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ABSTRACT

We present a data-driven approach for diagnos-
ing performance issues in heterogeneous Hadoop
clusters. Hadoop is a popular and extremely suc-
cessful framework for horizontally scalable dis-
tributed computing over large data sets based on
the MapReduce framework. In its current im-
plementation, Hadoop assumes a homogeneous
cluster of compute nodes. This assumption man-
ifests in Hadoop’s scheduling algorithms, but is
also crucial to existing approaches for diagnosing
performance issues, which rely on the peer simi-
larity between nodes. It is desirable to enable ef-
ficient use of Hadoop on heterogeneous clusters
as well as on virtual/cloud infrastructure, both of
which violate the peer-similarity assumption. To
this end, we have implemented and here present
preliminary results of an approach for automati-
cally diagnosing the health of nodes in the cluster,
as well as the resource requirements of incoming
MapReduce jobs. We show that the approach can
be used to identify abnormally performing cluster
nodes and to diagnose the kind of fault occurring
on the node in terms of the system resource af-
fected by the fault (e.g., CPU contention, disk I/O
contention). We also describe our future plans
for using this approach to increase the efficiency
of Hadoop on heterogeneous and virtual clusters,
with or without faults.

1 INTRODUCTION
Hadoop1 is a popular and extremely successful frame-
work for horizontally scalable distributed processing
of large data sets. It is an open-source implementa-
tion of the Google filesystem (Ghemawat et al., 2003),
called HDFS in Hadoop, and Google’s MapReduce
framework (Dean and Ghemawat, 2008). HDFS is
able to store tremendously large files across several
machines and using MapReduce, such files can be pro-
cessed in a distributed fashion, moving the compu-
tation to the data, rather than the other way round.

1http://hadoop.apache.org/

An increasing number of so called “big data” applica-
tions, incl. social network analysis, genome sequenc-
ing, or fraud detection in financial transaction data, re-
quire horizontally scalable solutions, and have demon-
strated the limits of existing relational databases and
SQL querying approaches.

Even though the value of Hadoop is widely ac-
knowledged, the technology itself is still in its infancy.
One of the problems that remains unsolved in the gen-
eral case is the diagnosis of faults and performance is-
sues in the cluster. Another shortcoming is Hadoop’s
implicit assumption of a homogeneous cluster, i.e.,
the assumption that all servers in the cluster have the
same hardware and software configuration. If this as-
sumption is violated, performance can be extremely
poor. Therefore, in practice, Hadoop requires a ho-
mogeneous cluster. Given the vast number of existing
servers with varying specifications in many organiza-
tions, it would be desirable to enable running Hadoop
on such heterogeneous clusters as well. In this paper
we present work in progress towards solving these two
problems with particular emphasis on the diagnosis.
We will describe in the future work section how we
believe the same insights gained during diagnosis can
be used to increase overall productivity of Hadoop on
heterogeneous clusters, even in the absence of faults.

In its current version, Hadoop possesses only rudi-
mentary monitoring capabilities. The primary mecha-
nism for detecting faults is by pinging each compute
node at a regular frequency. A node is considered
dead if it fails to reply the ping within a certain time
period. While this mechanism can be used to detect
certain kinds of hard faults present in the cluster, per-
formance issues that do not cause a node to go down
but only slow it down and may be intermittent remain
undetected.

In order to deal with hard faults that do not affect
nodes at the level of the operating system where pings
are affected, but which happen in user space (e.g., out
of memory exceptions), Hadoop kills exceptionally
long running tasks and reschedules them on a differ-
ent node. This is problematic in particular on hetero-
geneous clusters where the required time to complete
a task can vary strongly between different machines.
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Recently, (Tan et al., 2010b) proposed a diagnosis
approach that uses a simple peer similarity model to
identify faulty nodes in a Hadoop cluster. The idea
underlying their approach is that the same task should
take approximately the same amount of time on each
node in the cluster. By building statistical models
of task completion times over the nodes of the clus-
ter, the authors are able to identify outliers with fairly
high accuracy. However, the peer similarly model is
again making the assumption that the cluster is homo-
geneous and is not applicable to heterogeneous clus-
ters as we will show in Section 2.2.

