
TellMe: Learning Procedures from Tutorial Instruction
Yolanda Gil, Varun Ratnakar, and Christian Fritz

USC Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292

gil@isi.edu, varunr@isi.edu, fritz@isi.edu

ABSTRACT
This paper describes an approach to allow end users to
define new procedures through tutorial instruction. Our
approach allows users to specify procedures in natural
language in the same way that they would instruct another
person, while the system handles incompleteness and
ambiguity inherent in natural human instruction and
formulates follow up questions. We describe the key
features of our approach, which include exposing prior
knowledge, deductive and heuristic reasoning, shared
learning state, and selectively asking questions to the user.
We also describe how those key features are realized in our
implemented TellMe system, and present preliminary user
studies where non-programmers were able to easily specify
complex multi-step procedures.

Author Keywords
Natural instruction, tutorial instruction, procedure learning.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI)

General Terms
Human Factors.

INTRODUCTION
Over the last few years, many successful approaches have
been proposed to allow end users to teach procedures
through demonstrations [Li et al 10; Castelli et al 10; Chen
and Weld 08]. From a few demonstrations, a system
induces a general procedure that generalizes from the
particulars of the examples shown by the user. However,
when procedures are complex it is hard to create
demonstrations that cover the space of possible
generalizations particularly if the user is to provide only a
few examples.

A complementary approach would be to teach procedures
through tutorial instruction, a method commonly used by

people to teach procedures to other people. In tutorial
instruction, the teacher provides a natural language
description of procedures using general situations and
abstract objects [Clark et al 01; Webber et al 95]. This is in
contrast with situated instruction or demonstrations where a
particular state is used to illustrate the procedure [Huffman
and Laird 95; Thomaz and Breazeal 08]. Tutorial
instruction is a concise way to communicate complex
procedures, and can be supplemented with demonstrations
or practice to improve the learning process [Fritz and Gil
11].

Alas, natural tutorial instruction is plagued with omissions,
ambiguity, oversights, unintentional inconsistencies and
errors [Gil 11]. In addition, teachers often make incorrect
assumptions about the student’s background knowledge and
learning abilities and state lessons in a way that may be
hard for the student to follow. Humans can learn despite
such imperfections in natural instruction, and we would like
to have systems that have that ability.

Our goal is to create an intelligent system that can learn
from tutorial instruction of procedures expressed in natural
language and in a way that a human would find natural to
provide. We present a novel approach that combines
several key features: 1) the use of a command line interface
to guide the user to express instruction based on what the
system already knows, 2) the use of paraphrase patterns to
map the user’s instruction into commands that the system
understands, 3) sharing with the user what the system
assumes of the instruction as well as alternative
assumptions that could be possible, 4) deductive and
heuristic reasoning to complete and correct the instruction,
and 5) facilitating disambiguation through option
presentation to the user. Based on this approach we have
developed TellMe, an intelligent system that can learn
procedures from natural tutorial instruction.

We begin describing in more detail the challenges of
handling natural user instructions about procedures. We
then discuss key design features that we incorporate in our
approach to address those challenges, and illustrate how
these features manifest themselves in the TellMe user
interface. We then describe in detail the TellMe system
which implements our approach, and show some
preliminary user studies to assess whether our new
approach is viable and to obtain initial feedback.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’11, February 13-16, 2011, Palo Alto, CA, USA.
Copyright 2011 ACM 978-1-60558-331-0/09/02...$5.00.

CHALLENGES OF LEARNING PROCEDURES FROM
TUTORIAL INSTRUCTION
Our goal is to allow users to specify procedures using
natural instruction, which raises some important challenges:

1. Natural user instruction is typically in textual form
and therefore hard to interpret. The system must
control user input while not being too constraining
as to be unnatural.

2. Natural user instruction is incomplete and
ambiguous, so the system must fill the gaps. The
user may skip steps, leave out details of steps such as
necessary inputs to a step, not include conditions of
steps such as required object types, not mention
argument assignments, or not state explicit links
among the steps.

3. Natural user instruction can be unintentionally
incorrect. The system would have to be able to
handle such imperfections, and make assumptions
about how to disambiguate or correct the instruction.

4. Natural user instruction requires that the user
formulate the lesson based on reasonable
assumptions about what the system knows. The user
should not have to know details of the system’s
internal prior knowledge. Therefore, the user may
refer to terms and concepts that the system does not
know about and the system should be able to cope
with that. In addition, the user should be able to
make reasonable assumptions of what the system has
learned so far during the lesson.

