
Planning in The Face of Frequent Exogenous Events

Christian Fritz and Sheila A. McIlraith
Department of Computer Science,

University of Toronto,
Toronto, Ontario. Canada.
{fritz,sheila}@cs.toronto.edu

Abstract

Generating optimal plans in highly dynamic environments is
challenging. Plans are predicated on an assumed initial state,
but this state can change unexpectedly during plan genera-
tion, potentially invalidating the planning effort. In this pa-
per we make three contributions: (1) We propose a novel al-
gorithm for generating optimal plans in settings where fre-
quent, unexpected events interfere with planning. It is able
to quickly distinguish relevant from irrelevant state changes,
and to update the existing planning search tree if necessary.
(2) We argue for a new criterion for evaluating plan adapta-
tion techniques: therelative running time compared to the
“size” of changes. This is significant since during recovery
more changes may occur that need to be recovered from sub-
sequently, and in order for this process of repeated recovery
to terminate, recovery time has toconvergeto zero. (3) We
show empirically that our approach can converge and find op-
timal plans in environments that would ordinarily defy plan-
ning because of their high dynamics. In this paper we use
the situation calculus to formalize and prove correctness of
our approach. Nevertheless, our approach is implementable
using a variety of planning formalisms.

1 Introduction
Many real-world planning applications are situated within
highly dynamic environments. In such environments, the
initial state assumed by the planner frequently changes in
unpredictable ways during planning, possibly invalidating
the current planning effort. We argue that neither boldly ig-
noring such changes nor replanning from scratch is an ap-
pealing option. While the former is unlikely to produce a
good plan, the latter may never be able to complete a plan
when unexpected events keep interrupting. Instead we pro-
pose an integrated planning and recovery algorithm that ex-
plicitly reasons about the relevance and impact of discrep-
ancies between assumed and observed initial state.

As a motivating example, consider a soccer playing robot
in RoboCup, which, having the ball, deliberates about how
to score. In RoboCup it is common to receive sensor read-
ings 10 times per second. The game environment is very dy-
namic, resulting in frequent discrepancies between assumed
and observed initial state. Such discrepancies may or may
not affect the current planning process. But how can the
robot tell? And how should the robot react when discrep-
ancies are deemed relevant? For instance, assume that at
some point during planning, the current most promising plan

starts with turning slightly to face the goal and then driving
there, pushing the ball. If the ball unexpectedly rolls 10 cen-
timeters away while deliberating, the initial turn action may
cause the robot to lose the ball, so this discrepancy is rele-
vant and another plan, starting by re-approaching the ball,
should be favored. But if the ball rolls closer, the original
plan remains effective and the discrepancy should be ignored
and planning continued.

The contributions of this paper are three-fold: (1) We pro-
pose a novel algorithm for plan generation that monitors the
state of the world during planning and recovers from unex-
pected state changes that impact planning. The algorithm
produces plans that are optimal with respect to the state
where execution begins. It is able to distinguish between
relevant and irrelevant discrepancies, and updates the plan-
ning search tree to reflect the new initial state if necessary.
This is generally much faster than replanning from scratch,
and works for arbitrary state changes that are representable
in the domain specification. (2) We introduce a new criterion
for evaluating plan adaptation algorithms: theirrelativerun-
ning time compared to the “size” of the discrepancy. We ar-
gue that this measure is of greater practical significance than
either theoretical worst case considerations or the absolute
recovery time for the following reason: In highly dynamic
domains unexpected state changes occur during planning as
well as during plan adaptation. In order to obtain a plan that
is known to be optimal when execution commences, the cy-
cle of planning and recovery has to terminate by a completed
recovery before the state changes any further. This is pos-
sible when the time for recovery is roughly proportional to
the size of the change. Imagine planning takes 10 seconds
and recovering from any state changes that occurred during
that time takes 8 seconds. If we assume that in 8 seconds on
average fewer changes happen than in 10, it seems reason-
able to expect that we can recover from those in less than
8 seconds, say on average 6. This continues, until recovery
has “caught up with reality”. We informally say that an al-
gorithm with this propertyconverges. Repeated replanning
from scratch obviously does not converge, as it does not dif-
ferentiate between “big” and “small” discrepancies. (3) We
show empirically that our algorithm can converge and find
optimal plans in domains that were previously not amenable
to planning due to their high dynamics. Particularly “on-the-
fly” recovery, i.e. recovering immediately upon discrepancy
detection, has a higher chance of convergence than the al-

ternative of completing the original planning task first and
recovering only afterwards.

We explicitly assume that the number and extent of dis-
crepancies is on average proportional to the time interval,
i.e. that greater discrepancies are incurred in longer time
intervals. This seems reasonable to us and holds for many
interesting application domains. This, together with the ob-
servation that our algorithm can recover from a few small
changes faster than from many large ones, provides the con-
vergence of our approach. We demonstrate this and the re-
sulting convergence of our approach empirically, on domain
simulations which satisfy this assumption.

We understand optimality to be defined in terms of what
is currently known, and we want to execute plans only when
they are considered optimal at the moment execution be-
gins. This seems rational, since future events cannot gen-
erally be predicted. Nevertheless, we point out that this may
lead to behavior that, in hindsight, is sub-optimal compared
to a seemingly worse but quickly produced plan, namely
when bad or catastrophic events in the environments can be
avoided by planning and acting more quickly. We also ex-
plicitly assume that everything that matters for optimality is
modeled in the theory. In particular, we assume that plan-
ning time itself does not directly affect optimality.

After reviewing some preliminaries in the next section, we
describe our approach in Section 3, followed by empirical
results and a discussion including related work.

2 Background
The approach we present works with any action specifica-
tion language for which regression can be defined, including
STRIPS and ADL. For the exposition in this paper, we use
the situation calculus with a standard notion of arithmetic.

