Generating Optimal Plans in Highly-Dynamic Domains

1

A natural way for an agent to decide how to act is to ex-
ploit a policy — a function that maps each state into an ac
tion to be performed. Unfortunately, computing a policy
is time intensive, so in many applications an agent plan§
from a known initial state instead. Unfortunately, when
the application is situated within a highly dynamic envi-
ronment, this initial state may rapidly change in unpre-
dictable ways during planning, possibly invalidating the
current planning effort. We argue that neither boldly ignor
ing such changes nor replanning from scratch is an appeal-
ing option. While the former is unlikely to produce a good
plan, the latter may never be able to complete a plan whe
unexpected events keep interrupting. Instead we propose

Christian Fritz and Sheila A. Mcllraith
Department of Computer Science,
University of Toronto,
Toronto, Ontario. Canada.
{fritz, sheilgt @cs.toronto.edu

Abstract

Generating optimal plans in highly dynamic en-
vironments is challenging. Plans are predicated
on an assumed initial state, but this state can
change unexpectedly during plan generation, po-
tentially invalidating the planning effort. In
this paper we make three contributions: (1) We
propose a novel algorithm for generating op-
timal plans in settings where frequent, unex-
pected events interfere with planning. It is able
to quickly distinguish relevant from irrelevant
state changes, and to update the existing plan-
ning search tree if necessary. (2) We argue for a
new criterion for evaluating plan adaptation tech-
nigues: theelativerunning time compared to the
“size” of changes. This is significant since dur-
ing recovery more changes may occur that need
to be recovered from subsequently, and in order
for this process of repeated recovery to terminate,
recovery time has toonverge (3) We show em-
pirically that our approach can converge and find
optimal plans in environments that would ordi-
narily defy planning due to their high dynamics.

Introduction

an integrated planning and recovery algorithm that explic-
itly reasons about the relevance and impact of discrepancie
between assumed and observed initial state.

As a motivating example, consider a soccer playing robot
in RoboCup, which, having the ball, deliberates about how
to score. In RoboCup it is common to receive sensor read-
ings 10 times per second. The game environment is very
dynamic, resulting in frequent discrepancies between as-
sumed and observed initial state. Such discrepancies may
or may not affect the current planning process. But how can
the robot tell? And how should the robot react when dis-
crepancies are deemed relevant? For instance, assume that
at some point during planning, the current most promis-
ing plan starts with turning slightly to face the goal and
then driving there, pushing the ball. If the ball unexpect-
edly rolls 10 centimeters away while deliberating, the ini-
tial turn action may cause the robot to lose the ball, so
this discrepancy is relevant and another plan, starting by
re-approaching the ball, should be favored. But if the ball
rolls closer, the original plan remains effective and the di
crepancy should be ignored and planning continued.

The contributions of this paper are three-fold: (1) We pro-
pose a novel algorithm for plan generation that monitors
the state of the world during planning and recovers from
relevant unexpected state changes. The algorithm produces
plans that are optimal with respect to the state where execu-
tion begins. Itis able to distinguish between relevant and i
relevant discrepancies and updates the planning seaech tre
to reflect the new initial state if necessary. This is gener-

ally much faster than replanning from scratch, but does not

rely on knowledge about a predefined set of potential con-
ingencies: we assume that the system can spontaneously
assume any state. This is particularly interesting in conti
uous domains, where the number of possible discrepancies
is infinite. Intuitively, the approach strikes a compromise
between complete policies and simple sequential plans and
ses relevance information, computed during plan gener-
tion, to increase the plan’s robustness. (2) We introduce
a new criterion for evaluating plan adaptation algorithms:
their relative running time compared to the “size” of the

discrepancy. We argue that this measure is of greater pra¢a the situation calculus, thetate of the world is ex-

tical significance than either theoretical worst case abnsi pressed in terms of functions and relations, caliled
erations or the absolute recovery time. In highly dynamicents(set.F), relativized to asituations, e.g., F(Z,s). A
domains unexpected state changes occur during plannirgjtuation is ahistory of the primitive actions performed

as well as during plan adaptation. In order to obtain a plarirom a distinguished initial situatior$,. The function

that is known to be optimal when execution commencesdo(a, s) maps an action and a situation into a new situa-
the cycle of planning and recovery has to terminate by aion thus inducing a tree of situations rooteddn For
completed recovery before the state changes any furthereadability, action and fluent arguments are often sup-
This is possible when the time for recovery is roughly pro-pressed. Alsodo(ay,, do(an—1, .. .do(a1, s))) is abbreviated
portional to the size of the change. Imagine planning takeso do([a1, . .., ax], s) Or do(@, s) and we definglo([], s) = s.