5. Natural tutorial instruction requires that the system
should participate in the interaction when needed. It
should acknowledge when it understands and ask
when it cannot understand. At the same time it
should only ask necessary questions, taking an active
role in figuring out on its own what questions the
instruction raises in the first place, and answering as
many questions as possible itself. A system that
demands from the user lots of additional input over
what the user uttered would not be considered to
learn in a natural way.

A more detailed account of the nature of these and other
challenges in learning procedures from natural instruction
can be found in [Gil 11].

A simplifying assumption that we make in this paper is that
the procedures that we target can be described based on the
inputs they use, the outputs they produce, and that the links
between the steps are producer-consumer links only. A
procedure can be modeled as a graph with two types of
nodes: executable components and data objects. The edges
in the graph connect components with their data object
inputs and outputs (see Figure 2, bottom right for an
example). This accommodates a dataflow model among
steps akin to data-centric workflows [Gil et al 10]. TellMe
uses an underlying workflow system that provides a

presentation for workflows as well as reasoning
capabilities. As we will see, this basic model is already very
rich and sufficient for representing interesting classes of
procedures. The framework currently accommodates some
forms of iteration, but would need to be extended for
procedures that require conditionals, controlled iterations,
and other types of links between steps.

TELLME: ALLOWING NON-PROGRAMMERS TO TEACH
PROCEDURES THROUGH NATURAL TUTORIAL
INSTRUCTION
We describe the main features of our approach using an
example of the interaction experienced by one of our users
who is a non-programmer and used our TellMe system to
create a procedure.

Throughout the paper we use scenarios where the system
learns procedures executed by airplane pilots to patrol an
area looking for oil pollution from ships. The user is
teaching the kinds of reconnaissance tasks that pilots do in
the Belgian Navy, which are scenarios that we chose for our
evaluation as we will describe later on. The system starts
off having a number of primitive actions for recording the
situation with a variety of instruments, including infrared
and ultraviolet cameras, SLAR cameras, and digital picture
and video cameras. There are also primitive actions to send
alerts and reports back to the base, and to generate initial
estimates of the volume of the spill.

Figure 1 shows an example of the utterances and the
interaction of a user with the system to teach a procedure
where a plane is to descend closer once a spill is found,
then take videos and send them to the headquarters, and to
record the GPS readings and send them along as well. The
utterances are verbatim what the user would type. We will
show later a screenshot of the current user interface, but for
now we want to abstract from the interface details and focus
on what the user and the system are communicating.

Key Feature: Exposing Prior Knowledge
A challenge that users face when teaching a system is to
figure out what the system already knows or what
capabilities it has. Lessons always build on prior
knowledge, using it as building blocks to the instruction.

Our approach is to constrain the user’s input with a
command line interface that completes the user’s utterance
based on the objects and actions that are already known to
the system [Groth and Gil 2009]. In this way the system
exposes known actions and object types, which serve as
building blocks to the user’s expression of each instruction
command. Here is an example of how the system exposes
what it knows about properties of positions: when the user
types “descend to a position with” then the system shows a
pull-down menu that includes “descend to a position with
height”, “descend to a position with longitude”, and
“descend to a position with latitude”.

User: “find oil spill, descend to a position of height 200”

<The system shows the user that it assumes that meant to descend
after finding the spill. It also shows the user an alternative
interpretation where the descent was meant to happen before
finding the spill. It asks the user to either accept the assumed
interpretation and if not to choose the alternative.>

User: “film the spill”

<The system indicates it did not understand that>

User: “record videos and send them”

<The system shows the user that it assumes that meant to iterate
over each of the videos and send each in turn, since the send
action is defined for sending one document at a time.>

<The system shows the user that the result of sending the videos is
a series of message receipts.>

<The system shows that it assumes the position to be after the
descent, it also shows the alternative interpretation that it is the
position before descending. >

User: “record GPS reading”

<The system shows the user that it assumes that the instruction
meant to record the GPS reading over the position after
descending. It also shows the user an alternative interpretation
which is to record the GPS reading at the position when the spill
was first found. It asks the user to either accept the assumed
interpretation and if not to choose the alternative.>

User: <selects the latter option>

User: “record image”

<The system shows three interpretations, one for the action to
record IR image, another for record UV image, and another to
record SLR image>

User: “send thickness image”

<The system shows the user that it is not familiar with the term
high level alert, but that it assumes it is a kind of alert given the
context in which the term is used. The user does not have to
interrupt the instruction and define it now.>

<The system shows the user that the send action requires some
evidence as input, and that it assumes that to be the output of the
record GPS reading action.>

Figure 1. Overview of the interaction between a user and TellMe
to teach a procedure to find and report oil spills in the water from
a plane. The utterances are verbatim what the user would type.
The TellMe user interface for this interaction is shown in Figure 2.