The situation calculus is a logical language for specify-
ing and reasoning about dynamical systems (Reiter 2001).
In the situation calculus, thestate of the world is ex-
pressed in terms of functions and relations, calledflu-
ents (setF), relativized to asituation s, e.g.,F (~x, s). A
situation is ahistory of the primitive actions performed
from a distinguished initial situationS0. The function
do(a, s) maps an action and a situation into a new sit-
uation thus inducing a tree of situations rooted inS0.
For readability, action and fluent arguments are often sup-
pressed. Also,do(an, do(an−1, . . . do(a1, s))) is abbreviated
to do([a1, . . . , an], s) or do(~a, s) and we definedo([], s) = s.
In this paper we distinguish between a finite set ofagent ac-
tions, Aagent, and a possibly infinite set ofexogenous actions
(or events), Aexog, (A = Aagent∪ Aexog). The agent can only
perform agent actions, and exogenous events can happen at
any time, including during planning.

A basic action theory in the situation calculus,D, com-
prises fourdomain-independent foundational axioms, and
a set ofdomain-dependent axioms. Details of the form of
these axioms can be found in (Reiter 2001). Included in the
domain-dependent axioms are the following sets:
Initial State : a set of first-order sentences relativized to sit-
uationS0, specifying what is true in the initial state.
Successor state axioms:provide a parsimonious represen-
tation of frame and effect axioms under an assumption of the

completeness of the axiomatization. There is one successor
state axiom for each fluent,F , of the formF (~x, do(a, s)) ≡
ΦF (~x, a, s), whereΦF (~x, a, s) is a formula with free vari-
ables among~x, a, s. ΦF (~x, a, s) characterizes the truth value
of the fluentF (~x) in the situationdo(a, s) in terms of what
is true in situations. These axioms can be automatically
generated from effect axioms (e.g. add- and delete-lists).
Action precondition axioms: specify the conditions under
which an action is possible. There is one axiom for each
a ∈ Aagentof the formPoss(a(~x), s) ≡ Πa(~x, s) whereΠa(~x, s)
is a formula with free variables among~x, s. We assume ex-
ogenous eventse ∈ Aexog always possible (Poss(e, s) ≡ true).
Regression
The regressionof a formulaψ through an actiona is a for-
mulaψ′ that holds prior toa being performed if and only ifψ
holds aftera is performed. In the situation calculus, one step
regression is defined inductively using the successor state
axiom for a fluentF (~x) as above (Reiter 2001):

Regr[F (~x, do(a, s))] = ΦF (~x, a, s)

Regr[¬ψ] = ¬Regr[ψ]

Regr[ψ1 ∧ ψ2] = Regr[ψ1] ∧ Regr[ψ2]

Regr[(∃x)ψ] = (∃x)Regr[ψ]

We use R[ψ(s), α] to denote Regr[ψ(do(α, s))], and
R[ψ(s), ~α] to denote the repeated regression over all actions
in the sequence~α (in reverse order). Note that the resulting
formula has a free variables of sort situation. Intuitively, it is
the condition that has to hold ins in order forψ to hold after
executing~α (i.e. in do(~α, s)). It is predominantly comprised
of the fluents occurring in the conditional effects of the ac-
tions in~α. Due to the Regression Theorem (Reiter 2001) we
have thatD |= ψ(do(~α, s)) ≡ R[ψ(s), ~α] for all situationss.

Regression is a purely syntactic operation. Nevertheless,
it is often beneficial to simplify the resulting formula for
later evaluation. Regression can be defined in many action
specification languages. In STRIPS, regression of a literall

over an actiona is defined based on the add and delete lists
of a: RSTRIPS[l] = FALSE if l ∈ DEL(a) and{l} \ ADD(a) oth-
erwise. Regression in ADL was defined in (Pednault 1989).
Notation: We useα to denote arbitrary but explicit actions
andS to denote arbitrary but explicit situations, that isS =
do(~α, S0) for some explicit action sequence~α. Further~α · α
denotes the result of appending actionα to the sequence~α.

Going back to our RoboCup example, regressing the goal
“ball in goal” over the action “drive to goal”, yields a condi-
tion “have ball”. The further regression over a “turn” action
states “distance to ball< 10cm” as a condition for the suc-
cess of the considered plan, if, e.g., the robot’s 10cm long
grippers enable turning with the ball.

3 Planning with Unexpected Events
In this paper we consider a planner based onA∗ search that
uses positive action costs as a metric, but the conceptual
approach is amenable to a variety of other forward-search
based planning techniques and paradigms.

Intuitively, our approach annotates the search tree with
all relevant information for determining the optimal plan.
By regressing the goal, preconditions, and metric function

over all considered action sequences, this information is ex-
pressed in terms of the current state. When unexpected
events change the current state of the world, this allows us to
reason symbolically about their relevance and their potential
impact on the current search tree and choice of plan—much
faster then replanning from scratch.

For instance, our soccer robot from above knows from re-
gressing the goal that the plan [“turn”, “drive to goal”] will
succeed whenever “distance to ball< 10cm” holds. Hence it
can determine the relevance of the aforementioned ball dis-
placements, and also that, for instance, unexpected actions
of its teammates can be ignored for now. A complication of
this arises from our interest in an optimal, rather than just
someplan, however. We will need to also consider alter-
native action sequences, and also handle impacts on the re-
gressed metric function.

3.1 Regression-basedA∗ planning

In this section we present anA∗ planner that returns not only
a plan, but also the remaining open list upon termination of
search, as well as a search tree annotated with any relevant
regressed formulae.