10 seconds and recovering from any state changes that ol this paper we distinguish between a finite seagént ac-
curred during that time takes 8 seconds. If we assume thdions, A.gens @and a possibly infinite set ekogenous actions

in 8 seconds on average fewer changes happen than in 10(@r eventy, Aexog (A = AagentU Aexog. The agent can only
seems reasonable to expect that we can recover from thogerform agent actions, and exogenous events can happen at
in less than 8 seconds, say on average 6. This continueany time, including during planning.

until recovery has “caught up with reality”. We informally
call this behaviorconvergence Repeated replanning from
scratch does not converge, as it does not differentiate b

tween “big” and “small” discrepancies. (3) We show em- these axioms can be found Reiter, 2001 Included in

pirically that our algorithm converges often even when un- . . .)
: . the domain-dependent axioms are the following sets:
expected state changes occur at relatively high frequency.

Particularly “on-the-fly” recovery, i.e., recovering imdie Initial state: a set of first-order sentences relativized to
ately upon discrepancy detection, has a higher chance aituationS,, specifying what is true in the initial state.

convergence than the alternative of completing the orlginaSuccessor state axiomsprovide a parsimonious repre-
planning task first and recovering only afterwards.

sentation of frame and effect axioms under an assump-
We explicitly assume that the number and extent of distion of the completeness of the axiomatization. There is
crepancies is on average proportional to the time intervalpne successor state axiom for each fluénhtpf the form
i.e., that greater discrepancies are incurred in longee tim F'(%, do(a, 5)) = ®r (T, a, s), Whered (%, a, s) is a formula
intervals. This seems reasonable to us and holds for manyith free variables among, a,s. ®(Z, a, s) characterizes
interesting application domains. This, together with the o the truth value of the fluernt () in the situationdo(a, s) in
servation that our algorithm can recover from a few smallterms of what is true in situation These axioms can be
changes faster than from many large ones, allows our aputomatically generated from effect axioms.
proach to converge. We demonstrate this and the resulting . . :) . .
- .~ Action precondition axioms: specify the conditions un-
convergence of our approach empirically, on domain sim- ; S : . :
. : !) . der which an action is possible. There is one axiom for
ulations which satisfy this assumption. We further under- . S
S) . . eacha € Aagent Of the formPosga (%), s) = 11.(Z, s) where
standoptimalityto be defined in terms of what is currently L : :

1, (%, s) is a formula with free variables amomgs. We
known, and we want to execute plans only when they Are Ccume exonenous events A....are always possible
considered optimal at the moment execution begins. Our 9 o9 ysp :
working assumption is that no model of future exogenousRegression o
events exists. Hence, we treat the problem as a determinighe regressiorof a formulay through an action is a for-
tic planning problem, whose plans and planning process wa'Ua¢” that holds prior ta being performed if and only if

X . . ¢ holds aftera is performed. In the situation calculus, one
aim to make robust against potential unexpected changesgien, regression is defined inductively using the successor

After reviewing some preliminaries in the next section, weState axiom for a fluenf (7) as abovdReiter, 2001

A basic action theory in the situation calculuB, com-
&rises fourdomain-independent foundational axignasid
a set ofdomain-dependent axiom®etails of the form of

describe our approach in Section 3, followed by empirical ReglF(Z,do(a, s))] = ®r (T, a, s)
results and a discussion including related work. Regif—1)] = —Regify]

Regiiy1 A 2] = Regifi)1] A Regifys]
2 Background Regi(3z)y] = (Iz)Regiy]

For the exposition in this paper, we use the situation calcuh\[/l?)uff t;z(gﬁ;sgig]théoredig?etz I;{eegr'[gs(gioo(r?’osv);]r’ alflggtions
lus with a standard notion of arithmetic, but the approach 3), & P 9

. X e ! In the sequence (in reverse order). Note that the resulting
works with any action specification language for which "€ formula has a free variableof sort situation Intuitively, it
gression can be defined, including STRIPS and ADL. ' '

is the condition that has to hold inin order fory to hold
The situation calculus is a logical language for specify-after executingi (i.e. indo(a, s)). Itis predominantly com-
ing and reasoning about dynamical systdRsiter, 2001 prised of the fluents occurring in the conditional effects of

the actions ini. Due to the Regression TheordReiter, the resulting plan is optimal and execution can commence.

2001 we have thatb = v (do(d,s)) = R[y(s),d] for all Otherwise, the recovery procedure updates the final search
situationss. Regression is therefore independent from thetree and open list (describing the search frontier) as nec-
state where the resulting formula is evaluated. essary given any observed changes to the initial state. If

L . . the order of the open list does not change during the recov-
Regression is a purely syntactic operation. Nevertheless

it is often beneficial to simplify the resulting formula for €ry, and hence still has the previously found plan as its first

.) ! . ._element, the plan is known to remain optimal and can be
later evaluation. Regression can be defined in many action

A . . executed. Otherwise, the planner resumes plan generation
specification languages. In STRIPS, regression of a literal "
over an action is defined based on the add and delete list&' the updated structures.
of a. Regression in ADL was defined [Rednault, 1989 On-the-fly: In the absence of any changes to the assumed
initial state, the planner is proceeding in its search for an
optimal plan. Whenever a change to the initial state is ob-
served, plan generation is interrupted and the recovery pro
cedure updates the current search tree and open list to re-
flect the changes. Plan generation then continues.
Going back to our RoboCup example, regressing the gog
“ball in goal” over the action “drive to goal”, yields a condi
tion “have ball”. The further regression over a “turn” actio
states “distance to balt 10cm” as a condition for the suc-
cess of the considered plan, if, e.g., the robot's 10cm lon
grippers enable turning with the ball.