Key Feature: User Input as Controlled Natural Language
One important challenge that we need to address is that
while natural language is a very natural way to provide
tutorial instruction, interpreting unconstrained natural
language is far beyond the state of the art.

Our approach is to use a paraphrase-based interpretation
system that matches the user’s utterance against a set of
pre-defined paraphrase patterns, following the approach in
[Gil and Ratnakar 2008]. Each paraphrase pattern is
associated with a set of primitive commands that the user
would have to use in order to have the intended effect that
is described with the paraphrase pattern. The paraphrase

patterns are exposed to the user through the command line
interface described above.

For example, the utterance “descend to a position with
altitude 200” is mapped to a paraphrase pattern component‐
as‐verb  +output‐object  +output‐property  +  output‐
property‐value. This paraphrase pattern is tied to a
command that finds a component whose name matches the
verb and adds it to the procedure. It further determines
which of its defined outputs matches the uttered output
object and asserts the output property value for the output
property of the object corresponding to that output.

When an utterance cannot be mapped to any paraphrase
pattern, the system indicates so to the user and then the user
has to reformulate that instruction. This is the case with the
utterance “film the spill” in Figure 1.

Several studies have found that users bring up new terms in
any domain following a Zipf’s law and there are always
new terms that come up (e.g., [Bugmann et al 01]). When a
new term appears in an utterance, TellMe will make
assumptions about what it might mean. For example, when
the user utters “send thickness image” and the system is not
familiar with that term, it will assume that the term refers to
an object (as opposed to an action or a property), and that it
is a way to refer to an IR image since that is a type of image
output by a step that is already in the procedure.

The combination of the command line interface and the
paraphrase-based interpretation system gives the user the
illusion of entering free text while the system actually is
controlling what the user can input in ways that are
amenable to understanding and interpretation.

Key Feature: Shared Learning State to Establish Trust
An important principle in user interface design is
establishing user trust. A user needs to understand what the
system is doing about the input she provided, and trust that
the system is taking appropriate action. In our case, the
system should give feedback to the user about what it is
learning from the instruction. It must do so unintrusively,
more as a nod than a detailed report, so that the user can
focus on continuing with the lesson. Users need to know
what the system has understood and learned so far as the
lesson progresses.

Our approach is that the system always shares its internal
learning state. For example, in many cases the user’s
instruction is ambiguous and the system creates alternative
interpretations, each resulting in a different procedure
hypotheses. To show that it is considering these
hypotheses, it shows them to the user. She is always asked
to select one of them.

For example, in the third utterance the user specifies
“record GPS reading”. The user did not say from what
position to take the reading. In this case, the system
generates three interpretations and shows them as options in
the history window. The first interpretation is that the image

should be taken at the position after the descent. But it is
possible that the user meant the position before the descent,
and that is presented as a second option. The third
interpretation considers taking the reading from yet another
position that the user may want to describe later. The user
has to select one before continuing, and the top option is
selected by default. As we will see next, TellMe uses
heuristics to rank these options, and because it considers the
first interpretation of the three to be more likely it will rank
it first.

Key Feature: Deductive and Heuristic Reasoning
One important challenge is that natural instruction is often
incomplete. Therefore, the system has to address those
shortcomings if it is to learn the complete procedure. Our
approach is to use deductive and heuristic reasoning.

Deductive reasoning is used to make assumptions about the
objects and steps in the procedure in order to create
constraints on objects that are underspecified. The system
is effectively performing deductive reasoning to infer what
is not mentioned in the instruction. All the constraints
shown in the top right panel were deduced by the system,
and most refer to objects that were not mentioned in the
instruction. For example, the user does not mention that the
input to the procedure is an area to survey to find the spill,
but the system deduces that from what the instruction says.
Also, the fact that taking a picture results in a new image
being created is not mentioned in the instruction, but the
system adds that to its procedure hypothesis.