To provide a formal characterization, we assume that the
planning domain is encoded in a basic action theoryD.
Given an initial situationS, a goal formulaGoal(s), a for-
mulaCost(a, c, s) defining costsc of actiona, and an admis-
sible heuristic specified as a formulaHeu(h, s), A∗ search
finds a sequence of actions~α such that the situationdo(~α, S)
satisfies the goal while minimizing the accumulated costs.
The (extra-logical) formulaValue(v, do([α1, . . . , αN], s))

def
=

(∃h, c1, . . . , cN).Heu(h, do([α1, . . . , αN], s))∧Cost(α1, c1, s)∧
· · ·∧Cost(αN , cN , do([α1, . . . , αN−1], s))∧v = h+c1+· · ·+cN ,
guides this search. Starting with an open list,Open, con-
taining only one element representing the empty action se-
quence, the search proceeds by repeatedly removing and ex-
panding the first element from the list until that element sat-
isfies the goal, always maintaining the open list’s order ac-
cording toValue. We assume that the goal can only, and
will unconditionally, be achieved by a particular agent ac-
tion finish. Any planning problem can naturally be trans-
formed to conform to this by defining the preconditions of
finish according to the original goal.

Our regression-based version ofA∗ is shown in Figure 1.
It interacts with the basic action theoryD to reason about
the truth-values of formulae. We sayψ holds, to mean
that it is entailed byD. The algorithm is initially invoked
as regrA∗(D, S,Goal,Cost,Heu, [(0,∞, [])], nil). The last ar-
gument denotes a data structure representing the annotated
search tree and is initially empty. The elements of the open
list are tuples(g, h, ~α), where~α = [α1, . . . , αn] is an action
sequence,g are the costs accumulated when executing this
sequence inS, andh is the value s.t.Heu(h, do(~α, S)) holds.
When an element is expanded, it is removed from the open
list and the following is performed for each agent actionα′:
First, the preconditions ofα′ are regressed over~α (Line 6).
If the resulting formula, stored inT (~α).P (s), holds inS ac-
cording toD (Line 7), the cost formula forα′ is regressed
over~α, the heuristic is regressed over~α ·α′, and the resulting

regrA∗(D, S,Goal,Cost,Heu,Open, T) :
1 if Open= [] then return ([], T)
2 else[(g, h, ~α) | Open′] = Open // slice first element
3 if Goal(do(~α, S)) holdsthen return (Open, T)
4 else foreachα′ ∈ Aagentdo
5 ~α′ ← ~α · α′ // append action to sequence
6 T (~α′).P (s)←R[Poss(α′, s), ~α]
7 if T (~α′).P (S) holdsthen
8 T (~α′).p← true // action currently possible
9 T (~α′).C(c, s)←R[Cost(α′, c, s), ~α]

10 T (~α′).H(h, s)←R[Heu(h, s), ~α′]
11 T (~α′).c← c′ with c′ s.t.T (~α′).C(c′, S) holds
12 T (~α′).h← h′ with h′ s.t.T (~α′).H(h′, S) holds
13 insert(g + c′, h′, ~α′) into Open′

14 elseT (~α′).p← false // action currently impossible
15 return regrA∗(D, S,Goal,Cost,Heu,Open′, T)

Figure 1: Pseudo-code for regression-basedA∗ planning.

formulae are evaluated inS yielding valuesc′ andh′ (Lines
9–12). Intuitively, the regression of these formulae over~α

describes in terms of the current situation, the values they
will take after performing~α. Finally, a new tuple is inserted
into the open list (Line 13). It is done according tog+c′ +h′

to maintain the open list’s order according toValue(v, s).
A∗ keeps expanding the first element of the open list, until

this element satisfies the goal, in which case the respective
action sequence describes an optimal plan. This is because
an admissible heuristic never over-estimates the actual re-
maining costs from any given state to the goal. Due to the
Regression Theorem (Reiter 2001), this known fact about
A∗ also holds for our regression-based version. Similarly
the completeness ofA∗ is preserved.

In service of our recovery algorithm described below, we
explicitly keep the search treeT and annotate its nodes
with the regressed formulae for preconditions (T (~α).P (s)),
costs (T (~α).C(c, s)), and heuristic value (T (~α).H(h, s)) and
their values according to the (current) initial situation
(T (~α).p, T (~α).c, and T (~α).h). Roughly, when the initial
state changes due to an unexpected evente, it reevaluates
T (~α).P (s), T (~α).C(c, s), andT (~α).H(h, s) in s = do(e, S),
and updates their values and the open list accordingly.

However, we can gain significant computational savings
by reducing reevaluations to only those formulae actually
affected by the state change. And since all formulae arere-
gressed, we can determine which ones are affected, by sim-
ply considering the fluents they mention. For this purpose
we create an indexIndexwhose keys are fluent atoms (e.g.
distanceTo(ball)) and whose values are lists of pointers to all
stored formulae that mention it.

3.2 Recovering from Unexpected Events

While generating a plan for an assumed initial situationS,
an unexpected evente, say “distanceTo(ball)← 20”, may
occur, changing the state of the world and putting us into sit-
uationdo(e, S). When this happens, our approach consults
the aforementioned index to pinpoint all formulae affected
by this change (e.g.T ([turn, driveTo(goal), finish]).P (s)). Af-
ter reevaluating these formulae indo(e, S) and updating their
values, the search tree will be up-to-date in the sense that all

recover(D, S1, S2,Cost,Heu,Open, T, Index) :
1 F∆ ← {F ∈ keys(Index) | F (S1) 6≡ F (S2) holds}
2 ∆←

S

F∈F∆
Index(F) // affected formulae

3 foreach (~α,‘p’) ∈ ∆ do // update preconditions
4 if T (~α).p = trueand¬T (~α).P (S2) holdsthen
5 T (~α).p← false // action now impossible
6 foreach (g, h, ~α′) ∈ Opendo
7 if ~α is prefix of~α′ then
8 remove(g, h, ~α′) from Open
9 elseif T (~α).p = falseandT (~α).P (S2) holdsthen

10 T (~α).p← true // action now possible
11 ~α′ · αlast = ~α // get last action in sequence
12 T (~α).C(c, s)← R[Cost(αlast, c), ~α

