
Generating Optimal Plans in Highly-Dynamic Domains

Christian Fritz and Sheila A. McIlraith
Department of Computer Science,

University of Toronto,
Toronto, Ontario. Canada.
{fritz, sheila}@cs.toronto.edu

Abstract

Generating optimal plans in highly dynamic en-
vironments is challenging. Plans are predicated
on an assumed initial state, but this state can
change unexpectedly during plan generation, po-
tentially invalidating the planning effort. In
this paper we make three contributions: (1) We
propose a novel algorithm for generating op-
timal plans in settings where frequent, unex-
pected events interfere with planning. It is able
to quickly distinguish relevant from irrelevant
state changes, and to update the existing plan-
ning search tree if necessary. (2) We argue for a
new criterion for evaluating plan adaptation tech-
niques: therelativerunning time compared to the
“size” of changes. This is significant since dur-
ing recovery more changes may occur that need
to be recovered from subsequently, and in order
for this process of repeated recovery to terminate,
recovery time has toconverge. (3) We show em-
pirically that our approach can converge and find
optimal plans in environments that would ordi-
narily defy planning due to their high dynamics.

1 Introduction

A natural way for an agent to decide how to act is to ex-
ploit a policy – a function that maps each state into an ac-
tion to be performed. Unfortunately, computing a policy
is time intensive, so in many applications an agent plans
from a known initial state instead. Unfortunately, when
the application is situated within a highly dynamic envi-
ronment, this initial state may rapidly change in unpre-
dictable ways during planning, possibly invalidating the
current planning effort. We argue that neither boldly ignor-
ing such changes nor replanning from scratch is an appeal-
ing option. While the former is unlikely to produce a good
plan, the latter may never be able to complete a plan when
unexpected events keep interrupting. Instead we propose

an integrated planning and recovery algorithm that explic-
itly reasons about the relevance and impact of discrepancies
between assumed and observed initial state.

As a motivating example, consider a soccer playing robot
in RoboCup, which, having the ball, deliberates about how
to score. In RoboCup it is common to receive sensor read-
ings 10 times per second. The game environment is very
dynamic, resulting in frequent discrepancies between as-
sumed and observed initial state. Such discrepancies may
or may not affect the current planning process. But how can
the robot tell? And how should the robot react when dis-
crepancies are deemed relevant? For instance, assume that
at some point during planning, the current most promis-
ing plan starts with turning slightly to face the goal and
then driving there, pushing the ball. If the ball unexpect-
edly rolls 10 centimeters away while deliberating, the ini-
tial turn action may cause the robot to lose the ball, so
this discrepancy is relevant and another plan, starting by
re-approaching the ball, should be favored. But if the ball
rolls closer, the original plan remains effective and the dis-
crepancy should be ignored and planning continued.

The contributions of this paper are three-fold: (1) We pro-
pose a novel algorithm for plan generation that monitors
the state of the world during planning and recovers from
relevant unexpected state changes. The algorithm produces
plans that are optimal with respect to the state where execu-
tion begins. It is able to distinguish between relevant and ir-
relevant discrepancies and updates the planning search tree
to reflect the new initial state if necessary. This is gener-
ally much faster than replanning from scratch, but does not
rely on knowledge about a predefined set of potential con-
tingencies: we assume that the system can spontaneously
assume any state. This is particularly interesting in contin-
uous domains, where the number of possible discrepancies
is infinite. Intuitively, the approach strikes a compromise
between complete policies and simple sequential plans and
uses relevance information, computed during plan gener-
ation, to increase the plan’s robustness. (2) We introduce
a new criterion for evaluating plan adaptation algorithms:
their relative running time compared to the “size” of the

discrepancy. We argue that this measure is of greater prac-
tical significance than either theoretical worst case consid-
erations or the absolute recovery time. In highly dynamic
domains unexpected state changes occur during planning
as well as during plan adaptation. In order to obtain a plan
that is known to be optimal when execution commences,
the cycle of planning and recovery has to terminate by a
completed recovery before the state changes any further.
This is possible when the time for recovery is roughly pro-
portional to the size of the change. Imagine planning takes
10 seconds and recovering from any state changes that oc-
curred during that time takes 8 seconds. If we assume that
in 8 seconds on average fewer changes happen than in 10, it
seems reasonable to expect that we can recover from those
in less than 8 seconds, say on average 6. This continues,
until recovery has “caught up with reality”. We informally
call this behaviorconvergence. Repeated replanning from
scratch does not converge, as it does not differentiate be-
tween “big” and “small” discrepancies. (3) We show em-
pirically that our algorithm converges often even when un-
expected state changes occur at relatively high frequency.
Particularly “on-the-fly” recovery, i.e., recovering immedi-
ately upon discrepancy detection, has a higher chance of
convergence than the alternative of completing the original
planning task first and recovering only afterwards.