We propose a data-driven diagnosis approach for de-
tecting performance problems that is applicable to het-
erogeneous Hadoop clusters. Our approach constructs
a behavioral model of every node for different classes
of jobs, with one class for each dimension in the con-
figuration space of the nodes, e.g., CPU speed, disk
I/O speed, amount of RAM. The intuitive role for these
base jobs is that their completion time will largely de-
pend on the availability of the respective resource. The
behavioral model based on these jobs can then be used
for diagnosis. The model is used to determine how
long a certain new job should take on a given node that
is to be diagnosed, given the class of the new job, and
the time it took to run on a different node.

In this paper, we present preliminary results that
only consider problems that cause CPU or disk I/O
contention and hence lead to degraded performance
of jobs that make use of these resources. In future
work, we plan to integrate this diagnostic information
into the Hadoop scheduler to increase the overall pro-
ductivity of the cluster in the face of faults as well as
heterogeneity among nodes. The diagnostic informa-
tion will allow the scheduler to make better predictions
on task durations on specific nodes and hence create
tighter schedules.

In the next section we will review Hadoop in more
detail and summarize relevant related work. We then
define the problem and describe our approach includ-
ing empirical results. Before we conclude we outline
our plans for future work.

2 BACKGROUND AND RELATED WORK
2.1 Hadoop
Hadoop is an open-source platform for distributed
computing that currently is the de-facto standard for
storing and analyzing very large amounts of data.
Hadoop comprises a storage solution called HDFS,
and a framework for the distributed execution of com-
putational tasks called MapReduce. Figure 1 depicts
how Hadoop stores and processes data. A Hadoop
cluster consists of one NameNode and many DataN-
odes (tens to thousands). When a data file is copied
into the system, it is divided up into blocks of 64MB.
Each block is stored on three or more DataNodes
depending on the replication policy of the deployed
Hadoop cluster (Figure 1(a)). Once the data is loaded,
computational jobs can be executed over this data.
New jobs are submitted to the NameNode (Figure
1(b)). The NameNode will schedule map and reduce
tasks onto the DataNodes.
• A map task is to process one block and generate

a result for this block which gets written back to

HDFS. Hadoop will schedule one map task for
each block of the data, and it will do so, generally
speaking, by selecting one of the three DataNodes
that is storing a copy of that block to avoid mov-
ing large amounts of data over the network.

• A reduce task takes all these intermediate re-
sults and combines them into one, final result that
forms the output of the computation.

In order to take advantage of Hadoop, a programmer
has to write his program in terms a Map and a Reduce
function. These functions are agnostic of the block
structure and the distributed nature of the execution but
typically rather operate at the level of a record or a line
of text: some small unit of which the data is comprised.
For each such unit, the Map function typically only
performs rather basic operations.

The canonical example of a MapReduce program is
WordCount, a program that counts the number of oc-
currences of each word in a large corpus of text. The
Map function of WordCount tokenizes one block of
the text, and counts words locally, line by line. The Re-
duce function would then take these local counts and
sum them up to get the global result.2

Since generally the Reduce Phase can only start
once the Map Phase has been completed, the over-
all job completion time is typically determined by the
time it takes the slowest DataNode to finish its as-
signed map tasks. Hadoop, as of the current version
0.22, does not take any performance differences be-
tween the DataNodes into account during the schedul-
ing phase, but assumes a homogeneous cluster, i.e.,
servers that are equally fast in terms of CPU, disk
I/O, RAM, and network bandwidth, etc.—the key-
contributors to task completion time.

While Hadoop is particularly good for certain kinds
of text analytics, in practice, various different kinds
of jobs execute on a Hadoop cluster. For the pur-
pose of this paper we will characterize jobs in terms
of the types of resources they make use of most heav-
ily. Many jobs are CPU intense, while others read from
and write to disk a lot, or need to move larger amounts
of data over the network. More specifically, we will
generally characterize the map tasks of a job in this
way and ignore the reduce tasks for the most part.