′]
13 T (~α).H(h, s)←R[Heu(h), ~α]
14 T (~α).c← c′ with c′ s.t.T (~α).C(c′, S2) holds
15 T (~α).h← h′ with h′ s.t.T (~α).H(h′, S2) holds
16 g′ ← getGval(T, ~α)
17 insert(g′, h′, ~α) into Openand updateIndex
18 foreach (~α,‘c’) ∈ ∆ do // update accumulated costs
19 getc′ s.t.T (~α).C(c′, S2) holds
20 offset← c′ − T (~α).c
21 foreach (g, h, ~α′) ∈ Opendo
22 if ~α is prefix of~α′ then g ← g + offset
23 T (~α).c← c′

24 foreach (~α,‘h’) ∈ ∆ do // update heuristic values
25 if (∃g, h).(g, h, ~α) ∈ Open then
26 h← h′ with h′ s.t.T (~α).H(h′, S2) holds
27 T (~α).h← h
28 return (sort(Open), T)

Figure 2:Pseudo-code of our recovery algorithm.

its contained values are with respect todo(e, S) rather than
the originally assumed initial situationS. After propagating
this change to the open list, search can continue, producing
the same result as ifA∗ (or regrA∗) had set out indo(e, S)
(cf. Theorem 1). Note that the regressed formulae never
change.Assuming that most unexpected state changes only
affect a few fluents and thus often only affect a small subset
of all formulae, our annotation allows for great computa-
tional savings when recovering from changes, as we show
empirically in the next section.

The recovery algorithm is specified in Figure 2.T denotes
the annotated search tree,Open is the open list, andIndex
the index. The latter contains entries of the form(~α, type),
where~α is a sequence of actions andtype is either of‘p’,
‘c’, or ‘h’. The algorithm modifies the values of the tree
and the open list (ll. 22 and 26) to reflect their value with
respect to a new situationS2 (e.g. do(e, S1)) rather than an
originally assumed initial situationS1. If the event changes
the truth value of action preconditions, the content of the
open list is modified accordingly (ll. 8, 17). When a previ-
ously impossible action has now become possible (Line 9)
the annotation for this node is created and a new entry added
to the open list (ll. 11-17). The functiongetGval(T, ~α) com-
putes the sum of all costs (T (·).c) annotated inT along the
branch from the root to node~α.

The algorithm can be used in one of at least two ways:
during planning (“on-the-fly”), dealing with unexpected
state changes immediately, or right after planning (“at-the-
end”), dealing at once with all events that occurred during

planning. The former has the advantage that the planning
effort is focused more tightly on what is actually relevant
given everything that has happened so far. This approach
can be implemented by inserting code right before Line 15
of regrA∗ that checks for events and invokesrecoverif nec-
essary, changingS,Open′, andT accordingly. The appeal of
the latter stems from the fact that recovering from a bulk of
events simultaneously can be more efficient than recovering
from each individually. It may, however, be necessary to re-
sumeregrA∗ search afterwards, if, for instance, the current
plan is no longer valid in the new initial state or a new op-
portunity exists, which may lead to a better plan. With both
approaches, additional events may happen during recovery,
making additional subsequent recoveries necessary.

The following theorem states the correctness ofrecoverin
terms of the “at-the-end” approach: callingrecoverand con-
tinuing regrA∗ with the new open list and tree, produces an
optimal plan and in particular the same as replanning from
scratch inS2. Recall that the first element of the open list
contains the optimal plan. For “on-the-fly”, correctness can
be shown analogously (cf. Lemma 1 in the Appendix).
Theorem 1 (Correctness). Let D be a basic action theory,
Goala goal formula,Cost(a, c) a cost formula, andHeu(h) an
admissible heuristic. Then, for any two situationsS1, S2 in
D we have that after the sequence of invocations:
(Open

1
, T1)← regrA∗(D, S1,Goal,Cost,Heu, [(0,∞, [])], nil),

createIndexfrom T1,
(Open

2
, T2)← recover(D, S1, S2,Open

1
, T1, Index),

(Open
3
, T3)← regrA∗(D, S2,Goal,Cost,Heu,Open

2
, T2)

the first element ofOpen
3

will be the same as inOpen′ of
(Open′, T ′)← regrA∗(D, S2,Goal,Cost,Heu, [(0,∞, [])], nil),
or bothOpen

3
andOpen′ are empty.Proof: Appendix.

This, in particular, works for any situation pairS1, S2 =
do(~e, S1), for any sequence of events~e. Note that such events
can produce arbitrary changes to the state of the world. The
algorithm does not make any assumptions about possible
events, any fluent may assume any value at any time.

In complex domains, many state changes are completely
irrelevant to the current planning problem, overall or at the
current stage of planning, and others only affect a small sub-
set of elements in the search tree. During recovery, we ex-
ploit this structure to gain significant speed-ups compared
to replanning from scratch. More importantly this allows
our algorithm to recover from small perturbations faster than
from large ones, where “large” may refer to the number of
fluents that changed or the amount by which continuous flu-
ents changed (cf. Section 4). This is what allows our algo-
rithm toconverge, i.e. “catch up with reality”, as we defined
informally in the introduction. We verified this empirically.

4 Empirical Results
We present empirical results obtained using a current im-
plementation of our algorithm to generate optimal plans for
differently sized problems of the metric TPP and Zenotravel
domains of the International Planning Competition. We be-
gin by showing that the time required for recovering from
unexpected state changes is roughly and on average propor-
tional to the extent of the change. We then show that our

av
er

ag
e

tim
e

(s
ec

on
ds

)

0

0.1

0.2

0.3

relative fluent deviation25% 50%

TPP1

Zenotravel1

Figure 3: Recovery time relative to amount of change.

approach is able to find optimal plans even when the initial
state changes frequently. We compare the two mentioned
recovery strategies on-the-fly and at-the-end, showing that
the former clearly outperforms the latter in terms of like-
lihood of convergence. Finally, and not surprisingly, we
show that our approach generally outperforms replanning
from scratch. All experiments were run on an Intel Xeon
2.66 GHz with 2GB RAM.