We explicitly assume that the number and extent of dis-
crepancies is on average proportional to the time interval,
i.e., that greater discrepancies are incurred in longer time
intervals. This seems reasonable to us and holds for many
interesting application domains. This, together with the ob-
servation that our algorithm can recover from a few small
changes faster than from many large ones, allows our ap-
proach to converge. We demonstrate this and the resulting
convergence of our approach empirically, on domain sim-
ulations which satisfy this assumption. We further under-
standoptimality to be defined in terms of what is currently
known, and we want to execute plans only when they are
considered optimal at the moment execution begins. Our
working assumption is that no model of future exogenous
events exists. Hence, we treat the problem as a determinis-
tic planning problem, whose plans and planning process we
aim to make robust against potential unexpected changes.

After reviewing some preliminaries in the next section, we
describe our approach in Section 3, followed by empirical
results and a discussion including related work.

2 Background

For the exposition in this paper, we use the situation calcu-
lus with a standard notion of arithmetic, but the approach
works with any action specification language for which re-
gression can be defined, including STRIPS and ADL.

The situation calculus is a logical language for specify-
ing and reasoning about dynamical systems[Reiter, 2001].

In the situation calculus, thestate of the world is ex-
pressed in terms of functions and relations, calledflu-
ents(setF), relativized to asituation s, e.g.,F (~x, s). A
situation is ahistory of the primitive actions performed
from a distinguished initial situationS0. The function
do(a, s) maps an action and a situation into a new situa-
tion thus inducing a tree of situations rooted inS0. For
readability, action and fluent arguments are often sup-
pressed. Also,do(an, do(an−1, . . . do(a1, s))) is abbreviated
to do([a1, . . . , an], s) or do(~a, s) and we definedo([], s) = s.
In this paper we distinguish between a finite set ofagent ac-
tions,Aagent, and a possibly infinite set ofexogenous actions
(or events), Aexog, (A = Aagent∪ Aexog). The agent can only
perform agent actions, and exogenous events can happen at
any time, including during planning.

A basic action theory in the situation calculus,D, com-
prises fourdomain-independent foundational axioms, and
a set ofdomain-dependent axioms. Details of the form of
these axioms can be found in[Reiter, 2001]. Included in
the domain-dependent axioms are the following sets:

Initial state : a set of first-order sentences relativized to
situationS0, specifying what is true in the initial state.

Successor state axioms:provide a parsimonious repre-
sentation of frame and effect axioms under an assump-
tion of the completeness of the axiomatization. There is
one successor state axiom for each fluent,F , of the form
F (~x, do(a, s)) ≡ ΦF (~x, a, s), whereΦF (~x, a, s) is a formula
with free variables among~x, a, s. ΦF (~x, a, s) characterizes
the truth value of the fluentF (~x) in the situationdo(a, s) in
terms of what is true in situations. These axioms can be
automatically generated from effect axioms.

Action precondition axioms: specify the conditions un-
der which an action is possible. There is one axiom for
eacha ∈ Aagent of the formPoss(a(~x), s) ≡ Πa(~x, s) where
Πa(~x, s) is a formula with free variables among~x, s. We
assume exogenous eventse ∈ Aexog are always possible.

Regression
Theregressionof a formulaψ through an actiona is a for-
mulaψ′ that holds prior toa being performed if and only if
ψ holds aftera is performed. In the situation calculus, one
step regression is defined inductively using the successor
state axiom for a fluentF (~x) as above[Reiter, 2001]:

Regr[F (~x, do(a, s))] = ΦF (~x, a, s)

Regr[¬ψ] = ¬Regr[ψ]

Regr[ψ1 ∧ ψ2] = Regr[ψ1] ∧ Regr[ψ2]

Regr[(∃x)ψ] = (∃x)Regr[ψ]

We use R[ψ(s), α] to denote Regr[ψ(do(α, s))], and
R[ψ(s), ~α] to denote the repeated regression over all actions
in the sequence~α (in reverse order). Note that the resulting
formula has a free variables of sort situation. Intuitively, it
is the condition that has to hold ins in order forψ to hold
after executing~α (i.e. indo(~α, s)). It is predominantly com-
prised of the fluents occurring in the conditional effects of

the actions in~α. Due to the Regression Theorem[Reiter,
2001] we have thatD |= ψ(do(~α, s)) ≡ R[ψ(s), ~α] for all
situationss. Regression is therefore independent from the
state where the resulting formula is evaluated.

Regression is a purely syntactic operation. Nevertheless,
it is often beneficial to simplify the resulting formula for
later evaluation. Regression can be defined in many action
specification languages. In STRIPS, regression of a literall

over an actiona is defined based on the add and delete lists
of a. Regression in ADL was defined in[Pednault, 1989].

Notation: We useα to denote arbitrary but explicit actions
andS to denote arbitrary but explicit situations, that isS =

do(~α, S0) for some explicit action sequence~α. Further~α ·α
denotes the result of appending actionα to the sequence~α.

Going back to our RoboCup example, regressing the goal
“ball in goal” over the action “drive to goal”, yields a condi-
tion “have ball”. The further regression over a “turn” action
states “distance to ball< 10cm” as a condition for the suc-
cess of the considered plan, if, e.g., the robot’s 10cm long
grippers enable turning with the ball.