Deductive reasoning is also used to interpret new terms that
the system has never seen before. Recall that based on their
role in the paraphrase patterns the system assigns a
syntactic category. Through deduction, the system infers
what is the type of new terms and possibly other constraints
based on their role in the procedure. In our example,
“thickness image” will be classified as a type of image.

The second kind of reasoning used in TellMe is heuristic.
Heuristic reasoning is used to figure out what information
about the procedure is still missing given the instruction so
far, and what are possible ways to complete it. These
heuristics essentially create possible completions or
corrections of the procedure hypothesis that the system
created from the user instruction. TellMe shows the user
options that are ranked heuristically.

Heuristic reasoning makes the instruction more natural in
that the system not only has identified what issues to
resolve, which would result in questions to the user. The
system has gone further in taking the initiative to formulate
possible answers to those questions. This makes the
instruction more natural because this is something that
teachers expect from human students.

Key Feature: Selective Questions
An important principle in designing effective user
interfaces is to take into account the cost of requesting user

interventions. Because instruction is incomplete, the system
may have many possible interpretations and therefore it
could ask many questions to the user to determine which is
the one that the user intended. Yet, later instruction may
address those questions and so the user intervention was
unnecessary and would not be considered natural.
Although a user in teaching mode can be expected to be
more willing to cooperate than in other circumstances, the
system should not insist on asking questions constantly just
to satisfy its learning goals to disambiguate and to complete
the instruction.

Addressing this challenge is difficult, because if the system
postpones all its questions then there may be a large space
of possible candidate interpretations that would make
learning very unmanageable.

We use eager questioning to ensure that a single procedure
hypothesis is chosen by the user. The system asks the user
to select among procedure hypotheses when several are
possible. We use lazy questioning for other matters. For
example when an unknown term is used in the instructions,
the system makes assumptions about it and proceeds
without interrupting the user with questions. This is the case
in Figure 1 when the user refers to a “thickness image”
which is an unknown term.

LEARNING FROM TUTORIAL INSTRUCTION IN TELLME
TellMe reasons about 1) the current user’s utterance, 2) the
results of the interpretation of prior utterances, and 3) its
prior knowledge about the objects and actions in the
domain of discourse. During this process, the system will
detect omissions in the instruction and generate possible
alternative interpretations to present to the user as options.
Any interpretations that are found to be inconsistent with
the system’s prior knowledge are ruled out. As the system
processes the instruction, it may detect incorrect aspects
and give it back to the user for reconsideration. The options
are ranked heuristically and presented to the user for
selection. At any given point, the user and the system are
pursuing a single option as the active procedure hypothesis.

We first describe the user interface, and then describe four
major modules in the system to process user instruction.

TellMe User Interface
Figure 2 shows a screenshot of the user interface that
corresponds to the interaction shown in Figure 1. The user
enters her utterances (e.g., “Find oil spill”) in the command
line on the top left. TellMe tries to provide the user with a
menu of options to complete the current utterance.

When the utterance is completed, TellMe will show on the
right hand side the leading hypothesis for the procedure
being taught. At the bottom a dataflow diagram is shown.
At the top, a set of constraints is shown, most of them
inferred by the system. Green ovals show the inputs to the
procedure, in this case the area the user wants to survey.

 Figure 2. Screenshot that corresponds to the instructions and interaction in Figure 1.

The previous utterances of the user, registered by the
system are shown in the History area on the top left.

When TellMe is unable to parse or understand an utterance,
it is shown in red in the History. This gives the user the
option to rephrase her input. This kind of interaction allows
users to quickly learn how to communicate effectively with
the system – as we found in our formative user studies (see
below).

When TellMe does not understand a particular word in the
user’s instruction, it will create a new object for it in the
procedure but will mark it in red to point out that it did not
understand it. It will further infer as much as possible by
context or from background knowledge. Entering “Find oil
spill in the bay”, e.g., when the system does not know what
“bay “ is, TellMe will mark it read, but also infer that “bay”
is an area, because it knows how to find spills in an area.
Users are not required to immediately answer questions
about the new object.