Figure 3 plots the average time the combination ofrecover
+ continuedregrA∗ search took to find a new optimal plan,
after the value of a randomly selected continuous fluent was
randomly modified after generating an optimal plan. A de-
viationx% means that the fluent was multiplied by1± 0.x,
e.g. 50% means a factor of1± 0.5. Note that we used con-
tinuous fluents in our experiments only because they lend
themselves better to a quantitative evaluation. Our approach
is equally applicable to discrepancies on discrete valued,in-
cluding Boolean, fluents. As one can see, the time to recover
from a drastic change takes on average longer than for minor
deviations. While this doesn’t seem surprising, we present
it here since it provides the intuition for the convergence be-
havior of our approach, which we study next.

We assume that over longer periods of time more things
change and in greater amounts than over shorter periods of
time. Recovery generally takes less time than the original
planning did (see below). Hence, we assume less or fewer
changes will happen during recovery than during planning.
A second recovery – from the events that occurred during
the first recovery – is thus predicted to take less time than
the first. This process often continues until convergence.
We studied the conditions under which our algorithm con-
verges by simulating domains with frequent changes to the
initial state. At high frequencies during planning and sub-
sequent recoveries, we randomly perturbed some fluent by
an amount of up to a certain maximum between 5-80%. We
considered the two approaches described earlier: complet-
ing the original planning task and recovering only once a
plan is found (at-the-end), followed by furtherregrA∗ search
if needed, or reacting to state changes immediately (on-
the-fly), pausing furtherregrA∗ expansion untilrecoverhas
brought the current search tree up-to-date. In both cases,
several episodes of recovery and additionalregrA∗ search
were generally required before finding an optimal and up-
to-date plan. Their number varied strongly, as a result of
some discrepancies having larger impact than others. Table

tim
e

(s
ec

on
ds

)

0.5

1

1.5

2

2.5

test case
00 100 200 300 400500600 7008009001000

replanning

recover+ continuedregrA∗

Figure 4: Runtime comparison of our approach vs. replan-
ning from scratch on the TPP domain.

1 shows the percentages of simulations in which an optimal
plan was found, i.e. the algorithm converged within the time
limit, for different frequencies and amounts of perturbation.
As time limit we used 30 times the time required for solv-
ing the respective original problems without perturbations
using a conventionalA∗ search planner. These were 0.52s
for TPP1, 2.17s for TPP2, 3.03s for TPP3, and 0.34s, 0.82s,
and 1.58s for Zenotravel 1, 2, and 3 respectively. The fre-
quencies shown in the table are relative to these as well. For
instance, the value 100 for Zenotravel1 on-the-fly, 5Hz, 40%
states that even when every0.34s/5 = 68 ms the value of a
random fluent changed by up to 40% in the considered Zeno-
travel problem, the on-the-fly approach still converged 100%
of the time. This simulates a quite erratic environment, pos-
sibly harsher than many realistic application domains.

The on-the-fly recovery strategy clearly outperforms at-
the-end recovery. This makes intuitive sense, as no time is
wasted continuing planning for an already flawed instance.
This also motivates an integrated approach, showing its ben-
efit over the use of plan adaptation approaches which are
only applicable once a first plan has been produced.

The table also shows that convergence was much better on
TPP than on Zenotravel. Interestingly, this was predictable
given Figure 3: since the curve for Zenotravel1 intersects
the y-axis at around 0.07 seconds, it seems unreasonable to
expect convergence on this problem when the initial state
changes at intervals shorter than that. This explains the low
probability of convergence when events occur at 10Hz times
planning time, i.e. every 0.034s.

Since replanning from scratch takes the same amount of
time, no matter how small the discrepancy is, assuming the
problem does not get significantly easier through this, it has
no chance of ever catching up with reality when events hap-
pen at time intervals shorter than the time required for plan
generation. Our approach thus enables the application of
planning in domains where this was not previously possible.

Not surprisingly, our approach generally outperforms re-
planning from scratch. To demonstrate this, we compared
the times required by both approaches for recovering from a
single change of the initial state. The setup was as follows:
We solved a planning problem, perturbed the state of the
world by randomly changing some fluent’s value, and then
ran both (a)recoverfollowed by furtherregrA∗ search based
on the modified open list if necessary, and (b) replanning

Frequency: 3Hz · planning time 5Hz · planning time 10Hz· planning time
Deviation: 5% 10% 20% 40% 80% 5% 10% 20% 40% 80% 5% 10% 20% 40% 80%

tpp1 at-the-end 100 100 100 83 60 100 100 83 63 43 100 100 76 43 20
tpp1 on-the-fly 100 100 100 86 83 100 100 96 80 83 100 100 93 80 70
tpp2 at-the-end 96 86 60 63 43 100 80 51 44 34 89 48 34 24 10
tpp2 on-the-fly 100 93 86 86 83 96 86 75 86 82 96 86 86 79 82
tpp3 at-the-end 100 73 50 66 41 94 72 55 42 52 76 31 42 32 20
tpp3 on-the-fly 100 96 87 92 72 94 84 86 87 89 89 81 81 89 86
zenotravel1 at-the-end 100 96 100 100 76 66 76 63 43 56 3 6 0 6 16
zenotravel1 on-the-fly 100 100 100 100 100 96 96 100 100 86 66 73 70 93 93
zenotravel2 at-the-end 66 43 30 26 3 30 16 6 6 6 10 0 0 0 0
zenotravel2 on-the-fly 86 70 53 53 40 36 16 30 26 23 13 6 0 6 20
zenotravel3 at-the-end 100 80 56 28 8 97 72 12 7 7 33 10 0 0 2
zenotravel3 on-the-fly 100 92 60 56 66 90 75 60 30 43 43 28 33 25 21

Table 1:Percentage of test cases where our approach converged within the timelimit, by event frequencies and deviation amounts.

from scratch using a conventionalA∗ search implementation
using the same heuristic. Figure 4 shows the time both ap-
proaches require to recover from single events on our TPP1
problem. Recall that with both approaches the resulting plan
is provably optimal. The average speed-up was 24.11. We
performed the same experiment on the Zenotravel1 problem.
There we tested using two different, hand-coded heuristics,
where the first is more informed (better) than the second.
Using the first, which we also used in the earlier described
experiments, the average recovery time was 0.14s, and the
average replanning time was 0.51s, whereas with the second
heuristic recovery time averaged to 0.35s and replanning to
1.07s. This shows that even when the planner, and thus re-
planner, is improved by the use of a better heuristic, our ap-
proach is still generally superior to replanning from scratch.
This is because it equally benefits from a smaller search tree,
resulting from the use of a better heuristic.