3 Planning with Unexpected Events

In this paper we consider a planner based onA∗ for-
ward search that uses positive action costs as a metric, but
the conceptual approach is amenable to a variety of other
forward-search based planning techniques and paradigms.

Intuitively, our approach annotates the search tree with all
relevant information for determining the optimal plan. By
regressing the goal, preconditions, and metric function over
all considered action sequences, this information is ex-
pressed in terms of the current state. When unexpected
events change the current state of the world, this allows
us to reason symbolically about their relevance and their
potential impact on the current search tree and choice of
plan—much faster than replanning from scratch.

For instance, our soccer robot from above knows from re-
gressing the goal that the plan [“turn”, “drive to goal”] will
succeed whenever “distance to ball< 10cm” holds. Hence
it can determine the relevance of the aforementioned ball
displacements, and also that, for instance, unexpected ac-
tions of its teammates can be ignored for now. A complica-
tion of this arises from our interest in optimal, rather than
just valid plans, however. We will need to also consider al-
ternative action sequences, and also handle impacts on the
regressed metric function.

At the highest level, the approach we present here consists
of two components: A regression-basedA∗ planner, and a
recovery procedure. These components, described below,
can be used in at least two possible ways:

At-the-end: The planner generates an optimal plan for the
assumed initial state. If no changes to the initial state occur,

the resulting plan is optimal and execution can commence.
Otherwise, the recovery procedure updates the final search
tree and open list (describing the search frontier) as nec-
essary given any observed changes to the initial state. If
the order of the open list does not change during the recov-
ery, and hence still has the previously found plan as its first
element, the plan is known to remain optimal and can be
executed. Otherwise, the planner resumes plan generation
given the updated structures.

On-the-fly: In the absence of any changes to the assumed
initial state, the planner is proceeding in its search for an
optimal plan. Whenever a change to the initial state is ob-
served, plan generation is interrupted and the recovery pro-
cedure updates the current search tree and open list to re-
flect the changes. Plan generation then continues.

In both cases, this alternation continues until a plan gen-
eration cycle terminates without further interruptions, in
which case the resulting plan is known to be optimal with
respect to the currently assumed initial state. Note that
the following descriptions are simplified for readability.
In practice, there are various ways for increasing the ef-
ficiency of the implementation.

3.1 Regression-basedA∗ planning

In this section we present anA∗ planner that returns not
only a plan, but also the remaining open list upon termina-
tion of search, as well as a search tree annotated with any
relevant regressed formulae.

To provide a formal characterization, we assume that the
planning domain is encoded in a basic action theoryD.
Given an initial situationS, a goal formulaGoal(s), a for-
mula Cost(a, c, s) defining costsc of actiona, and a con-
sistent heuristic specified as a formulaHeu(h, s), A∗ search
finds a sequence of actions~α such that the situationdo(~α, S)
satisfies the goal while minimizing the accumulated costs.
Starting with an open list,Open, containing only one el-
ement representing the empty action sequence, the search
proceeds by repeatedly removing and expanding the first
element from the list until that element satisfies the goal,
always maintaining the open list’s order according to the
valuev defined by:

Value
`

v, do([α1, . . . , αN], s)
´ def

=

(∃h, c1, . . . , cN).v = h+ c1 + · · ·+ cN

∧Heu
`

h, do([α1, . . . , αN], s)
´

∧ Cost(α1, c1, s)

∧ · · · ∧ Cost
`

αN , cN , do([α1, . . . , αN−1], s)
´

We assume that the goal can only be achieved by a par-
ticular agent actionfinish. Any planning problem can be
transformed to conform to this by defining the precondi-
tions offinish according to the original goal.

Our regression-based version ofA∗ is shown in Figure 1.
It interacts with the basic action theoryD to reason about
the truth-values of formulae. We sayψ holds, to mean that
it is entailed byD. The algorithm is initially invoked as

regrA∗(D, S,Goal,Cost,Heu,Open, T) :
1 if Open= [] then return ([], T)
2 else[(g, h, ~α) | Open′] = Open // slice first element
3 if Goal(do(~α, S)) holdsthen return (Open, T)
4 else foreachα′ ∈ Aagentdo
5 ~α′ ← ~α · α′ // append action to sequence
6 T (~α′).P (s)←R[Poss(α′, s), ~α]
7 if T (~α′).P (S) holdsthen
8 T (~α′).p← true // action currently possible
9 T (~α′).C(c, s)←R[Cost(α′, c, s), ~α]

10 T (~α′).H(h, s)←R[Heu(h, s), ~α′]
11 T (~α′).c← c′ with c′ s.t.T (~α′).C(c′, S) holds
12 T (~α′).h← h′ with h′ s.t.T (~α′).H(h′, S) holds
13 insert(g + c′, h′, ~α′) into Open′

14 elseT (~α′).p← false // action currently impossible
15 return regrA∗(D, S,Goal,Cost,Heu,Open′, T)

Figure 1: Pseudo-code for regression-basedA∗ planning.