When TellMe finds several possible ways of understanding
a user’s utterance, it will create several options, listed in the
History window. Before continuing with the instructions,
the user can see the respective graph of each of these by
clicking on them. This way she can choose the one she
wants to continue working on. For example, the utterance
“record image” has three interpretations, and are shown as

three possible branches of the option tree shown in the
History.

A significant benefit of the History window is that the user
can always go back if she later changes her mind about a
choice she made or if she types something she would like to
undo. She can then continue from that previous version
from the History.

The user finishes a teaching session by typing “the end” or
“that’s it”. TellMe will then further elaborate the learned
procedure, as we describe in more detail below.

TellMe Matcher: From User Utterances to Commands
The TellMe Matcher builds on our prior work on mapping
to-do lists into declarative agent capabilities through
paraphrase pattern matching [Gil and Ratnakar 06]. In that
approach, each formal action corresponds to a set of
alternative paraphrase patterns that a user could use to state
it. In TellMe, each command that would modify a
procedure is associated with a set of paraphrases. For
example, the utterances “descend to a new position” (a
verb), or “descending to a new position” (a gerund, as in
“after descending to a new position, record gps readings”)
both map to a single command AddNodeWithOutput
+c +o to add a component +c=“descend” and an output
+o=“new position” to the procedure being created. In

addition to paraphrase patterns for commands, TellMe also
has a collection of paraphrase patterns to express step
orderings (e.g., “first find spill then descend”), steps, data,
and data properties. For example, “descend to a position
with altitude 200” and “descend to a position with 200
altitude” are alternative ways to express properties of the
position after descending. Step ordering are enforced via
dataflow links in the procedure graphs. All the paraphrase
patterns are domain independent. TellMe also has a
collection of domain-specific paraphrase patterns that
represent equivalent terms to refer to each component, data,
and property. For example, the “capture-IR-image”
component correspond to the terms “capture IR image”,
“take IR picture”, “capture infrared image”, “record IR
image”, and so on. There are paraphrases that represent
morphological variations, for example plurals of nouns and
the gerunds above. We have two dozen paraphrase patterns
for the oil spill domain.

The TellMe Matcher uses all these paraphrase patterns to
generate the possible utterance completion options to the
user, as described in [Groth and Gil 09]. The result is a
specific set of formal commands to modify the procedure
whose rendering is the user utterance. For example, for
“after descending to a new position, record gps reading”,
TellMe generates a set of commands:

AddNodeWithOutput n1 +c=descend +o=new‐position 
AddNode n2 +c=record‐gps‐reading  
AddLink n1 n2 +v1=+o 

All these paraphrase patterns used by the TellMe Matcher
are created manually beforehand by analyzing a corpus of
typical expressions of procedures in the domain. This is
typical practice for speech recognition and natural language
input systems. This component could in principle be
extended with WordNet synonyms (synsets) and with more
extensive grammars than our current paraphrase-based
approach. However, our current simple approach fulfills
the important function of guiding user to express their
utterances in a way that has the structure needed by the
system to turn them into formal commands.

The TellMe Matcher also handles new terms in the
instruction. For example, an utterance such as “descend to
a safe position” mentions a “safe position” which is not
defined anywhere in the system. This is a very common
occurrence in instruction, as studies have shown that the
number of terms used in subsequent commands increase
and continue to grow following Zipf’s law [Bugmann et al
01]. The TellMe Matcher hypothesizes the grammatical
category of the new term based on its function in the
paraphrase. In the example above, it will assume that “safe
position” is a type of object since it is mentioned where an
object type would be mentioned. The TellMe Matcher also
assigns it a type based on the other known terms in the
utterance. In the example, since “descend” outputs a
position then “safe position” is assumed to be of type
position. The new term is nevertheless marked as never
seen before, so that the user can either corroborate these

assumptions or retract the instruction and retry expressing
what she intended. Additional information about the new
term can be learned later on, but sometimes just going
along with the assumptions is enough information to be
able to learn a procedure that will execute just fine even
with limited knowledge about the new type of object. 

TellMe Creator: Extending the Procedure
The TellMe Creator adds to the existing procedure sketch
according to the commands that result from the TellMe
Matcher. The underlying workflow framework has a
graphical editor for procedures, where users drag and drop
components and connect them through links. The
commands that are input to the TellMe Creator correspond
to editing commands in that editor.