Notation: We usen to denote arbitrary but explicit actions
ands to denote arbitrary but explicit situations, thatis=
do(a, So) for some explicit action sequenée Furthera - o
denotes the result of appending actioto the sequence.

In both cases, this alternation continues until a plan gen-
eration cycle terminates without further interruptions, i
which case the resulting plan is known to be optimal with
respect to the currently assumed initial state. Note that
e following descriptions are simplified for readability.
In practice, there are various ways for increasing the ef-
ficiency of the implementation.
3 Planning with Unexpected Events

. , 3.1 Regression-based* planning
In this paper we consider a planner based 4n for-
ward search that uses positive action costs as a metric, bui this section we present a#* planner that returns not
the conceptual approach is amenable to a variety of othasnly a plan, but also the remaining open list upon termina-
forward-search based planning techniques and paradigmsion of search, as well as a search tree annotated with any

Intuitively, our approach annotates the search tree with alrelevant regressed formulae.

relevant information for determining the optimal plan. By To provide a formal characterization, we assume that the
regressing the goal, preconditions, and metric functieerov Planning domain is encoded in a basic action theDry
Given an initial situatiors, a goal formulaGoal(s), a for-

all considered action sequences, this information is €Xtula Costa, ¢, s) defining costs: of actiona, and a con-

pressed in terms of the current state. When un_expectegstent heuristic specified as a formtdeu(h, s), A* search
events change the current state of the world, this aIIOW$inQSasequence of actioAsuch that the situatiofv (&, S)
us to reason symbolically about their relevance and theigatisfies the goal while minimizing the accumulated costs.

potential impact on the current search tree and choice Otfrt&ratri]rt‘%evgir?sggtiggﬁ%iséﬁﬁg ggt?éﬁigiggugﬂgeo?ﬁees; arch
plan—much faster than replanning from scratch. proceeds by repeatedly removing and expandiﬁg the first

For instance, our soccer robot from above knows from re£lement from the list until that element satisfies the goal,
gressing the goal that the plan [‘turn”, “drive to goal’] Wil always ma_untamm_g the open list's order according to the
g N valuev defined by:
succeed whenever “distance to balllocm” holds. Hence
|t.can determine the relevance of .the aforementioned ball Value (v, do([a,
displacements, and also that, for instance, unexpected ac-
tions of its teammates can be ignored for now. A complica-
tion of this arises from our interest in optimal, rather than
just valid plans, however. We will need to also consider al- A+ ACosfan, en,do(lar, ..., an-1], s))
ternative action sequences, and also handle impacts on t
regressed metric function.

..,aNLs)) def

(3h,c1,...,en)v=h+c1 4+ +cn
A Heu(h,do([al, S ,(XN],S)) A Cos{az, c1, 8)

Iq\‘?\/e assume that the goal can only be achieved by a par-
ticular agent actiorfinish. Any planning problem can be

At the highest level, the approach we present here consistsansformed to conform to this by defining the precondi-
of two components: A regression-baséti planner, and a tions of finish according to the original goal.

recovery procedure. These components, described belo%

. . i ur regression-based version 4f is shown in Figure 1.
can be used in at least two possible ways:

It interacts with the basic action theoryto reason about
At-the-end: The planner generates an optimal plan for thethe truth-values of formulae. We sayholds, to mean that
assumed initial state. If no changes to the initial stateigcc it is entailed byD. The algorithm is initially invoked as

regrA*(D, S, Goal, Cost Heu, Open T) : recovelD, S, Sa2, Cost Heu, Open 7, Index :
1 if Open= []thenreturn ([],T) 1 Fa «— {F € keyqIndeX | F(S1) # F(S2) holds}
2 else[(g, h, @) | Oper] = Open I slice first element 2 A —Upcr, IndexXF) /I affected formulag
3 if Goal(do(&, S)) holdsthen return (OpenT') 3 foreach(a, p’) € Ado /I update preconditions
4 else foreacha’ € Aagentdo 4 if T(&).p = trueand—T(&).P(S2) holdsthen
5 d«—a-do I append action to sequence, 5 T(a).p < false /I action now impossible
6 T(a').P(s) < R[Posgc’, s),d] 6 foreach (g, h,a’) € Opendo
7 if T(a').P(S) holdsthen 7 if ais prefix of@’ then
8 T(d').p < true Il action currently possible 8 remove(g, h, @) from Open
9 T(a").C(c,s) — R[Cos(a/, ¢, s),d] 9 elseif T(a@).p = falseandT'(&).P(S2) holdsthen
10 T(a').H(h,s) «— R[Heuh, s),d'] 10 T(&) .p « true /I action now possible
11 T(d').c — ¢ with ' s.t. T(a').C(c, S) holds 11 a - uast= @ /1 get last action in sequence
12 T(a&).h — h/ with b’ s.t. T(&").H(K', S) holds 12 T(@).C(c,s) +— R[Cos{vast,), @]
13 inser(g , W', @) into Oper 13 T(a).H(h, s) — R[Heu(h) al
14 elseT(d').p + false /l action currently impossible 14 T(@).c + ¢ with ¢ s.t. T(&).C(c, S2) holds
15 return regrA*(D, S, Goal, Cost Heu, Operi, T') 15 T(o?) h «— KW' with b’ s.t. T(a@).H(h', S2) holds
16 g« getGual(T, &)
17 insert(g’, h’, @) into Openand updaténdex