regrA∗(D, S,Goal,Cost,Heu, [(0,∞, [])], nil). The last argu-
ment denotes a data structure representing the annotated
search tree and is initially empty. The elements of the open
list are tuples(g, h, ~α), where~α = [α1, . . . , αn] is an action
sequence,g are the costs accumulated when executing this
sequence inS, andh is the value s.t.Heu(h, do(~α, S)) holds.
When an element is expanded, it is removed from the open
list and the following is performed for each agent actionα′:
First, the preconditions ofα′ are regressed over~α (Line 6).
If the resulting formula, stored inT (~α).P (s), holds inS ac-
cording toD (Line 7), the cost formula forα′ is regressed
over~α, the heuristic is regressed over~α · α′, and the result-
ing formulae are evaluated inS yielding valuesc′ andh′

(Lines 9–12). Intuitively, the regression of these formulae
over~α describes, in terms of the current situation, the val-
ues they will take after performing~α. Finally, a new tuple is
inserted into the open list (Line 13) according tog+ c′ + h′

to maintain the open list’s order according toValue(v, s).

A∗ keeps expanding the first element of the open list until
this element satisfies the goal, in which case the respec-
tive action sequence describes an optimal plan. This is be-
cause a consistent heuristic never over-estimates the actual
remaining costs from any given state to the goal. Due to the
Regression Theorem[Reiter, 2001], this known fact about
A∗ also holds for our regression-based version. Similarly
the completeness ofA∗ is preserved.

In service of our recovery algorithm described below, we
explicitly keep the search treeT and annotate its nodes
with the regressed formulae for preconditions (T (~α).P (s)),
costs (T (~α).C(c, s)), and heuristic value (T (~α).H(h, s))
and their values according to the (current) initial situa-
tion S (T (~α).p, T (~α).c, andT (~α).h). Roughly, when this
state changes due to an unexpected evente, we reevaluate
T (~α).P (s), T (~α).C(c, s), andT (~α).H(h, s) in s = do(e, S),
and update their values and the open list accordingly. How-
ever, not all of these reevaluations are actually necessary
and this is thekey insightproviding the speed-up of our

recover(D, S1, S2,Cost,Heu,Open, T, Index) :
1 F∆ ← {F ∈ keys(Index) | F (S1) 6≡ F (S2) holds}
2 ∆←

S

F∈F∆
Index(F) // affected formulae

3 foreach (~α,‘p’) ∈ ∆ do // update preconditions
4 if T (~α).p = trueand¬T (~α).P (S2) holdsthen
5 T (~α).p← false // action now impossible
6 foreach (g, h, ~α′) ∈ Opendo
7 if ~α is prefix of~α′ then
8 remove(g, h, ~α′) from Open
9 elseif T (~α).p = falseandT (~α).P (S2) holdsthen

10 T (~α).p← true // action now possible
11 ~α′ · αlast = ~α // get last action in sequence
12 T (~α).C(c, s)←R[Cost(αlast, c), ~α

′]
13 T (~α).H(h, s)←R[Heu(h), ~α]
14 T (~α).c← c′ with c′ s.t.T (~α).C(c′, S2) holds
15 T (~α).h← h′ with h′ s.t.T (~α).H(h′, S2) holds
16 g′ ← getGval(T, ~α)
17 insert(g′, h′, ~α) into Openand updateIndex
18 foreach (~α,‘c’) ∈ ∆ do // update accumulated costs
19 getc′ s.t.T (~α).C(c′, S2) holds
20 offset← c′ − T (~α).c
21 foreach (g, h, ~α′) ∈ Opendo
22 if ~α is prefix of~α′ then g ← g + offset
23 T (~α).c← c′

24 foreach (~α,‘h’) ∈ ∆ do // update heuristic values
25 if (∃g, h).(g, h, ~α) ∈ Open then
26 h← h′ with h′ s.t.T (~α).H(h′, S2) holds
27 T (~α).h← h
28 return (sort(Open), T)

Figure 2: Pseudo-code of our recovery algorithm.

algorithm: since all formulae are regressed and hence ex-
pressed in terms of the current state, we can determine
which ones are actually affected by the event, by simply
considering the fluents the formulae mention. For this pur-
pose, we maintain an indexIndexwhose keys are ground
fluents (e.g.,distanceTo(ball)) and whose values are lists
of pointers to all stored formulae that mention it.

3.2 Recovering from Unexpected Events

While generating a plan for an assumed initial situationS,
an unexpected evente, say “distanceTo(ball)← 20”, may
occur, changing the state of the world and putting us into
situationdo(e, S). When this happens, the aforementioned
index lets us pinpoint all formulae affected by this change
(e.g., T ([turn, driveTo(goal), finish]).P (s)). After reevaluat-
ing these formulae indo(e, S) and updating their values, the
search tree will be up-to-date in the sense that all contained
values are with respect todo(e, S) rather than the originally
assumed situationS. After propagating these changes to
the open list, search can continue. We show that the result-
ing plan is optimal for the new situation.Note that the re-
gressed formulae never change.Since often only very few
fluents are affected by unexpected events, this relevance-
based approach allows for very efficient recovery.