5 Discussion
In this paper we made three contributions: (1) We pre-
sented a novel integrated planning and recovery algorithm
for generating optimal plans in environments where the state
of the world frequently changes unexpectedly during plan-
ning. At its core, the algorithm reasons about the relevance
and impact of discrepancies, allowing the algorithm to re-
cover from changes more efficiently than replanning from
scratch. (2) We introduced a new criterion for evaluating
plan adaptation approaches, called convergence, and argued
for its significance. (3) We empirically demonstrated that
our approach is able to converge even under high frequencies
of unexpected state changes. Our experiments also show
that an interleaved planning-and-recovery approach which
recovers from such discrepancies on-the-fly is superior to an
approach that only recovers once planning has completed.

Our approach needs to be paired with an equally effective
execution monitor, since during execution the optimality of
the executing plan may also be jeopardized by exogenous
events. We describe one way of monitoring plan optimality
during execution in (Fritz & McIlraith 2007).

In the future, we intend to apply this work to a highly dy-
namic real-world domain such as the mentioned RoboCup or
Unmanned Aerial Vehicles. To do so, an optimized version
of our implementation is required. While the approach is
able to handle changes in the state, which can also be used

to model changes in executability and cost of actions, we
would like to study changing goals, too. We also think that
the ideas behind the presented approach may be beneficially
applied to planning under initial state uncertainty, in partic-
ular when such uncertainty ranges over continuous domains.

The presented approach is one of the first to monitor and
react to unexpected state changes during planning. The ap-
proach taken by Veloso, Pollack, & Cox (1998) exploits the
“rationale”, the reasons for choices made during planning,
to deal with discrepancies that occur during planning. They
acknowledge the possibility that previously sub-optimal al-
ternatives may become better than the current plan candidate
as the world evolves during planning, but the treatment of
optimality is informal and limited. No guarantees are made
regarding the optimality of the resulting plan. Also, by us-
ing best-first search, our approach is compatible with many
state-of-the-art planners, while the approach of Veloso, Pol-
lack, & Cox is particular to the PRODIGY planner.

Several approaches exist for adapting a plan in response
to unexpected events that occur during execution, rather than
during plan generation, e.g. (Koenig, Furcy, & Bauer 2002;
Hanks & Weld 1995; Gerevini & Serina 2000). Arguably
we could use these approaches for our purpose of recover-
ing from discrepancies during planning, by first ignoring the
changes and then recovering once a plan is generated. We
think this is inferior to our approach for the following rea-
sons: (1) except for the first, the listed approaches do not
guarantee optimality, (2) we have shown that an integrated
approach which recovers from state changes on-the-fly has
convergence advantages, and (3) it is not clear whether such
a use of these replanners would at all lead to convergence.

The SHERPA system presented by Koenig, Furcy, &
Bauer (2002) monitors the continued optimality of a plan
only in a limited form. SHERPA lifts the Life-Long Plan-
ning A∗ (LPA∗) search algorithm to symbolic propositional
planning. LPA∗ was developed for the purpose of replanning
in problems like robot navigation (i.e. path replanning) with
simple, unconditional actions, and only applies to replan-
ning problems where the costs of actions have changed but
the current state remains the same. Similar to our approach,
SHERPA retains the search tree to determine how changes
may affect the current plan. Our approach subsumes this
approach and further allows for the general case where the
initial (current) state may change arbitrarily and the dynam-

ics of the domain may involve complex conditional effects.
SHERPA’s limitations equally apply to more recent work
by Sun & Koenig (2007). The presented Fringe-Saving A∗

(FSA∗) search algorithm, which sometimes performs better
than LPA∗, is further limited to grid world applications and
the use of the Manhattan distance heuristic. This algorithm
retains the open list of previous searches as well.

The idea of deriving and utilizing knowledge about rele-
vant conditions of the current state for monitoring and pos-
sibly repairing a plan, has been used before, e.g. Kambham-
pati (1990), and reaches back to the early work on Shakey
the Robot by Fikes, Hart, & Nilsson (1972). Fikes, Hart, &
Nilsson used triangle tables to annotate the plan with the re-
gressed goal, in order to determine whether replanning was
necessary when the state of the world changed unexpectedly.

Nebel & Koehler (1995) show that plan reuse has the
same worst case complexity as planning from scratch. This
result is interesting in theory, but not so relevant in the prac-
tical case of optimal plan generation in the face of frequent
unexpected events. In this case, we have shown that if we
want to have a plan that we know to be optimal at the start
of execution, then the recovery time relative to the impact of
an event is more important.

Acknowledgments: We gratefully acknowledge funding
from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) and the Ontario Research Founda-
tion Early Researcher Award.

References
Fikes, R.; Hart, P.; and Nilsson, N. 1972. Learning and executing
generalized robot plans.Artificial Intelligence3:251–288.

Fritz, C., and McIlraith, S. A. 2007. Monitoring plan opti-
mality during execution. InProceedings of the Seventeenth In-
ternational Conference on Automated Planning and Scheduling
(ICAPS), 144–151.

Gerevini, A., and Serina, I. 2000. Fast plan adaptation through
planning graphs: Local and systematic search techniques. InPro-
ceedings of the 5th International Conference on Artificial Intelli-
gence Planning Systems (AIPS), 112–121.