Figure 1: Pseudo-code for regression-badéglanning. 18 foreach (d, ¢') Ado _// update accumulated costs

19 getd s.t.T(q).C(c, S2) holds
20 offset— ¢’ — T(&).c
regrA* (D, S, Goal, Cost Heu, [(0, oo, [])], nil). The last argu- 21 foreach(g, h,d’) € Opendo

ment denotes a data structure representing the annotated22 if @is prefix ofa” theng — g + offset
23 T(d).c— ¢

s_earch tree and is Lmtlally enlpty. The eIements of the opep 5, foreach (&, h') € A do /1 update heuristic values
list are tupleqg, h, @), wherea = [a1,...,a,] IS an actllon | 25 i (3g,h).(g, h, @) € Openthen

sequencey are the costs accumulated when executing this 26 h « b’ with b’ s.t. T(a@).H(k', S2) holds
sequence iy, andh is the value s.tHeu(h, do(&, S)) holds. 27 T(d).h +— h

When an element is expanded, it is removed from the opep 28 return (sort(Open), T')
list and the following is performed for each agent actén
First, the preconditions af’ are regressed over(Line 6). Figure 2: Pseudo-code of our recovery algorithm.
If the resulting formula, stored if(&). P(s), holds inS ac-
cording toD (Line 7), the cost formula fot’ is regressed
overa, the heuristic is regressed over o', and the result-
ing formulae are evaluated ifi yielding valuesc’ and »’
(Lines 9-12). Intuitively, the regression of these forneula
overa describes, in terms of the current situation, the val-
ues they will take after performing Finally, a new tuple is
inserted into the open list (Line 13) accordingjte ¢’ + »’

to maintain the open list’s order accordingWelue(v, s).

algorithm: since all formulae are regressed and hence ex-
pressed in terms of the current state, we can determine
which ones are actually affected by the event, by simply
considering the fluents the formulae mention. For this pur-
pose, we maintain an indérdexwhose keys are ground
fluents (e.g.distanceTo(ball) and whose values are lists
of pointers to all stored formulae that mention it.

A" keeps expanding the first element of the open list until3 2 Recovering from Unexpected Events
this element satisfies the goal, in which case the respec-

tive action sequence describes an optimal plan. This is béAhile generating a plan for an assumed initial situatson
cause a consistent heuristic never over-estimates thalactuan unexpected event say ‘distanceTo(bally— 20", may
remaining costs from any given state to the goal. Due to th@ccur, changing the state of the world and putting us into
Regression TheorefiReiter, 200}, this known fact about situationdo(e, S). When this happens, the aforementioned
A* also holds for our regression-based version. Similarlyindex lets us pinpoint all formulae affected by this change
the completeness of* is preserved. (e.g., T([turn, driveTo(goal), finis).P(s)). After reevaluat-

ing these formulae ido(e, S) and updating their values, the
search tree will be up-to-date in the sense that all condaine
values are with respect t(e, S) rather than the originally
assumed situatio. After propagating these changes to
the open list, search can continue. We show that the result-
ing plan is optimal for the new situatioMote that the re-
gressed formulae never chandgince often only very few
fluents are affected by unexpected events, this relevance-
based approach allows for very efficient recovery.

In service of our recovery algorithm described below, we
explicitly keep the search treé and annotate its nodes
with the regressed formulae for preconditiod$d). P(s)),
costs ('(a).C(c,s)), and heuristic valueT{((&).H (h, s))
and their values according to the (current) initial situa-.
tion S (T(@).p, T(&).c, andT(&).h). Roughly, when this
state changes due to an unexpected ewewe reevaluate
T(&).P(s),T(&).C(c,s), andT(&).H(h,s) in s = do(e, S),

and update their values and the open list accordingly. How-
ever, not all of these reevaluations are actually necessarihe recovery algorithm is specified in Figure2denotes
and this is thekey insightproviding the speed-up of our the annotated search tre@penis the open list, anthdex

the index. The latter contains entries of the fai@type), 0.3F
wherea is a sequence of actions angbe is either of p’