The instruction, however, may result in underspecified
editing commands. In the graphical editor, one has to select
the argument (or port) where an input is linked. In contrast,
instruction tends to be incomplete because a user would
rarely mention in an instruction what argument identifier
the input corresponds to. Users would expect the system to
figure this out based on the definition of each action. The
TellMe Creator does this by checking the types of the
inputs and assigning the link to the input that has a
compatible type. For example, if the instruction stated “find
spill and descend at that position”, a component to descend
is added and an object of type position is added. In this
case the input to descend is of type position, so the link is
compatible and the argument identifier is clear. If more
than one link is possible, then the TellMe Creator generates
an alternative procedure hypothesis for each link. The set
of hypotheses is carried to the next module.

The TellMe Creator handles some forms of incorrect
instruction. An interesting case that arises is when the types
assigned to objects are not compatible. An example is the
instruction “estimate volume of oil spill with a UV image”,
which results in a component to do the estimate being
added and an input to it also being added with type UV-
image. In this case, the definition of the estimate
component specifies that its input must be an IR image, not
a UV image. The instruction is considered incorrect, and
TellMe will present the utterance marked in red back to the
user so she can reconsider what she stated.

In extending the procedure, TellMe handles incompleteness
in the specification in the instruction of an individual step.
For example, for the utterance “descend”, TellMe will
assume that the user meant to specify “descend from a
position to another position with a specified altitude.” Even
though those objects are not mentioned as part of the step,
the system will add them as entities relevant to the
procedure. These objects will be used in the module that
we describe next.

The TellMe Creator also handles collections of objects by
introducing iterations when an action input is limited to one
object but the instruction refers to a set. This is how the
utterance “record videos and send them” is handled.

TellMe Unifier: Tightening the Procedure
Instructions also tend to be incomplete in that they do not
express that the same object is relevant to several steps.
Consider the following utterance: “Find oil spill, descend,
and take a picture”. This utterance does not say that the
position where the oil spill is found is the same position
where the descent starts. It also does not say that the
position where the descent ends is the same position where
the picture should be taken. So this instruction may be
interpreted as each of those steps referring to different
positions. TellMe uses a tightening heuristic that suggests
that objects of the same type tend to be the same across
steps unless otherwise indicated in the instruction. As any
heuristic, this is not always the correct assumption and we
need to give the user a way to indicate what the correct
correspondence between objects is. Therefore, the TellMe
Unifier makes as many mappings between objects as are
compatible given the current procedure hypothesis, and will
make them all possible interpretation options to the user. It
will use the tightening heuristic to rank these options,
presenting to the user the option where all objects are the
same across steps as the most likely one. In cases when the
heuristic is not correct, the user simply selects another
option among those presented. This way, the system
exploits an effective heuristic to make assumptions about
how to complete the instruction while making it easy for the
user to override those assumptions.

TellMe Elaborator: Elaborating the Procedure
The TellMe Elaborator is applied for efficiency
considerations only when the user concludes the instruction,
indicated with utterances such as “that’s it” or “the end”. It
uses additional knowledge about the steps in order to check
the validity of a procedure hypothesis. Recall that the
TellMe Creator already does some validation by using the
types of the inputs and outputs of steps to validate the links.
The TellMe Elaborator applies other constraints in the steps
and propagates them through the procedure as it is defined.
For example, suppose the instruction states “descend to a
position of altitude 200.” The previous modules will create
a step where the output is a position whose has-altitude
property has the value 200. A rule about the descend step
will be used by the TellMe Elaborator to set the input
parameter to 200 in order to obtain that desired output or
effect. The TellMe Elaborator applies the constraint
propagation algorithms described in [Gil et al 10]. Those
additional findings were not specified in the original
instruction, but are important to make the procedure
executable. The TellMe Elaborator will add them as
constraints to the procedure.

CAN NON-PROGRAMMERS USE TELLME?
To evaluate our approach, we conducted initial formative
user studies. The goal was to collect feedback on the
overall approach and to find out whether there were any
major barriers for users to communicate procedural
knowledge with our interface.

We tested six subjects with ages ranging from 11 to 55.
None of the subjects had programming experience, except
one of the younger ones who had used Scratch [Resnick et
al 09]. Each subject spent between 15 minutes and 1 hour
using the system in total.

We wanted to avoid giving the subjects extensive training
on our system. If our goal is to show that it is natural to
give this kind of instruction, then any substantial training
would defeat that purpose. The instructions to the subjects
were limited to one page that described the different
features and buttons of the TellMe interface, and are
available on our web site1.