2.2 Related Work
Recently, (Tan et al., 2010b) presented Kahuna, a di-
agnosis approach that uses a simple peer similarity
model to identify faulty nodes in a Hadoop cluster.
Roughly, the idea underlying their approach is that the
same task should take approximately the same amount
of time on each node in the cluster. More precisely,
the authors build histograms of the time each task of
a job takes on each machine. A node is identified as
faulty when its histogram deviates from those of the
other nodes. The authors show that this approach can
detect slowdowns caused by various kinds of issues in-
cluding CPU hogging, disk I/O hogging, as well as to
a limited degree network package loss. The authors

2For parsimony we are omitting certain details in this ex-
ample to the extend of which they are irrelevant for this pa-
per.
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Figure 1: HDFS stores files in blocks of 64MB, and replicates these blocks on three cluster nodes each. For a new
job MapReduce then processes (“maps”’) each block locally first, and then reduces all these partial results in a
central location on the cluster to generate the end result.

also show that different workloads have different “di-
agnostic power” in the sense that certain issues are not
uncovered by certain jobs. This is consistent with our
assumption of different job classes. The authors do not
describe whether Kahuna is able to detect what kind of
fault may have occurred on a machine.

Kahuna assumes that the cluster is homogeneous,
i.e., that tasks take roughly the same amount of time
across machines. Figure 2 illustrates that, unsur-
prisingly, on heterogeneous clusters, the same task
can take significantly longer or shorter depending on
which machine is being used. During the experiment,
we made sure that all machines were functioning flaw-
lessly. Diagnosis hence cannot be based on the as-
sumption that the same task should take equally long
to execute on every node.

Many root cause analysis techniques use distributed
monitoring tools that require active human interven-
tion to locate the fault. Gangilia (Massie et al., 2004) is
a well known distributed monitoring system, which is
capable of handling large clusters and grids. X-Trace
(Fonseca et al., 2007) and Pinpoint (Chen et al., 2002)
are tracing techniques to identify faults in distributed
systems.

Tan et al. (2010a) developed a visualization tool to
aid humans in debugging performance related issues
of Hadoop cluster. The tool uses the log analysis tech-
nique SALSA (Tan et al., ) that uses the Hadoop log
files and visualizes a state-machine based view of ev-
ery nodes’ behavior. Ganesha (Pan et al., 2008) is an-
other diagnosis technique for Hadoop, which locates
faults in MapReduce systems by exploiting OS level
metrics. Konwniski and Zahari (2008) use X-Trace
to instrument Hadoop systems to investigate Hadoop’s
behavior under different situations and tune its perfor-
mance.

Automated performance diagnosis in service based
cloud infrastructures is also possible via the identi-
fication of components (software/hardware) that are
involved in a specific query response (Zhang et al.,
2007). The violation of a specified Service Level
Agreement (SLA), i.e., expected response time, for
one or more queries implies problems in one or more
components involved in processing these queries. The

methodology is widely accepted for many distributed
systems. To a degree Hadoop is using this approach as
well, as described above, but since the processing time
for MapReduce jobs depend on many factors including
the size of the data, only very crude limits can be used
as cut-off. The determination of a reasonable cut-off
is further hindered on heterogeneous clusters, where
processing times can vary strongly between machines.
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Figure 2: Average execution time of mapping tasks of
the WordCount job on 14 heterogeneous nodes of the
Hadoop cluster at PARC.

3 PROBLEM STATEMENT
Our primary goal in this work is to identify soft faults
in heterogeneous Hadoop clusters, i.e., nodes that are
slowed down, as well as to determine the cause for
the degraded performance. Hadoop itself has a fault
resilience component that continuously pings each
DataNode to verify it is still alive. If a DataNode goes
down or due to some other fault does not respond the
ping, the NameNode marks the DataNode as dead and
does not assign any more tasks to it. This mechanism is
able to detect many hard faults in the cluster, but is un-
able to identify problems responsible for slowdowns.