‘c’, or'h’. The algorithm modifies the values of the
tree and the open list (Il. 22 and 26) to reflect their value
with respect to a new situatios, (e.g., do(e, S1)) rather
than an originally assumed initial situatish. If the event
changes the truth value of action preconditions, the con-
tent of the open list is modified accordingly (Il. 8, 17).
When a previously impossible action has now become pos-
sible (Line 9) the annotation for this node is created and
a new entry added to the open list (Il. 11-17). The func-
tion getGual(T, @) computes the sum of all costF(().c) 0
annotated irt" along the branch from the root to node

—zenowavell [
—TPP1

average time (seconds)

250 50%
relative mﬁent deviation”" "

.)) Figure 3: Recovery time relative to amount of change.
As mentioned before, the algorithm can be used in one of

at least two ways: on-the-fly, dealing with unexpected state
changes immediately, or at-the-end, dealing at once wlith akevents. Any fluent may assume any value at any time.

events that occurred durmg pIannmg. The former h"?‘s th?n complex domains, many state changes are completely ir-
advantage that the planning effort is focused more tlghtlyrelevant to the current planning problem, overall or at the

on what is actually relevant given everythmg that has ha_p'current stage of planning, and others only affect a small
pened so far. This approach can be implemented by in

) . . subset of elements in the search tree. During recovery,
serting code right before Line 15 adgrA* that checks for u ! urng very

ts and invok i handing Ooe we exploit this structure to gain significant speed-ups com-
events and invokegcoverit necessary, changing Oper, hepared to replanning from scratch. More importantly it al-

andr accordmgly. The appeal of the latter s.tems fromt lows us to recover from small perturbations faster than from
fact that recovering from a bulk of events S|multaneouslyIarge ones, where “large” may refer to the number of fluents

Cf;n tljte mori efﬁment;han recoverl?g from eai:h Indl\ﬂdu'that changed or the amount by which continuous fluents
aly. It may, owever, be necessary 10 resusge searc changed (cf. Section 4). This way, recovery camverge

aftgrvyards, f fof |.n_stance, the current plan IS no Io_ngeri_e_, “catch up with reality”, as we defined informally in the
valid in the new initial state or a new opportunity exists,

which may lead to a better plan. With both approaches!ntmduc“on' We verified this empirically.

additional events may happen during recovery, making ad- .
ditional subsequent recoveries necessary. 4 Empirical Results

The following theorem states the correctnesseobverin - \ye hresent empirical results obtained using a current im-
terms of the at-the-end approach: calliegoverand con- 0 manation of our algorithm to generate optimal plans
tinuing regrA” with the new open list, produces an optimal 5 qitterently sized problems of the metric TPP and Zeno-
plan and in particular the same as replanning from scratCfy,, 6| domains of the International Planning Competition.
in S>. Recall that the head of the open list contains the OPWe begin by showing that the time required for recovering
timal plan. For on—thg-ﬂy,_correctness can be shown analofrom unexpected state changes is roughly and on average
gously (cf. Lemma 1 iriFritz, 2009, p.19]). proportional to the extent of the change. We then show that
Theorem 1 (Correctness)Let D be a basic action theory, our approach is able to find optimal plans even when the
Goala goal formulaCosta, c) a cost formula, andleuh) a initial state changes frequently. We compare the two men-
consistent heuristic. Then, for any two situatiafss, in tioned recovery strategies on-the-fly and at-the-end, show

D we have that after the sequence of invocations: ing that the former clearly outperforms the latter in terms
1. (01, T}) — regrA*(D, 51, Goal, Cost Heu, [(0, o0, [)], nil), of likelihood of convergence. Finally, and not surprisingl

2. creatdndexfrom Ty, we show that our approach generally outperforms replan-
3. (0s,T3) « recoveD, S, 2, O1, T1, Index), ning from scratch.. All experiments were run on an Intel
4. (Og,Tg) - regrA*(D, S», Goal, Cost Heu, 027T2)1 Xeon 2.66 GHz with 2GB RAM.

the first element 065 will be the same as i’ of Figure 3 plots the average time the combinationegbver

(O, T") « regrA*(D, S, Goal, Cost Heu, [(0, oo, [])], nil), + continuedregrA* search took to find a new optimal plan,

or bothOs; andO’ are emptyProof: [Fritz, 2009, p.190 fi. after the value of a randomly selected continuous fluent was
randomly modified after generating an optimal plan. A de-
As a special case, this works fes = do(€, S1), for any viationz% means that the fluent was multiplied by- 155 .
situationS; and sequence of ever@tsNote that such events Note that we used continuous fluents in our experiments
can produce arbitrary changes to the state of the world. Thenly because they lend themselves better to a quantitative
algorithm does not make any assumptions about possiblevaluation—our approach is equally applicable to discrep-

ancies on discrete valued, including Boolean, fluents. Agseasonable to expect convergence on this problem when
one can see, the time to recover from a drastic change takéise initial state changes at intervals shorter than thais Th
on average longer than for minor deviations. While thisexplains the low probability of convergence when events
doesn’t seem surprising, it is a necessary condition for th@ccur at 10Hz times planning time, i.e., every 0.034s. In
convergence of the recovery, which we study next. comparison, recovering via replanning from scratch takes