We also wanted to avoid giving them descriptions of what
procedures to teach because then they would likely just
utter to the system the procedure in the way we would
describe it to them. Therefore, we choose a Web site not
developed by us that describes activities that are carried out
by pilots that detect oil spills that pollute the sea off the
coast of Belgium, without describing explicitly the
procedures to be followed2. We coded basic actions and
object types, as well as the paraphrases based on the text
that appears on that site. We asked the subjects to begin by
looking at the actions that were already defined in the
system. We then asked them to think of different kinds of
procedures that they would think are reasonable for a pilot
to carry out, and to teach them to the system. As a result,
the procedures that different subjects created were unique
and not comparable. There was wide variation on the size
and nature of the procedures that were designed by the
users themselves. For example, some procedures record
images at different heights, while others focus on sending
alerts and as early as possible. We noted that some subjects
redesigned the procedure as they went along rather than
beforehand, so in those cases they had to adjust portions of
the procedure that they had previously created, which they
were able to do.

Our first goal was to check whether users would be able to
use TellMe to specify procedures using natural language.
For most subjects, the first few utterances were hard to get
right, but after a few tries they learned to express what they
wanted. This kind of interaction was typical across subjects.
We also noted that the interaction with the command line
helps the user construct interactively utterances that are
already conformant to paraphrase patterns that the system
understands. Here is an example of an initial interaction of
one of our subjects, with the utterances that were rejected
by the system are marked in red:

1 http://www.isi.edu/ikcap/tellme/instructions.html
2 http://www.mumm.ac.be/EN/Monitoring/Aircraft/methods.php

The subject was learning about what is possible to say, and
what commands were understood by the system. After a
few minutes, the same subject articulated the following
instruction:

where all the utterances were understood by the system.

None of the procedures created was a linear sequence,
rather all procedures had an interesting structure with some
parallel steps and with multiple step dependencies. The
shortest procedure created by any subject had 4 steps.
Below are two examples of the procedures that were
created with TellMe by two different subjects:

Particularly interesting was the ease with which users
created iterations that were implicit in the instruction but
were not directly expressed. Below are two examples of
instructions followed by the procedure learned and entered
by two different subjects:

In the first one, “record videos” is followed by “send
videos”. Since the send action can only send one document
at a time, the system created an iteration where for each
video there is a send action. In the second one, “take a
video” followed by “send alert”, where there is no plural,
resulted in an iteration where an alert is sent for each video.

All subjects were able to make most of their instructions
understood. The table below shows the number of
utterances entered by several subjects for one of their
procedures, and the subset of those utterances that was
accepted by the system:

Subject Total utterances Accepted

S1 9 6

S2 15 14

S3 39 17

S4 3 3

S5 (A) 41 19

S5 (B) 15 13

S6 27 10

There is wide variability across subjects. There is also
great improvement as the user becomes more familiar with
what can be expressed, as shown by the two procedures
shown for subject S5.

We also wondered if users would be able to interact with
the system to correct the system’s chosen interpretation
when several are possible. In the following example of
instruction, the subject inspected three alternative options
and selected the third one, which represented what they had
intended to convey:

Also visible in that screen shot are the constraints that
TellMe learns about the objects in the procedure, together
with the topology of the procedure itself. These constraints
are a significant part of what is being learned by the system.

The majority of subjects understood the procedures as the
interface was showing them. The dataflow across the steps
was not initially intuitive, but after seeing a few examples
they would create a procedure that had all the steps
interconnected. Some users never stumbled across such
examples, so their procedures contained steps that were not
integrated with the rest. Below is an example:

We believe that this issue can be understood by users better
but that we need to ensure that they are aware of the
dataflow connections among steps. The tightening heuristic
helped significantly in exposing subjects to these dataflow
links. In some cases, subjects left inputs of steps
unconnected to the outputs of other steps, in effect making

them inputs of the overall procedure which was not
intended. We believe a good remedy for this issue is that
when the user is finished specifying the procedure, TellMe
should explicitly mention what the current inputs of the
procedure are, and have the user correct that if needed.