The recovery algorithm is specified in Figure 2.T denotes
the annotated search tree,Open is the open list, andIndex

the index. The latter contains entries of the form(~α, type),
where~α is a sequence of actions andtype is either of‘p’,
‘c’, or ‘h’. The algorithm modifies the values of the
tree and the open list (ll. 22 and 26) to reflect their value
with respect to a new situationS2 (e.g., do(e, S1)) rather
than an originally assumed initial situationS1. If the event
changes the truth value of action preconditions, the con-
tent of the open list is modified accordingly (ll. 8, 17).
When a previously impossible action has now become pos-
sible (Line 9) the annotation for this node is created and
a new entry added to the open list (ll. 11-17). The func-
tion getGval(T, ~α) computes the sum of all costs (T (·).c)
annotated inT along the branch from the root to node~α.

As mentioned before, the algorithm can be used in one of
at least two ways: on-the-fly, dealing with unexpected state
changes immediately, or at-the-end, dealing at once with all
events that occurred during planning. The former has the
advantage that the planning effort is focused more tightly
on what is actually relevant given everything that has hap-
pened so far. This approach can be implemented by in-
serting code right before Line 15 ofregrA∗ that checks for
events and invokesrecoverif necessary, changingS,Open′,
andT accordingly. The appeal of the latter stems from the
fact that recovering from a bulk of events simultaneously
can be more efficient than recovering from each individu-
ally. It may, however, be necessary to resumeregrA∗ search
afterwards, if, for instance, the current plan is no longer
valid in the new initial state or a new opportunity exists,
which may lead to a better plan. With both approaches,
additional events may happen during recovery, making ad-
ditional subsequent recoveries necessary.

The following theorem states the correctness ofrecoverin
terms of the at-the-end approach: callingrecoverand con-
tinuing regrA∗ with the new open list, produces an optimal
plan and in particular the same as replanning from scratch
in S2. Recall that the head of the open list contains the op-
timal plan. For on-the-fly, correctness can be shown analo-
gously (cf. Lemma 1 in[Fritz, 2009, p.191]).

Theorem 1 (Correctness). Let D be a basic action theory,
Goala goal formula,Cost(a, c) a cost formula, andHeu(h) a
consistent heuristic. Then, for any two situationsS1, S2 in
D we have that after the sequence of invocations:

1. (O1, T1)← regrA∗(D, S1,Goal,Cost,Heu, [(0,∞, [])], nil),
2. createIndexfrom T1,
3. (O2, T2)← recover(D, S1, S2,O1, T1, Index),
4. (O3, T3)← regrA∗(D, S2,Goal,Cost,Heu,O2, T2),

the first element ofO3 will be the same as inO′ of
(O′, T ′)← regrA∗(D, S2,Goal,Cost,Heu, [(0,∞, [])], nil),
or bothO3 andO′ are empty.Proof: [Fritz, 2009, p.190 ff.].

As a special case, this works forS2 = do(~e, S1), for any
situationS1 and sequence of events~e. Note that such events
can produce arbitrary changes to the state of the world. The
algorithm does not make any assumptions about possible

av
er

ag
e

tim
e

(s
ec

on
ds

)

0

0.1

0.2

0.3

relative fluent deviation
25% 50%

TPP1

Zenotravel1

Figure 3: Recovery time relative to amount of change.

events. Any fluent may assume any value at any time.

In complex domains, many state changes are completely ir-
relevant to the current planning problem, overall or at the
current stage of planning, and others only affect a small
subset of elements in the search tree. During recovery,
we exploit this structure to gain significant speed-ups com-
pared to replanning from scratch. More importantly it al-
lows us to recover from small perturbations faster than from
large ones, where “large” may refer to the number of fluents
that changed or the amount by which continuous fluents
changed (cf. Section 4). This way, recovery canconverge,
i.e., “catch up with reality”, as we defined informally in the
introduction. We verified this empirically.

4 Empirical Results

We present empirical results obtained using a current im-
plementation of our algorithm to generate optimal plans
for differently sized problems of the metric TPP and Zeno-
travel domains of the International Planning Competition.
We begin by showing that the time required for recovering
from unexpected state changes is roughly and on average
proportional to the extent of the change. We then show that
our approach is able to find optimal plans even when the
initial state changes frequently. We compare the two men-
tioned recovery strategies on-the-fly and at-the-end, show-
ing that the former clearly outperforms the latter in terms
of likelihood of convergence. Finally, and not surprisingly,
we show that our approach generally outperforms replan-
ning from scratch. All experiments were run on an Intel
Xeon 2.66 GHz with 2GB RAM.

Figure 3 plots the average time the combination ofrecover
+ continuedregrA∗ search took to find a new optimal plan,
after the value of a randomly selected continuous fluent was
randomly modified after generating an optimal plan. A de-
viationx% means that the fluent was multiplied by1± x

100
.