We assume that in shorter periods of time fewer thingsthe same amount of time, no matter how small the discrep-

. ancy is, unless the problem gets significantly easier due to
change or changes are less drastic than over longer peri-) :
. .~ “the change. Hence, it has no chance of ever catching up
ods. As we will see, recovery generally takes less time . . o
- : . with reality when events happen at time intervals shorter
than the original planning did. Hence, we expect fewer or, . : .
. : : .~ than the time required for plan generation.
less drastic changes during recovery than during planning.
A second recovery—from the events that occurred duringNot surprisingly, our approach generally outperforms re-
the first recovery—is thus predicted to take less time tharplanning from scratch. To demonstrate this, we compared
the first. This process often continues until convergencethe times required by both approaches for recovering from
We studied the conditions under which our algorithm con-a single change of the initial state. The setup was as fol-
verges by simulating domains with frequent changes to théows: We solved a planning problem, perturbed the state
initial state. At high frequencies during planning and sub-of the world by randomly changing some fluent’s value,
sequent recoveries, we randomly perturbed some fluent band then ran both (akcoverfollowed by furtherregrA*
an amount of up to a certain maximum between 5-80%search based on the modified open list if necessary, and
We considered the two approaches described earlier: confb) replanning from scratch using a conventioAélsearch
pleting the original planning task and recovering only af-implementation using the same heuristic. The fluent per-
terwards followed by furtheregrA* search if needed (at- turbations were done on continuous fluents only, and the

the-end), or reacting to state changes immediately pausingmount of change was up to 50%.

:lérr;[thg;fiﬁtrgzpuanjsg;tztl(tgﬁﬁxzt;}a)s k?;oggti;t ::gig:r-se Figure 4 shows the time both approaches require to recover
P Y)- ' 5% om single events on our TPP1 problem. Recall that with

eral episodes of recovery and additioregrA" search were . . :
. o . both approaches the resulting plan is provably optimal. We
generally required before finding an optimal and up-to-date : .
Separately show the times for cases where (a) additional

plan. Their number varied strongly, as a result of SOME - A* was necessary. and (b) where it was not. The lat-
discrepancies having larger impact than others. Table i 9 Y,)

. : .. teris the case when following thiecover the first element
shows, for different frequencies and amounts of deviation ; -
)) : . : bf the open list satisfied the goal. The average speed-up
the percentages of simulations in which an optimal plan

: : o . _over replanning from scratch was 10.56 in the former case,
was found, i.e., the algorithm converged within the time . . .
o) o . . . and 33.64 in the latter. In all test cases, the simulated dis-
limit. As time limit we used 30 times the time required for .
: : o . crepancy was relevant in the sense that at least one formula
solving the respective original problems, without peraurb

. . . N appearing in the annotation was affected. Hence, calling
tions, using a conventional* search planner. These were recoverwas necessary in all cases—the Aeof Figure 2
0.52s for TPP1, 2.17s for TPP2, 3.03s for TPP3, and 034%/(/215 never empty
0.82s, and 1.58s for Zenotravel 1, 2, and 3 respectively. ’
The frequencies shown in the table are relative to these ad/e performed the same experiment on the Zenotravell
well. For instance, the value 100 for Zenotravell on-the-problem. It is a reasonable question to ask whether the
fly, 5SHz, 40% states that even when ever§4s/5 = 68 relative speed-up of our approach is just due to the use of
ms the value of a random fluent changed by up to 40% ira comparatively slow replanner. Therefore we tested us-
the considered Zenotravel problem, the on-the-fly approacing two different, hand-coded heuristics, where the first is
still converged 100% of the time. We believe this simulatesmore informed (i.e., better) than the second. Using the first
a quite erratic environment, possibly harsher than many rewhich we also used in the earlier described experiments,
alistic application domains. the average recovery time was 0.14s, and the average re-
The on-the-fly recovery strategy clearly outperforms at_planning ti_me was 0.51s, whereas with the secpnd heuristic
recovery time averaged to 0.35s and replanning to 1.07s.

the-end recovery.. This mal<es Intuitive sense, as no t.'mq'his shows that even when the planner, and thus replanner,
is wasted continuing planning for an already flawed in-. . .
stance. This also motivates an integrated approach, shoy improved by the use of a better heuristic, our approach
RS ! 9 PP ' IS still generally superior to replanning from scratch. sThi
ing its benefit over the use of plan adaptation approache% because it equally benefits from a smaller search tree
which are only applicable once a first plan has been pro- sulting from the use of a better heuristic '
duced. The table also shows that convergence was much ’

better on TPP than on Zenotravel. Interestingly, this wasJnfortunately, there are no other replanning systems we
predictable given Figure 3: since the curve for Zenotravellcan compare our algorithm to, since no other system aims
intersects the y-axis at around 0.07 seconds, it seems utp produce optimal plans. Further, even for recent validity