Hanks, S., and Weld, D. S. 1995. A domain-independent algo-
rithm for plan adaptation.J. Artif. Intell. Res. (JAIR)2:319–360.

Kambhampati, S. 1990. A theory of plan modification. InProc. of
the 8th National Conference on Artificial Intelligence, 176–182.

Koenig, S.; Furcy, D.; and Bauer, C. 2002. Heuristic search-
based replanning. InProc. of the 6th International Conference on
Artificial Intelligence Planning Systems (AIPS), 294–301.

Nebel, B., and Koehler, J. 1995. Plan reuse versus plan genera-
tion: A theoretical and empirical analysis.Artificial Intelligence
76(1–2):427–454.

Pednault, E. 1989. ADL: Exploring the middle ground between
STRIPS and the situation calculus. InProc. of the 1st Inter-
national Conference on Principles of Knowledge Representation
and Reasoning (KR), 324–332.

Reiter, R. 2001.Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.

Sun, X., and Koenig, S. 2007. The fringe-saving A* search al-
gorithm - a feasibility study. InProceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2391–2397.

Veloso, M.; Pollack, M.; and Cox, M. 1998. Rationale-based
monitoring for continuous planning in dynamic environments.
In Proc. of the 4th International Conference on Artificial Intel-
ligence Planning Systems (AIPS), 171–179.

Appendix: Proof of Theorem 1
Definition 1. Given a situationS, a goalGoal, a cost for-
mula Cost(a, c), an admissible heuristicHeu(h), and a list
L of tuples(g, h, ~α), we callL a consistent open list w.r.t.
S,Goal,Cost, andHeu if w.r.t. S

(i) L contains no infeasible action sequences;
(ii) any feasible action sequence is either itself contained in

L, or a prefix or extension of it is, however, for any feasi-
ble sequence that satisfiesGoal, either itself or a prefix is
contained (but not an extension);

(iii) every element(g, h, [α1, α2, . . . , αn]) ∈ L is such thath is
indeed the heuristic value for[α1, α2, . . . , αn] according to
S, i.e.D |= Heu(h, do([α1, α2, . . . , αn], S)); and

(iv) the accumulated costsg are such that D |=
(∃c1, . . . , cn).Cost(α1, c1, S)∧Cost(α2, c2, do(α1, S))∧· · ·∧
Cost(αn, cn, do([α1, α2, . . . , αn−1], S)) ∧ g = c1 + · · ·+ cn.

Proposition 1. Any open list output byA∗, and hence
regrA∗, is consistent w.r.t. to the given initial situation, goal,
cost-, and heuristic function.

Lemma 1. In the sequence of invocations of Theorem 1,
Open

2
is a consistent open list w.r.t.S2,Goal,Cost, andHeu.

Proof: We prove each item of Definition 1 in turn.
Proof of (i): Let (g, h, [α1, α2, . . . , αn]) ∈ Open

2
and as-

sume to the contrary that[α1, α2, . . . , αn] is infeasible in
S2, i.e. there is an1 ≤ i ≤ n such thatD 6|=
Poss(αi, do([α1, . . . , αi−1], S2)). It must be the case that
[α1, α2, . . . , αn] was either element ofOpen

1
, or it was in-

troduced byrecover. We lead both cases to a contradiction.
In the former case the preconditions ofαi have differ-

ent truth values inS1 and S2, since they must have been
true in S1, or else the sequence wouldn’t have been in-
cluded inOpen

1
. Hence, there must be at least one fluent

F mentioned inPoss(αi, s) for which we have thatD |=
F (S1) 6≡ F (S2). Then, however, by definition ofrecover
(Lines 1, 2), ([α1, . . . , αi], P) was included in∆′. Since
D |= Poss(αi, do([α1, . . . , αi−1], S1)) at that point, following
the definition ofregrA∗ (Lines 6, 7, 8),T ([α1, . . . , αi]).p =
true and D 6|= Poss(αi, do([α1, . . . , αi−1], S2)) (due to
T ([α1, . . . , αi]).P (s) = R[Poss(αi), [α1, . . . , αi−1] (definition
of regrA∗), and the Regression Theorem (Reiter 2001)),
and the fact that[α1, . . . , αi−1] is a prefix of [α1, . . . , αn],
(g, h, [α1, α2, . . . , αn]) would be removed from the open list,
concluding the contradiction for this case.

In the latter case, i.e.recoverintroduced this element, we
get a contradiction just as easily. The only place where re-
cover inserts new elements intoOpenis in Line 17, i.e. in the
body of anelseifstatement with conditionT (~α).p = false∧
D |= T (~α).P (S2). This condition is violated by the assump-
tion thatD 6|= Poss(αi, do([α1, . . . , αi−1], S2)) (again, due to
the Regression Theorem and the definition ofregrA∗ stat-
ing thatT ([α1, . . . , αi]).P (s) = R[Poss(αi), [α1, . . . , αi−1]).
Hence, Line 17 is never reached for this sequence, and thus

recovercannot have inserted this element. Hence, no infea-
sible action sequence is contained inOpen

2
.

Proof of (ii): Assume again to the contrary that there is
an action sequence[α1, α2, . . . , αn] which is feasible inS2,
but neither itself, nor a prefix or extension of it is includedin
Open

2
. This sequence (like any other) is either feasible inS1,

or infeasible inS1. We lead both cases to a contradiction.
By Proposition 1,Open

1
is consistent. Hence,recover

must have removed an appropriate sequence. However, as
already seen above,recoveronly removes sequences that
have a prefix whose last action is not feasible in the cor-
responding situation inS2, and hence the entire sequence
[α1, α2, . . . , αn] wouldn’t be feasible inS2, a contradiction.