Note that we used continuous fluents in our experiments
only because they lend themselves better to a quantitative
evaluation—our approach is equally applicable to discrep-

ancies on discrete valued, including Boolean, fluents. As
one can see, the time to recover from a drastic change takes
on average longer than for minor deviations. While this
doesn’t seem surprising, it is a necessary condition for the
convergence of the recovery, which we study next.

We assume that in shorter periods of time fewer things
change or changes are less drastic than over longer peri-
ods. As we will see, recovery generally takes less time
than the original planning did. Hence, we expect fewer or
less drastic changes during recovery than during planning.
A second recovery—from the events that occurred during
the first recovery—is thus predicted to take less time than
the first. This process often continues until convergence.
We studied the conditions under which our algorithm con-
verges by simulating domains with frequent changes to the
initial state. At high frequencies during planning and sub-
sequent recoveries, we randomly perturbed some fluent by
an amount of up to a certain maximum between 5-80%.
We considered the two approaches described earlier: com-
pleting the original planning task and recovering only af-
terwards followed by furtherregrA∗ search if needed (at-
the-end), or reacting to state changes immediately pausing
furtherregrA∗ expansion untilrecoverhas brought the cur-
rent search tree up-to-date (on-the-fly). In both cases, sev-
eral episodes of recovery and additionalregrA∗ search were
generally required before finding an optimal and up-to-date
plan. Their number varied strongly, as a result of some
discrepancies having larger impact than others. Table 1
shows, for different frequencies and amounts of deviation,
the percentages of simulations in which an optimal plan
was found, i.e., the algorithm converged within the time
limit. As time limit we used 30 times the time required for
solving the respective original problems, without perturba-
tions, using a conventionalA∗ search planner. These were
0.52s for TPP1, 2.17s for TPP2, 3.03s for TPP3, and 0.34s,
0.82s, and 1.58s for Zenotravel 1, 2, and 3 respectively.
The frequencies shown in the table are relative to these as
well. For instance, the value 100 for Zenotravel1 on-the-
fly, 5Hz, 40% states that even when every0.34s/5 = 68

ms the value of a random fluent changed by up to 40% in
the considered Zenotravel problem, the on-the-fly approach
still converged 100% of the time. We believe this simulates
a quite erratic environment, possibly harsher than many re-
alistic application domains.

The on-the-fly recovery strategy clearly outperforms at-
the-end recovery. This makes intuitive sense, as no time
is wasted continuing planning for an already flawed in-
stance. This also motivates an integrated approach, show-
ing its benefit over the use of plan adaptation approaches
which are only applicable once a first plan has been pro-
duced. The table also shows that convergence was much
better on TPP than on Zenotravel. Interestingly, this was
predictable given Figure 3: since the curve for Zenotravel1
intersects the y-axis at around 0.07 seconds, it seems un-

reasonable to expect convergence on this problem when
the initial state changes at intervals shorter than that. This
explains the low probability of convergence when events
occur at 10Hz times planning time, i.e., every 0.034s. In
comparison, recovering via replanning from scratch takes
the same amount of time, no matter how small the discrep-
ancy is, unless the problem gets significantly easier due to
the change. Hence, it has no chance of ever catching up
with reality when events happen at time intervals shorter
than the time required for plan generation.

Not surprisingly, our approach generally outperforms re-
planning from scratch. To demonstrate this, we compared
the times required by both approaches for recovering from
a single change of the initial state. The setup was as fol-
lows: We solved a planning problem, perturbed the state
of the world by randomly changing some fluent’s value,
and then ran both (a)recoverfollowed by furtherregrA∗

search based on the modified open list if necessary, and
(b) replanning from scratch using a conventionalA∗ search
implementation using the same heuristic. The fluent per-
turbations were done on continuous fluents only, and the
amount of change was up to 50%.

Figure 4 shows the time both approaches require to recover
from single events on our TPP1 problem. Recall that with
both approaches the resulting plan is provably optimal. We
separately show the times for cases where (a) additional
regrA∗ was necessary, and (b) where it was not. The lat-
ter is the case when following therecover, the first element
of the open list satisfied the goal. The average speed-up
over replanning from scratch was 10.56 in the former case,
and 33.64 in the latter. In all test cases, the simulated dis-
crepancy was relevant in the sense that at least one formula
appearing in the annotation was affected. Hence, calling
recoverwas necessary in all cases—the set∆ of Figure 2
was never empty.

We performed the same experiment on the Zenotravel1
problem. It is a reasonable question to ask whether the
relative speed-up of our approach is just due to the use of
a comparatively slow replanner. Therefore we tested us-
ing two different, hand-coded heuristics, where the first is
more informed (i.e., better) than the second. Using the first,
which we also used in the earlier described experiments,
the average recovery time was 0.14s, and the average re-
planning time was 0.51s, whereas with the second heuristic
recovery time averaged to 0.35s and replanning to 1.07s.
This shows that even when the planner, and thus replanner,
is improved by the use of a better heuristic, our approach
is still generally superior to replanning from scratch. This
is because it equally benefits from a smaller search tree,
resulting from the use of a better heuristic.