Below is a screenshot showing learning an image
processing workflow that illustrates the generality of
TellMe:

CONCLUSION
We have described an approach to learn procedures through
tutorial instruction using a natural interaction with a human
teacher. Our initial steps to creating this capability have
resulted in an interface that non-programmers were able to
use to specify procedures of reasonable complexity. Many
challenges remain, including handling incorrect instruction,
using more complex procedure representations, and
managing large numbers of procedure hypotheses.

ACKNOWLEDGEMENTS
We would like to thank Paul Groth for many valuable
discussions on this work. This research was funded in part
by the Defense Advanced Research Projects Agency under
grant HR0011-07-C-0060, and in part by the National
Science Foundation under grant CCF-0725332.

REFERENCES
1. Bugmann, G., Lauria, S., Kyriacou, T., Klein, E., Bos,

J., and K. Coventry. “Using Verbal Instructions for
Route Learning: Instruction Analysis.” Proceedings of
the Conference Towards Autonomous Robots (TIMR),
Manchester, UK, 2001.

2. Castelli, V., Bergman, L.D., Lau, T., and Oblinger, D.
“Sheepdog, parallel collaborative programming-by-
demonstration.” Knowledge-Based Systems, 23(2): 94-
109, 2010.

3. Chen, J. and Weld, D.S. “Recovering from errors during
programming by demonstration”. Proceedings of the

ACM International Conference on Intelligent User
Interfaces (IUI), Canary Islands, Spain, January 2008.

4. Clark, P., Thompson, J., Barker, K., Porter, B., Chaud-
hri, V., Rodriguez, A., Thomere, J., Mishra, S., Gil, Y.,
Hayes, P., Reichherzer, T. “Knowledge Entry as the
Graphical Assembly of Components,” Proceedings of
the International Conference on Knowledge Capture (K-
CAP), 2001.

5. Fritz, C. and Gil, Y. “A Formal Framework for
Combining Natural Instruction and Demonstration for
End-User Programming.” Proceedings of the ACM
International Conference on Intelligent User Interfaces
(IUI), Palo Alto, CA, February 2011.

6. Gil, Y. and V. Ratnakar. “Automating To-Do Lists for
Users: Interpretation of To-Dos for Selecting and
Tasking Agents.” Proceedings of the Twenty-Third
Conference of the Association for the Advancement of
Artificial Intelligence (AAAI), Chicago, IL, July 2008.

7. Gil, Y., Gonzalez-Calero, P., Kim, J., Moody, J. and V.
Ratnakar. “A Semantic Framework for Automatic
Generation of Computational Workflows Using
Distributed Data and Component Catalogs.” To appear
in Journal of Experimental and Theoretical Artificial
Intelligence, 2010.

8. Gil, Y., “Human Tutorial Instruction in the Raw.”
Submitted for publication, 2010. Available from
http://www.isi.edu/~gil/gil-ker10.pdf.

9. Groth, P. and Y. Gil. “A Scientific Workflow
Construction Command Line.” Proceedings of the ACM
International Conference on Intelligent User Interfaces
(IUI), Sanibel, FL, February 2009.

10.Huffman, S. and J. Laird. “Flexibly Instructable
Agents.” Journal of Artificial Intelligence Research, 3,
1995.

11.Ko, A.J., Myers, B.A., and Chau, D.H. “A Linguistic
Analysis of How People Describe Software Problems.”
Proceedings of the Visual Languages and Human-
Centric Computing Conference (VL/HCC), 2006.

12.Li, I., Nichols, J., Lau, T.A., Drews, C., and Cypher, A.
“Here's what I did: Sharing and reusing web activity
with ActionShot.” Proceedings of the 28th International
Conference on Human Factors in Computing Systems
(CHI), 2010.

13.Nardi, B. “A Small Matter of Programming.” MIT
Press, 1993.

14.Resnick, M., J. Maloney, A. Monroy-Hernández, N.
Rusk, E. Eastmond, K. Brennan, A. Millner, E.
Rosenbaum, J. Silver, B. Silverman, Y. Kafai. “Scratch:
Programming for All.” Communications of the ACM,
11, 2009.

15.Thomaz, A. L. and C. Breazeal. “Teachable robots:
Understanding human teaching behavior to build more
effective robot learners.” Artificial Intelligence, 2008.

16.Webber, B. L. Webber, N. I. Badler, B. Di Eugenio, C.
W. Geib, L. Levison, M. Moore. “Instructions,
Intentions and Expectations.” Artificial Intelligence,
73(1-2), 1995.