Goals
The long term goal of this project is to enable the
Hadoop scheduler to generate efficient schedules even
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(a) Time distribution for WordCount without CPU hog-
ging

(b) Time distribution for WordCount with CPU hogging

Figure 3: CPU intensive MapReduce jobs such as WordCount are strongly affected in their completion time by
over-subscription of the CPU (please note the number of seconds shown on the x-axis).

(a) Time distribution of RandomWriter without CPU
hogging

(b) Time distribution of RandomWriterwith CPU hog-
ging

Figure 4: MapReduce jobs that are not as CPU intensive such as RandomWriter are much less strongly affected
in their completion time by over-subscription of the CPU.

on heterogeneous clusters and when some nodes are
suffering from soft faults. This means that the sched-
uler will need to schedule fewer tasks on slower nodes,
and for this it has to take the job characteristic resource
profile into account as well as the performance charac-
teristics of the nodes. As a pre-requisite of that, the
focus of this paper is to determine the status of nodes
in the cluster and learn both the job profiles as well as
the relative node performance characteristics. The lat-
ter, intuitively, corresponds to a node’s hardware con-
figuration. When diagnosing a node to have a potential
soft fault, we also want to determine the kind of fault.
This can be accomplished by comparing the degree by
which jobs with different resource profiles are affected
by the fault.

3.1 Effect of Faults
In this paper we consider soft faults in the form of
resource contention on a cluster node. For most re-
sources there are numerous ways in which they can
be oversubscribed, however, these root causes do not
affect the performance in different ways, and we will
only be able to determine which resources are affected,
but not what is causing their contention.

For the purpose of validating our approach and in
order to create the empirical results presented in the

next section, we simulated two types of faults: CPU
hogging, and disk I/O hogging. For CPU hogging, for
instance, we ran additional programs on the node that
used a lot of CPU time. As a result, tasks of CPU
intensive jobs took much longer to complete, as shown
in Figure 2.2 (please note the number of seconds on
the x-axis). On the other hand, disk I/O intensive jobs
such as the RandomWriter are not affected nearly as
strongly, as can be seen in Figure 4. When the class of
a job is known, this difference can be used to determine
the likely type of soft-fault occurring on a node, i.e.,
the resource that is over-subscribed.

4 APPROACH

Our approach for determining performance problems
of a heterogeneous Hadoop cluster intuitively consists
of two steps. First we learn a model of every node in
the cluster for each class of jobs. In the second step,
these models are used to estimate how long a given
new task should take on a given machine. Intuitively,
if the new task takes much longer than predicted by the
model, the node is likely to be suffering from a fault.
By comparing the impact such a fault has on the com-
pletion time for tasks of different classes, i.e. different
resource profiles, it is possible to diagnose the kind of
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J1,M1 J2,M1 

J1,M2 J2,M2 
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Figure 5: The complexity coefficient α describes the
relative hardness or complexity of a job compared to
other jobs and is assumed to be machine independent.
Likewise, β is a coefficient that captures the relative
performance of one machine compared to another. It
reflects the relative hardware configuration of the ma-
chines. Both of these coefficients are specific to a class
of job, denoted C.

fault in the sense of determining which resource is af-
fected (e.g., CPU, disk I/O).

4.1 Assumptions
Our approach makes a number of assumptions. For
some of these assumptions we are presenting empirical
evidence, others can be further relaxed in future work.

1. The resource profile of a given task is known.
2. For each job there is one resource that is the

bottleneck which dominates the resource require-
ments for all map tasks of the job. For instance, a
CPU intensive job is only marginally affected by
disk I/O contention.

3. The class-specific, relative complexity of a task
is machine independent. This means that for two
jobs A and B of the same class, if B takes a factor
of X longer than A on one node, then this factor
will also apply to the completion times for A and
B on another node, even if the two nodes have
different configurations. We will further elabo-
rate on this and provide empirical evidence for
this assumption in Section 4.4.