Otherwise, if [α1, α2, .., αn] is not feasible in S1,
there is a minimal1 ≤ i ≤ n such that D 6|=
Poss(αi, do([α1, .., αi−1], S1)), and we haveT ([α1, .., αi]).p =
false, by Line 14 of regrA∗. However, by assumption,
D |= Poss(αi, do([α1, .., αi−1], S2)) and thus alsoD |=
T ([α1, .., αi]).P (S2), by definition ofregrA∗ and the Regres-
sion Theorem. Hence, the condition on Line 9 is satisfied
for the sequence[α1, .., αi], as there must be a fluent men-
tioned inR[Poss(αi), [α1, .., αi−1]] with opposite truth values
in S1 andS2, so that this sequence is included in∆′. Follow-
ing the condition on Line 9 the action sequence[α1, .., αi] is
added to the open list, concluding the second contradiction.

Now let’s turn to the second part of (ii). Assume there
was an element(g, h, [α1, α2, . . . , αn]) ∈ Open

2
such that

there exists a minimal index1 ≤ i < n with D |=
Goal(do([α1, . . . , αi], S2)). Since we assume that the goal
can only be achieved through the actionfinish, and when
this action can execute it will always produce the goal,
we know thatαi = finish. Then however, the element
(g, h, [α1, α2, . . . , αn]) cannot be inOpen

1
since otherwise

alsoD |= Goal(do([α1, . . . , αi], S1)), becauseregrA∗ does
not introduce infeasible action sequences into the open list,
and since this sequence would satisfy the goal, it would
not have been expanded further (cf. Proposition 1). Also,
the sequence cannot have been introduced byrecover, since
recoveronly introduces sequences for whose last action the
preconditions differ betweenS1 andS2 (but i < n). This
concludes the contradiction for this part.

Proof of (iii): There are two possible cases: (a) Either
(g, h, [α1, α2, . . . , αn]) was added byrecover, or (b) it was
added by the firstregrA∗. Case (a) leads easily to a contra-
diction, since due to Lines 15, 17 ofrecoveronly elements
with correct values according toS2 are added to the open
list. Also, this element cannot be changed in further iter-
ations of recoveras it cannot be member of∆′. In case
(b) we have thatD |= Heu(h, do([α1, α2, . . . , αn], S1)) 6=
Heu(h, do([α1, α2, . . . , αn], S2)) and hence there must be a
fluent mentioned inR[Heu(h), [α1, α2, . . . , αn]] on whose
truth valueS1 and S2 disagree. Therefore, the sequence
[α1, α2, . . . , αn] is included in∆′ in recoverand Lines 25–
27 executed for it. Since this element is part of the open list,
theelseif-condition holds and its new value according toS2

is determined. This value is written back into the entry of
the open list 26 (and also into the tree annotation 27). This
concludes the contradiction of this case, that theh value for
any element of the open listOpen

2
is wrong w.r.t.S2.

Proof of (iv): There are again the two possible cases: (a)
(g, h, [α1, α2, . . . , αn]) was added byrecover, or (b) it was
added by the firstregrA∗.

In case (a) the new value forg is computed bygetGval
on Line 16 ofrecover. This value is either accurate accord-
ing toS2, namely when all annotated costs for actions in the
sequence are already with respect toS2, in which case the
contradiction is immediate, or some of them are still with
respect toS1 and are going to be fixed subsequently. In the
later case, there must be actions in the sequence for which
the costs according toS1 andS2 disagree. In each of these
cases there are disagreeing fluents mentioned in the corre-
sponding regressed cost formulae that trigger the treatment
in Line 18, which will adjustg accordingly (also cf. case
(b)). Hence, this cases contradicts the assumption that the
value is incorrect with respect toS2.

In case (b) there again must be a fluentF mentioned in
R[Cost(αi, c), [α1, . . . , αi−1]] for at least one1 ≤ i ≤ n such
thatD |= F (S1) 6≡ F (S2), or else the accumulated cost val-
ues forS1 andS2 would be the same. Hence, Lines 18–23
are executed for all suchi’s. In each case, the correct costs
for αi according toS2 are computed and the offset from the
previous value (w.r.t.S2) is added to any element of the open
list which has[α1, . . . , αi] as a prefix (a sequence has trivially
itself as a prefix), and in particular[α1, α2, . . . , αn]. Hence,
after theforeach loop terminates, there are no more nodes
along the branch to[α1, α2, . . . , αn] which show aCostvalue
that is not according toS2, and valueg reflects their sum.
This completes the last contradiction. �

Proof of Theorem 1: Let us first consider the case where
there is a plan forS3, i.e. the two open listsOpen

3
andOpen′

aren’t empty. Let the first element inOpen′ be(g′, 0, ~α′), i.e.
~α′ is an optimal plan forGoal, for the initial stateS2 andg′

is its overall cost. The heuristic value for this element is,of
course,0, since the action sequence is a plan.

We need to show that the first element ofOpen
3
, let’s call

it (g3, 0, ~α3), is exactly the same. Since we assume that any
open list output byregrA∗ or recoveris sorted according to
Value, it suffices to show that there is a member inOpen

3

whose action sequence is~α′, no other element(g′3, h′
3, ~α

′
3) ∈

Open
3

is such thatg′3 + h′
3 < g3 (we assume that tie breaking

is done the same way every time an open list is sorted, and
omit these details here), and thatg3 = g′. Again, since it is
output byregrA∗, the heuristic value can only be zero.

All this follows from Lemma 1, and the completeness and
optimality ofA∗ and henceregrA∗, based on the admissibil-
ity of the heuristic function.
Now to the case whereOpen′ is empty, i.e. no feasible ac-
tion sequence to reach the goal. We show that alsoOpen

3

is empty. Assume to the contrary that there is an element
(g, h, [α1, α2, . . . , αn]) ∈ Open

3
. This sequence satisfies the

goal (ignoring preconditions), or elseregrA∗ would not have
returned it. But thenOpen

2
must have already contained an

element whose action sequence was a prefix[α1, α2, . . . , αi]
of [α1, α2, . . . , αn], i ≤ n, sinceregrA∗ itself is assumed cor-
rect and never introduces infeasible action sequences into
the open list. The contradiction now follows again from
Lemma 1 (Case (i)). �

