Section IV, with the
addition of a counter to record the number of surface points
of the vise that are coincident with the surface of the part.

The orientation of the vise relative to the part can be
chosen based on many criteria; we assume the vise base
lies on a plane orthogonal to the tool access direction and



Fig. 8. GUI for process planning system showing multiple process plans
(top-right), graphical and textual descriptions of plan steps (bottom-left and
bottom-right, respectively), and 3d visualization of removal volumes, staging
models, and fixturing for each stage of a plan (top-left)

test orientations are chosen from the surface normals of the
part which are parallel to the base plane. Heuristics such as
surface area can be used to greedily sort the test orientations.
Furthermore, the fact that a vise jaw is flat and, generally,
large relative to the part enables significant optimizations
over checking of all surface points of the vise against all
corresponding surface points of the part (such as described
for tools in [25])

To guarantee colision avoidance with the cutting tool, we
perform this z-buffer max depth and overlap count from the
perspective of both vise jaws and on both the part and the
removal volume. The (X,Y ) translation, and corresponding
vise opening, with the largest overlap with the part and zero
overlap with the removal volume is selected as the ideal
placement of the vise chosen from a catalog.

VII. CONCLUSION

We have demonstrated algorithms for automatic process
plan generation with fixtures for machining operations. The
algorithms have been combined into a spatial planning sys-
tem that solves the problem of detailing machining plans
ranked by time/cost for a user specified design. The proposed
formulations do not rely on recognizing information from
specific part representations e.g. through feature detection,
and implementations are performed rapidly in voxel repre-
sentation either using convolutions or with (faster) dimen-
sional reduction and visibility analysis when undercut free
tools are usable. The system scales to complex geometries
and generates process plans using a search algorithm that
quickly evaluates time/cost optimal manufacturing actions.
Fixtures are then automatically generated for manufacturable
parts such that the fixture assembly does not collide with
the moving tool. Inaccessible regions for non-manufacturable
parts are highlighted and the output of the spatial planning
may be directly sent to tool path generating software. To
the best of our knowledge this is the first automatic process
planning system for milling operations that combines design
geometry with manufacturing capabilities to outline shop
specific process plans.
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