4. The completion times for tasks executing on the
same node are independent of each other.

5. The distribution of completion times for the tasks
of a specific job on a specific node follow a Gaus-
sian distribution. This means two things: repeat-
ing the exact same task multiple times would lead
to a Gaussian distribution. But also the execution
time for individual tasks of the same job, i.e., pro-
cessing distinct 64MB blocks of the same data set
using the same algorithm, follow this distribution.
Our use of a Gaussian distribution in this paper
is a first, pragmatic choice. In principle, a distri-
bution that does not extend into the negative val-
ues would be a better choice for this application.
Nevertheless, for the results presented in this pa-
per, this misfit is fairly irrelevant.

Given these assumptions, our approach is captured by
Figure 5: We can infer from the completion time of
jobs J1 and J2 on machine M1 to the completion time
of J2 on M2 once the completion time for J1 on M2 is
known. This is possible based on Assumption 3.

4.2 Classes
Our diagnosis approach relies on an understanding of
the resource profile of a task. Every task will make use
of system resources in different ways. Some jobs are
more CPU intensive, others read and write from and
to disk more than others. In this paper, as stated in
Assumption 2, we assume that for each job there is a
single resource that forms the bottleneck. In this paper
we only consider two classes: CPU intensive jobs and
disk I/O intensive jobs. The assumption states that the
intersection between these two classes is empty. In the
rest of the paper, we will denote the class of jobs whose
bottleneck is resource R as CR. Hence, we will be
talking about two classes, CCPU and CIO.

In our approach, we run our diagnosis for every
class and in the end combine these diagnoses to rec-
ommend the specific root cause for a slowdown. For
example, if we observe that on a particular node only
CPU intensive jobs take longer than predicted by the
model, this suggests that the node is suffering from
CPU over-subscription, which could be caused, e.g.,
by some background, operating system, or zombie
process.

Base Model of Class
In our approach we assume that initially, e.g., during
first installation of the cluster, a set of prototypical,
“base” jobs can be run on each machine. We assume
that one such job for each class of jobs is run on each
machine, where there is one class for each dimension
in the configuration space, e.g., CPU speed, disk I/O
speed, amount of RAM. This is discussed further in
the next section.

For the two classes we are considering in this paper,
CCPU and CIO, WordCount and RandomWriter
are selected as base jobs respectively. The model for
another job of a class is determined relative to the base
job model. Given job J belonging to class CR, we de-
fine αCR

J , the complexity coefficient of job J with re-
spect to resource R, as the factor of how much longer
J takes to compute relative to the base job for CR.
Assumption 3 states that this factor is equal for every
machine. That means that if, for instance, the original
WordCount task on Node 1 takes 60 seconds, and
another job that is also CPU intense takes 120 seconds
on the same node, then we assume that the same factor
of 2 would be observed on other nodes as well. Empir-
ical justification and the procedure for estimating job
complexity coefficients is described in Section 4.4.

4.3 Behavioral Model Construction
To learn the models we gather time samples of map-
ping tasks of every job from the log files generated
by Hadoop. We collect the system logs produced by
Hadoop’s native logging feature on the NameNode.
Subsequently, we parse these log files to collect timing
samples for every node in the cluster. Each entry in
the log can be treated as an event and is marked with a
time stamp. An event is used to determine when a task
is started and when it finishes on a specific node. The
duration of mapping tasks is computed by subtracting
those time stamps. We denote the average duration of
all mapping tasks belonging to job J on machine M
by tJ,M .

5
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Model Learning
It is assumed that mapping task durations of the same
job are distributed normally for any specific machine.
The model for each job class CR is hence described by
a mean µJ,R and variance σJ,R. For the base jobs of
each class we can easily learn these parameters from
the samples gathered during the initial execution of
base jobs.

For each class CR, we run the base job of the class
on the Hadoop cluster and collect samples tJ,M,i for
every machine M . Recall that Hadoop schedules the
execution of the tasks belonging to a job onto the avail-
able DataNodes according to where the data to be pro-
cessed is stored. Since the data is distributed roughly
uniformly, this process produces a number of samples
for each machine. We assume that during this initial
learning, no faults occur on the cluster.