Unfortunately, there are no other replanning systems we
can compare our algorithm to, since no other system aims
to produce optimal plans. Further, even for recent validity-

Frequency: 3Hz · planning time 5Hz · planning time 10Hz· planning time
Deviation: 5% 10% 20% 40% 80% 5% 10% 20% 40% 80% 5% 10% 20% 40% 80%

tpp1 at-the-end 100 100 100 83 60 100 100 83 63 43 100 100 76 43 20
tpp1 on-the-fly 100 100 100 86 83 100 100 96 80 83 100 100 93 80 70
tpp2 at-the-end 96 86 60 63 43 100 80 51 44 34 89 48 34 24 10
tpp2 on-the-fly 100 93 86 86 83 96 86 75 86 82 96 86 86 79 82
tpp3 at-the-end 100 73 50 66 41 94 72 55 42 52 76 31 42 32 20
tpp3 on-the-fly 100 96 87 92 72 94 84 86 87 89 89 81 81 89 86
zenotravel1 at-the-end100 96 100 100 76 66 76 63 43 56 3 6 0 6 16
zenotravel1 on-the-fly 100 100 100 100 100 96 96 100 100 86 66 73 70 93 93
zenotravel2 at-the-end 66 43 30 26 3 30 16 6 6 6 10 0 0 0 0
zenotravel2 on-the-fly 86 70 53 53 40 36 16 30 26 23 13 6 0 6 20
zenotravel3 at-the-end100 80 56 28 8 97 72 12 7 7 33 10 0 0 2
zenotravel3 on-the-fly 100 92 60 56 66 90 75 60 30 43 43 28 33 25 21

Table 1:Percentage of test cases where our approach converged within the timelimit, by event frequencies and deviation amounts.

tim
e

(s
ec

on
ds

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

test case
00 10 20 30 40 50 60 70 80

90

replanning

regrA∗ + recover

(a) additional planning necessary

tim
e

(s
ec

on
ds

)

0.1

0.2

0.3

0.4

0.5

0.6

test case
00 20 40 60 80 100 120 140

replanning

regrA∗ + recover

(b) additional planning unnecessary

Figure 4: Run-time comparison of our approach vs. replanning from scratch on the TPP domain.

only replanners, we were unable to obtain implementations
from the authors. In addition, such replanners could only
be used for at-the-end recovery, which seems inferior to
on-the-fly recovery.

5 Discussion

We made three contributions: (1) We presented a novel
integrated planning and recovery algorithm for generating
optimal plans in environments where the state of the world
frequently changes unexpectedly during planning. At its
core, the algorithm reasons about the relevance and impact
of discrepancies, allowing the algorithm to recover from
changes more efficiently than replanning from scratch. (2)
We introduced a new criterion for evaluating plan adap-
tation approaches, called convergence, and argued for its
significance. (3) We provided empirical evidence for the
convergence of our approach under high frequencies of un-
expected state changes. Our experiments also show that
an interleaved planning+recovery approach which recov-
ers from discrepancies on-the-fly is superior to an approach
that only recovers once planning has completed.

In the future, we intend to apply this work to a highly dy-
namic real-world domain such as the mentioned RoboCup
or Unmanned Aerial Vehicles. To do so, an optimized ver-

sion of our implementation is required. While the approach
is able to handle changes in the state, which can also be
used to model changes in executability and cost of actions,
we would like to study changing goals as well. We also
think that the ideas behind the presented approach may be
beneficially applied to planning under initial state uncer-
tainty, in particular when such uncertainty ranges over con-
tinuous domains.

The presented work is part of a larger body of research
regarding the generation and execution of optimal plans
in highly dynamic domains (cf.[Fritz, 2009]), including
an approach for monitoring plan optimality during execu-
tion. This is needed since during execution the optimality
of the executing plan may also be jeopardized by exoge-
nous events.

The presented approach is one of the first to monitor and
react to unexpected state changes during planning. The
approach taken by Velosoet al. [1998] exploits the “ratio-
nale”, the reasons for choices made during planning, to deal
with discrepancies that occur during planning. They ac-
knowledge the possibility that previously sub-optimal alter-
natives may become better than the current plan candidate
as the world evolves during planning, but the treatment of
optimality is informal and limited. No guarantees are made
regarding the optimality of the resulting plan. Also, by us-

ing best-first search, our approach is compatible with many
state-of-the-art planners, while the approach of Velosoet
al. is particular to the PRODIGY planner.

Several approaches exist for adapting a plan in response
to unexpected events that occur during execution, rather
than during plan generation, e.g.,[Koenig et al., 2002;
Hanks and Weld, 1995; Gerevini and Serina, 2000]. Ar-
guably we could use these approaches for our purpose of
recovering from discrepancies during planning by first ig-
noring the changes and then recovering once a plan is gen-
erated. We think this is inferior to our approach for the
following reasons: (1) except for the first, the listed ap-
proaches do not guarantee optimality, (2) we have shown
that an integrated approach which recovers from state
changes on-the-fly has convergence advantages, and (3) it
is not clear whether such a use of these replanners would at
all lead to convergence.

The SHERPA system presented by Koeniget al. [2002]
monitors the continued optimality of a plan only in a
limited form. SHERPA lifts the Life-Long Planning A∗

(LPA∗) search algorithm to symbolic propositional plan-
ning. LPA∗ was developed for the purpose of replanning in
problems like robot navigation (i.e., path replanning) with
simple, unconditional actions, and only applies to replan-
ning problems where the costs of actions have changed but
the current state remains the same. Similar to our approach,
SHERPA retains the search tree to determine how changes
may affect the current plan. Our approach subsumes this
approach and further allows for the general case where the
initial (current) state may change arbitrarily and the dynam-
ics of the domain may involve complex conditional effects.
SHERPA’s limitations equally apply to more recent work
by Sun and Koenig[2007]. The presented Fringe-Saving
A∗ (FSA∗) search algorithm, which sometimes performs
better than LPA∗, is further limited to grid world applica-
tions and the use of the Manhattan distance heuristic. This
algorithm retains the open list of previous searches as well.

The idea of deriving and utilizing knowledge about relevant
conditions of the current state for monitoring and possi-
bly repairing a plan, has been used before, e.g., Kambham-
pati [1990], and reaches back to the early work on Shakey
the Robot by Fikeset al. [1972]. Fikeset al. used triangle
tables to annotate the plan with the regressed goal, in order
to determine whether replanning was necessary when the
state of the world changed unexpectedly.

Nebel and Koehler[1995] show that plan reuse, and hence
plan repair, has the same worst case complexity as planning
from scratch. This result is interesting in theory, but not so
relevant in the practical case of optimal plan generation in
the face of frequent unexpected events. In this case, we
have shown that if we want to have a plan that we know to
be optimal at the start of execution, then the recovery time
relative to the impact of an event is more important.

An important merit of our approach is its ability to han-
dle any possible state change, rather than being limited
to a predefined set of contingencies, but without paying
the price of computing a complete policy. It hence ex-
plores a pragmatic middle-ground between the efficiency
of deterministic planning, and the robustness of solving
MDPs completely. The lack of the explicit consider-
ation of possible contingencies during planning, distin-
guishes this work from related approaches for solving re-
lational and first-order MDPs (e.g.,[Boutilier et al., 2001;
Hölldobleret al., 2006]).

Acknowledgements:
We gratefully acknowledge funding from the Natural Sci-
ences and Engineering Research Council of Canada.

References

[Boutilier et al., 2001] C. Boutilier, R. Reiter, and B. Price. Sym-
bolic dynamic programming for first-order MDPs. InProc.
IJCAI’01, pp. 690–700, 2001.

[Fikeset al., 1972] R. Fikes, P. Hart, and N. Nilsson. Learning
and executing generalized robot plans.Artificial Intelligence,
3:251–288, 1972.

[Fritz, 2009] Christian Fritz.Monitoring the Generation and Ex-
ecution of Optimal Plans. PhD thesis, University of Toronto,
April 2009.

[Gerevini and Serina, 2000] A. Gerevini and I. Serina. Fast plan
adaptation through planning graphs: Local and systematic
search techniques. InProc. AIPS’00, pp. 112–121, 2000.

[Hanks and Weld, 1995] S. Hanks and D.S. Weld. A domain-
independent algorithm for plan adaptation.J. Artif. Intell. Res.
(JAIR), 2:319–360, 1995.

[Hölldobleret al., 2006] S. Hölldobler, E. Karabaev, and
O. Skvortsova. Flucap: A heuristic search planner for
first-order MDPs.J. Artif. Intell. Res., 27:419–439, 2006.

[Kambhampati, 1990] S. Kambhampati. A theory of plan modi-
fication. InProc. AAAI’90, pp. 176–182, 1990.

[Koeniget al., 2002] S. Koenig, D. Furcy, and C. Bauer. Heuris-
tic search-based replanning. InProc. AIPS, pp. 294–301, 2002.

[Nebel and Koehler, 1995] B. Nebel and J. Koehler. Plan reuse
versus plan generation: A theoretical and empirical analysis.
Artificial Intelligence, 76(1–2):427–454, 1995.

[Pednault, 1989] E.P.D. Pednault. ADL: Exploring the middle
ground between STRIPS and the situation calculus. InProc.
KR’89, pp. 324–332, 1989.

[Reiter, 2001] Ray Reiter.Knowledge in Action: Logical Foun-
dations for Specifying and Implementing Dynamical Systems.
MIT Press, 2001.

[Sun and Koenig, 2007] X. Sun and S. Koenig. The fringe-
saving A* search algorithm - a feasibility study. InProc. IJ-
CAI’07, pp. 2391–2397, 2007.

[Velosoet al., 1998] M.M. Veloso, M.E. Pollack, and M.T. Cox.
Rationale-based monitoring for continuous planning in dy-
namic environments. InProc. AIPS’98, pp. 171–179, 1998.