Frequency: 3Hz - planning time 5Hz - planning time 10Hz- planning time
Deviation: | 5% 10% 20% 40% 80% 5% 10% 20% 40% 80% 5% 10% 20% 40% 80%

tppl at-the-end 100 100 100 83 60| 100 100 83 63 43| 100 100 76 43 20
tppl on-the-fly 100 100 100 86 83| 100 100 96 80 83| 100 100 93 80 70
tpp2 at-the-end 9% 86 60 63 431100 80 51 44 341 89 48 34 24 10
tpp2 on-the-fly 100 93 86 86 83| 96 86 75 86 82| 96 86 86 79 82
tpp3 at-the-end 100 73 50 66 411 94 72 55 42 521 76 31 42 32 20
tpp3 on-the-fly 100 96 87 92 72| 94 84 86 87 89| 89 81 81 89 86

zenotravell at-the-end100 96 100 100 76| 66 76 63 43 56| 3 6 0 6 16
zenotravell on-the-fly 100 100 100 100 10Q 96 96 100 100 86| 66 73 70 93 93
zenotravel2 at-the-end 66 43 30 26 3] 30 16 6 6 6 | 10 0 0 0 0
zenotravel2 on-the-fly 86 70 53 53 40| 36 16 30 26 23| 13 6 0 6 20
zenotravel3 at-the-end100 80 56 28 8 | 97 72 12 7 7 | 33 10 0 0 2
zenotravel3 on-the-fly 100 92 60 56 66| 90 75 60 30 43| 43 28 33 25 21

Table 1:Percentage of test cases where our approach converged within tHantitby event frequencies and deviation amounts.

0.7 0.6
0.6 ' 0.5
S0 WL 5 2 Ak U
/ Il I \w ! \N LR
— replanning “0.1 — replanning

- regrA* + recover - regrA* + recover

% 10 20 30 40 50 60 70 80 Q%20 40 60 80 100 120 140
test case test case
(a) additional planning necessary (b) additional planning unnecessary

Figure 4: Run-time comparison of our approach vs. replanfiim scratch on the TPP domain.

only replanners, we were unable to obtain implementationsion of our implementation is required. While the approach
from the authors. In addition, such replanners could onlyis able to handle changes in the state, which can also be
be used for at-the-end recovery, which seems inferior taised to model changes in executability and cost of actions,
on-the-fly recovery. we would like to study changing goals as well. We also
think that the ideas behind the presented approach may be
beneficially applied to planning under initial state uncer-
tainty, in particular when such uncertainty ranges over con

o tinuous domains.
We made three contributions: (1) We presented a novel

integrated planning and recovery algorithm for generatingl e presented work is part of a larger body of research
optimal plans in environments where the state of the world€9arding the generation and execution of optimal plans
frequently changes unexpectedly during planning. At itsin highly dynamic domains (cf{Fritz, 2009), including
core, the algorithm reasons about the relevance and impa@f @pproach for monitoring plan optimality during execu-
of discrepancies, allowing the algorithm to recover fromtion. This is needed since during execution the optimality
changes more efficiently than replanning from scratch. (2Pf the executing plan may also be jeopardized by exoge-

We introduced a new criterion for evaluating plan adap-Nous events.

tation approaches, called convergence, and argued for itfhe presented approach is one of the first to monitor and
significance. (3) We provided empirical evidence for thegact to unexpected state changes during planning. The
convergence of our approach under high frequencies of Ungpproach taken by Veloset al.[1999 exploits the “ratio-
expected state changes. Our experiments also show thghje” the reasons for choices made during planning, to deal
an interleaved planning+recovery approach which recovyip discrepancies that occur during planning. They ac-
ers from discrepancies on—the_—fly is superior to an approac[gnowmdge the possibility that previously sub-optimaget

that only recovers once planning has completed. natives may become better than the current plan candidate

In the future, we intend to apply this work to a highly dy- @s the world evolves during planning, but the treatment of

namic real-world domain such as the mentioned RoboCu@Ptimality is informal and limited. No guarantees are made
or Unmanned Aerial Vehicles. To do so, an optimized ver-régarding the optimality of the resulting plan. Also, by us-

5 Discussion

ing best-first search, our approach is compatible with manyAn important merit of our approach is its ability to han-
state-of-the-art planners, while the approach of Veleso dle any possible state change, rather than being limited
al. is particular to the PRODIGY planner. to a predefined set of contingencies, but without paying

the price of computing a complete policy. It hence ex-

Several approaches exist for adaptm_g a plan n responjﬁores a pragmatic middle-ground between the efficiency
to unexpected events that occur during execution, rather

: . . _ of deterministic planning, and the robustness of solving
than during plan generation, e.gKoenig et al, 2002; MDPs completel The lack of the explicit consider-
Hanks and Weld, 1995; Gerevini and Serina, 4008r- pietely. b

ion of possible contingencies during planning, distin-
guably we could use these approaches for our purpose of . :)
. : . . . - .~ guishes this work from related approaches for solving re-
recovering from discrepancies during planning by first ig-