For a job J , the mean and variance for machine M
can be estimated using the standard maximum like-
lihood estimator over the samples collected for tasks
belonging to the base job of CR:

µJ,M =
1

NJ,M

∑
i

tJ,M,i (1)

σ2
J,M =

1

NJ,M

∑
i

(tJ,M,i − µJ,M )2 (2)

Where NJ,M is the total number of samples col-
lected for machine M and job J . In our experi-
ments, we use WordCount as the base job for class
CCPU , and RandomWriter for CIO. We introduce
the shorthand JCPU = WordCount and JIO =
RandomWriter and will in the rest of the paper
hence refer to µJCPU ,M and σ2

JCPU ,M as the model
parameters of the base job for CCPU and µJIO,M and
σ2
JIO,M respectively for CIO.

4.4 Estimating Job Complexity
Assumption 3 states that the relative complexity of a
job compared to its base job does not depend on the
machine it is executed on. To verify this assumption
we conducted an experiment with two new MapRe-
duce jobs J ′CPU and J ′IO. J ′CPU belongs to class
CCPU and J ′IO belongs to CIO. For every machine
M in the Hadoop cluster, we computed αCPU

J′CPU ,M and
αIO
J′IO,M as:

αCPU
J′
CPU

,M =
µJ′

CPU
,M

µCPU,M
(3)

αIO
J′
IO

,M =
µJ′

IO
,M

µIO,M
(4)

Figure 6 shows the results. The figure shows that the
complexity coefficient for each class is fairly similar
across machines, providing empirical justification for
Assumption 3.

4.5 Diagnosis
Given the duration of mapping tasks belonging to a
previously unseen job J2 on a number of machines
{Mi}i, we want to determine whether any of the nodes
is having a fault and what the nature of the fault is. We
do this by estimating for each machine how long each

0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

No
de
1	  

No
de
2	  

No
de
3	  

No
de
4	  

No
de
5	  

No
de
6	  

No
de
7	  

No
de
8	  

No
de
9	  

No
de
10
	  

No
de
11
	  

No
de
12
	  

No
de
13
	  

No
de
14
	  

CPU	  Intensive	  (J1)	  

IO	  Intensive	  (J2)	  

Figure 6: The values for complexity coefficient α
for jobs belonging to CCPU (WordCount) and CIO
(RandomWriter). Note that even though the nodes
are heterogenous the relative complexity of a job is
comparable between nodes.

task should take under normal circumstances, and then
use this information to determine a likelihood for a
new observation (task duration) to indicate abnormal-
ity of the node. The idea for predicting the duration
is that we can estimate the model, i.e., distribution of
task duration, for a new task executing on a specific
machine by scaling the base model of the class of the
job for this machine by the complexity coefficient. The
complexity coefficient in turn can be estimated from
all other machines that have already run tasks of this
job.

Predicting Job Completion Time
When diagnosing machineMk for a job of classCR, to
get a better estimate of the complexity coefficient, ev-
ery machine’s α value for this job will be used except
Mk’s. Hence, αR

J,∗ can be estimated as

αR
J,∗ =

1

N − 1

∑
i6=k

αR
J,Mi

(5)

WhereN is the number of machines in the cluster that
ran mapping tasks for this job.

On node Mk, the model for job J2 can be inferred
from the model for Mk for jobs of the respective class.
Given the estimated complexity coefficientαR

J,∗ for job
J2 belonging to class CR, the mean and variance for
J2 on Mk can be estimated as:

µ∗J2,Mk
= αR

J2,∗ · µR,Mk
(6)

σ∗J2,Mk
= αR

J2,∗ · σR,Mk
(7)

Recall that the approximate model of a job on a
machine, characterized by these two parameters, de-
scribes the (approximate) distribution of durations of
tasks of this job in this node. Therefore, the approxi-
mate model can be used for diagnosis, by computing
the relative likelihood for an observed duration x of a
task, using the probability density function (PDF) of
the underlying distribution, i.e., in this case, the PDF
of the normal distribution:

f(x;µ, σ) =
1

σ
√
2π
e−

1
2 (
x−µ
σ )2 (8)
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If a machine is suffering from over-subscription of a
resource that is made intense use of by the task, then
this will slow down the task and make the observed
task completion time (duration) less likely. Hence,
we consider a node Mk to potentially have an over-
subscription of resource R, if for a job J ′R of class
CR, f(tJ′R,Mk

;µ∗J′R,Mk
, σ∗J′R,Mk

) is significantly less
than the average relative likelihood for the durations
observed for tasks of J ′R on all other machines. That
is when:

f(tJ′R,Mk
;µ∗J′R,Mk

, σ∗J′R,Mk
)�

1

N − 1

∑
i 6=k

f(tJ′R,Mi
;µ∗J′R,Mi

, σ∗J′R,Mi
)

4.6 Experimental Evaluation
To evaluate the effectiveness of our diagnosis approach
we collected task durations from the log files of our
14-node Hadoop cluster for two different instances of
the WordCount and RandomWriter jobs. The 14
nodes are quite heterogeneous in their hardware con-
figuration since these machines were purchased at dif-
ferent times and for different original purposes. This
heterogeneity is reflected in Figure 2.

Following the described approach, we divided the
experiments into two phases, a learning phase and a
diagnosis phase. In the learning phase, we learned
the model for the two base jobs, one for WordCount
and one for RandomWriter, for each machine in the
cluster. During this phase, we made sure that every
node was functioning flawlessly.

During the diagnosis phase, we then simulated two
types of resource contention: disk I/O contention on
Node 10 and CPU contention on Node 13. These faults
were simulated by running additional programs on
the nodes that made excessive use of these resources
(“hogging”). For CPU hogging we over-subscribed
each CPU core on the node by a factor of two by
running one extra program per core that ran an infi-
nite loop with a basic arithmetic operation inside. The
overall load per CPU core was hence around 2.0 when
the Hadoop jobs were executing. For disk hogging,
we ran a program that repeatedly wrote large files to
the disks used by HDFS.

With these fault simulations in place, we ran
a different WordCount job and a different
RandomWriter job. These jobs differed from
the jobs used as base jobs in that they repeated certain
sub-tasks multiple times. This was to ensure these
jobs have roughly the same resource profile as the
base jobs but at the same time take noticeably longer.
As can be seen in Figure 6, these jobs took roughly
twice as long as their respective base job.

Results
Figure 7 summarizes the results of our experiment.
On the x-axis we show the node number. For
each node, two relative likelihood values for the
observed average task durations are shown: one
for the new WordCount job and one for the new
RandomWriter job.

As can be seen, the relative likelihood for the ob-
served task durations of the second WordCount job
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Figure 7: Results of the diagnosis for an instance of the
WordCount and an instance of the RandomWriter
job. On Node 10 we injected disk I/O contention, and
on Node 13 we injected CPU contention. The y-axis
shows the relative likelihood for observed task dura-
tions.

on Node 13 is significantly lower than the relative like-
lihoods for all other machines. Similarly, the relative
likelihood for the observed task durations of the sec-
ond RandomWriter job on Node 10 is significantly
lower than the others. This suggests that it is indeed
possible to use the presented approach to identify ab-
normally behaving nodes in a heterogeneous Hadoop
cluster: Any node whose average task duration has a
relative likelihood that is significantly lower than the
average likelihood over other nodes is a candidate di-
agnosis. This is because, according to the model, it
is unlikely to observe such average task durations on
a node that is behaving normally. Applied to the re-
sults shown in the figure, this approach would cor-
rectly identify Nodes 10 and 13 as being abnormal.

Furthermore, note that the performance of Node
13 on the RandomWriter is not noticeably reduced
by the presence of CPU contention, and that likewise
the effect of disk I/O contention on Node 10 does
not impact the completion time of the CPU intense
WordCount job to a noticeable degree. This leads us
to believe that this approach is indeed capable of deter-
mining the type of fault occurring on a node, at least
to the level of detail of which resource is affected by
the fault. Applied to our results, this approach would
correctly determine that Node 10 is suffering from disk
I/O contention, and Node 13 is experiencing CPU con-
tention.

5 FUTURE WORK
The work presented in this paper is work in progress
and the results are preliminary. This section outlines
our plans for future work in this area. The longer term
objective with this project is to increase productivity
of Hadoop on heterogeneous and virtual clusters and
in the face of faults, without human intervention. The
key ideas for achieving this are as follows:

Simultaneous machine status and job characteri-
zation. We believe that it is possible to simultaneously
learn about the status of nodes in the cluster and the
resource profile of jobs, given a model of nominal be-
havior of nodes on canonical test jobs. While in this
paper we were assuming that jobs belong to exactly
one job class, in practice it is common for jobs to re-
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quire a mix of resources. This is something we believe
can be learned as well.

Model transfer. As depicted in Figure 5, we be-
lieve that it is possible to predict the time it takes a
node to process a certain task, given the node’s mea-
sured performance on an earlier (set of) job(s) and task
durations on other machines. Likewise, it is possible to
infer from one machine to another, even when the ma-
chines are equipped differently, by considering their
models trained on prototypical jobs. We already ex-
plained and exploited this idea in this paper.

Adaptive scheduling. Given these improved pre-
dictions on how long a task should take on a specific
node, it is possible to increase cluster productivity,
in particular for (re-)scheduling of tasks on heteroge-
neous servers. Again, the reduce phase can typically
only start once all mapping tasks have been completed.
Therefore, a good prediction on how long a certain task
will take on a certain node is critical to job comple-
tion time: without good predictions it is not possible
to generate a schedule that is near-optimal.

Pervasive diagnosis. The two key ideas behind per-
vasive diagnosis (Kuhn et al., 2008) are that perfor-
mance measures of production jobs contain informa-
tion about the health of the system, and that by direct-
ing the execution of jobs in a particular way, a system’s
state can be diagnosed without interrupting production
by deriving insights from these performance measures.
Even in the absence of faults, a Hadoop cluster, like
many systems, has some degree of hidden state, i.e.,
aspects that are relevant but not directly observable.
But since this hidden state affects job and task comple-
tion time, the hidden state can be diagnosed over time
by deriving insights from these performance measures.
Furthermore, scheduling a task of a known class (e.g.,
a CPU intensive job) onto a specific node can be used
to “probe” the node and reveal the status of a specific
system resource.

Applying these ideas, in future work, we plan to
extend the existing Hadoop scheduling algorithms to
proactively reduce the uncertainty about
(a) a node’s health status in terms of its resources

(CPU, RAM, disk I/O, network I/O, etc.), as well
as the uncertainty about

(b) the resource requirements of previously unseen
jobs.

Again, the purpose of reducing this uncertainty is to
increase resilience of the system as well as reduce av-
erage job completion time via improved scheduling.

6 CONCLUSIONS
We have presented an approach for diagnosing perfor-
mance issues in heterogeneous Hadoop clusters. The
approach extends existing diagnosis approaches for
Hadoop to clusters where the peer-similarity assump-
tion does not hold, and further is able to distinguish
between different types of faults. While the approach
is based on a number of assumptions, we have pre-
sented empirical evidence for some of these assump-
tions. Further validating and/or relaxing some of the
other assumptions is part of future work.

To empirically validate our diagnosis approach, we
simulated soft faults in a Hadoop cluster consisting

of 14 nodes, running two different MapReduce jobs
with different resource profiles. The preliminary re-
sults presented in this paper suggest that the proposed
approach is viable and able to achieve the intended
goals of a) identifying machines on which resource
contention is occurring, and b) determining the re-
source which is over-subscribed by considering the rel-
ative impact of faults on the completion time for jobs
with different resource requirements.
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