. ; . lational and first-order MDPs (e.dBoutilier et al., 2001;
noring the changes and then recovering once a plan is gen

erated. We think this is inferior to our approach for the Holldobleret al, 2004).
following reasons: (1) except for the first, the listed ap- Acknowledgements:

proaches do not guarantee optimality, (2) we have showRve gratefully acknowledge funding from the Natural Sci-

that an integrated approach which recovers from stat@nces and Engineering Research Council of Canada.
changes on-the-fly has convergence advantages, and (3) it

is not clear whether such a use of these replanners would ﬁeferences

all lead to convergence.
[Boutilier et al, 200] C. Boutilier, R. Reiter, and B. Price. Sym-
The SHERPA system presented by Koeeigal. [2003 bolic dynamic programming for first-order MDPs. Rroc.

monitors the continued optimality of a plan only in a |3cAro1, pp. 690700, 2001.

limited form. SHERPA lifts the Life-Long Planning A))))

(LPA*) search algorithm to symbolic propositional plan- [Fukezet al, 1973 R. F'k?.s' :' Hk;"‘”' ?“d Nf'.'\.‘"lssonil. Learning

ning. LPA* was developed for the purpose of replanning in and executing generalized robot plaretificial Intelligence
g. . pedatortne purp planning In - 3:251.788, 1972.

problems like robot navigation (i.e., path replanning)hwit o) o _

simple, unconditional actions, and only applies to replanF'itz, 2009 Christian Fritz.Monitoring the Generation and Ex-

ning problems where the costs of actions have changed but icu.tl'%%gé Optimal PlansPhD thesis, University of Toronto,

. - pri .

the current state remains the same. Similar to our approach, o _ o _

SHERPA retains the search tree to determine how changég'irde;’gt‘;fi‘gg ?ﬁgﬂag'hzg?ﬁaifgergrvégh?d Il_'oizlngid Fs{,i;sttglrigtic

may affect the current plan. Our approach subsumes this search techniques. Proc. AIPS'00 pp. 112-121, 2000.

approach and further allows for the general case where the _

initial (current) state may change arbitrarily and the dyna [Hanks and Weld, 1995S. Hanks and D.S. Weld. A domain-

ics of the domain may involve complex conditional effects. 'gi?gegdgf; ag%cg't;'%‘;or plan adaptatidnArtif. Intell. Res.

SHERPA's limitations equally apply to more recent work () 2:319-360, '

by Sun and Koenig2007. The presented Fringe-Saving [H%ldostﬁeret al, ZOOGFIS- l-bllgozler,. E. Karakllaaelv, anollc

A* (FSA®) search algorithm, which sometimes performs ~©: Skvortsova. ~ Flucap: euristic search planner for

better than LPA, is further limited to grid world applica- first-order MDPsJ. Artif. Intell. Res.27:419-439, 2006.

tions and the use of the Manhattan distance heuristic. Thif<ambhampati, 1990 S. Kambhampati. A theory of plan modi-

algorithm retains the open list of previous searches as well fication. InProc. AAAI'9Q pp. 176-182, 1990.

t[Koeniget al, 2004 S. Koenig, D. Furcy, and C. Bauer. Heuris-

The idea of deriving and utilizing knowledge about relevan tic search-based replanning Froc. AIPS pp. 294-301, 2002,

conditions of the current state for monitoring and possi-
bly repairing a plan, has been used before, e.g., KambhaniNebel and lKoehIer, 13958',6'\\15th| a?d f K(()jehler._ _Plalln rellee_
pati[199d, and reaches back to the early work on Shakey VErsus plan genération: A théoretical and empirical analysis.
the Robot by Fikeet al.[197d. Fikeset al. used triangle Artificial Intelligence 76(1-2):427-454, 1995.

tables to annotate the plan with the regressed goal, in ordéPednault, 1989 E.P.D. Pednault. ADL: Exploring the middle
to determine whether replanning was necessary when the gro'und between STRIPS and the situation calculusPrbt.
state of the world changed unexpectedly. KR'89, pp. 324-332, 1989,

[Reiter, 2001 Ray Reiter. Knowledge in Action: Logical Foun-
Nebel and Koehlef1993 show that plan reuse, and hence ™ gagions for Specifying and Implementing Dynamical Systems

plan repair, has the same worst case complexity as planning MIT Press, 2001.

frcl)m Sctr?tcthh' This rtesullt IS lntefrest;pg Ir tlheory, but rtl.m S. Sun and Koenig, 20¢7X. Sun and S. Koenig. The fringe-
relevant in the practical case of opimal plan generation 1 saving A* search algorithm - a feasibility study. Rroc. 13-
the face of frequent unexpected events. In this case, we CAI07, pp. 2391-2397, 2007.

have shown that if we want to have a plan that we know t Velosoet al, 1998 M.M. Veloso, M.E. Pollack. and M.T. Cox
be optimal at the start of execution, then the recovery tim Rationale-based monitoring for continuous planning in dy-

relative to the impact of an event is more important. namic environments. IRroc. AIPS’98 pp. 171-179, 1998.

