
Monitoring Policy Execution

Christian Fritz and Sheila A. McIlraith
Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, CANADA

{fritz,sheila}@cs.toronto.edu

Abstract

In this paper we explore the paradigm of planning and ex-
ecution in stochastic domains with (a) exogenous events, (b)
an incorrect model, and/or (c) incomplete forward search (i.e.
discarding low probability outcomes). We consider forward
search-based planning algorithms for Markov Decision Pro-
cesses (MDPs), exploring the reachable state space from a
given initial state. Under such circumstances, an executing
policy often finds itself in an unexpected state, bringing into
question the continued optimality of the policy being exe-
cuted (or near-optimality in the case where the optimal policy
was approximated). Replanning in this unexpected state is a
naive and costly solution that is often, we argue, unneces-
sary. In this paper we exploit regression to identify the subset
of each expected state that is critical to the optimality of a
policy. With this information in hand, we can often avoid re-
planning when faced with an unexpected state. Our analysis
offers theoretic bounds on optimality in certain cases as well
as empirical results demonstrating significant computational
savings compared to replanning from scratch.

1 Introduction
The de-facto standard for modeling decision making in
stochastic domains is Markov Decision Processes (MDPs).
In most cases, MDPs are solved off-line by creating a pol-
icy that maps each state to an action that maximizes the ex-
pected accumulated reward over time. With this policy in
hand, an agent knows how to act optimally in any state of
the world. Unfortunately, solving an MDP in such a way
is computation-intensive and impossible for large or infinite
state spaces, or when time is limited. As such, a reasonable
alternative is to compute an approximately optimal policy
via state-based search from a known initial state. This gen-
erates a policy for (a subset of) the state space that is ac-
cessible from the current state within a bounded number of
actions. Two questions arise from such an approach: how
close to optimal is the resulting policy, and how robust is it.

In this paper we address the issue of policy robustness.
Since the MDP is only solved for a subset of the state space
an agent can find itself outside this subset during execution
of the policy. This can happen for at least two reasons: i) the
initial search ignored less likely outcomes of actions or ig-
nored the possible occurrence of some unlikely exogenous
events, or ii) the transition function erroneously neglected
the possibility of certain outcomes or events. This is partic-
ularly true of sampling-based approaches, sometimes used
to find an approximately optimal policy for a problem de-
fined over a continuous state space (e.g., [4]). Regardless

of the cause, a discrepancy between actual and anticipated
outcomes requires the agent to decide how to proceed. A
common response is to replan starting from the actual cur-
rent state. We argue that in many cases of discrepancy de-
tection it is not necessary to replan because the aspect of the
state that is deviant has no bearing on the optimality of the
remaining policy execution.

To address this problem, we develop an approach to mon-
itoring policy execution that is inspired by a technique com-
monly used to monitor the execution of deterministic plans,
dating as far back as PLANEX ([6]), Shakey’s execution
strategy. In PLANEX, each step of a (straight-line) plan was
annotated with the regression [7] of the goal together with
the remaining preconditions for the remainder of the plan.
The regressed formulae captured those conditions that had
to be true at each step of the plan in order to ensure that re-
maining plan was still executable and still led to the goal.
If discrepancies arose during execution, these annotations
could be verified to determine whether the plan was still
executable and valid. We propose to proceed similarly for
decision-tree search, replacing the goal with a heuristic ap-
proximation of the real value function, and, since optimality
is relative rather than absolute, also considering alternatives.
Experiments with an implementation of our approach illus-
trate its potential to drastically speed-up the decision tocon-
tinue execution of a policy or to abort and replan. While our
approach is described in the situation calculus, it is amenable
to use with any action description language for which regres-
sion can be defined (e.g., STRIPS and ADL).

In Section 2 we review the situation calculus representa-
tion of relational MDPs, and their solution using decision-
tree search. In Section 3 we show how to annotate a policy
and present an algorithm that exploits this annotation to de-
termine continued optimality during policy execution. Next
we analyze properties of our approach including the space
complexity of our annotation. We also consider two particu-
lar classes of MDPs: finite horizon MDPs, and large MDPs
that are solved approximately via sampling. In both cases
we establish the continued optimality of a policy following
execution of our monitoring algorithm. We conclude with a
discussion of related and future work.

In [3] we considered the case of monitoring optimality
for deterministic plans. This work extends that approach to
decision-theoretic planning.

2 Background
2.1 Situation Calculus
The situation calculus is a logical language for specifying
and reasoning about dynamical systems [7]. In the situa-
tion calculus, thestateof the world is expressed in terms of
fluents,F , predicates relativized to a particularsituations,
e.g.,hasCoffee(~x, s). A situations is ahistoryof the primi-
tive actions performed from a distinguished initial situation
S0. The functiondo(a, s) maps an action and a situation into
a new situation thus inducing a tree of situations rooted in
S0, s ⊏ s′ states thats precedess′, i.e. s′ = do(~a, s) for some
sequence of actions~a.1

A basic action theory in the situation calculus,D, com-
prises fourdomain-independent foundational axioms, and
a set ofdomain-dependent axioms. Details of the form of
these axioms can be found in [7]. Included in the domain-
dependent axioms are axioms specifying what is true in the
initial stateS0, action precondition axiomsPoss(a(~x), s) ≡
Πa(~x, s) one for each actiona, whereΠa(~x, s) is a formula
with free variables among~x, s, and successor state axioms
(SSAs). The latter are axioms of the formF (~x, do(a, s)) ≡
ΦF (~x, a, s), one for each fluentF . ΦF (~x, a, s) characterizes
the truth value of the fluentF in the situationdo(a, s) in
terms of what is true in the current situations.

Regression
The regression of a formulaψ through an actiona is a for-
mulaψ′ that holds prior toa being performed if and only ifψ
holds aftera is performed. In the situation calculus, regres-
sion is defined inductively using the successor state axiom
for F as above:

R[F (~x, do(a, s))] = ΦF (~x, a, s)

R[¬ψ] = ¬R[ψ]

R[ψ1 ∧ ψ2] = R[ψ1] ∧R[ψ2]

R[(∃x)ψ] = (∃x)R[ψ]

We denote the repeated regression of a formula
ψ(do(~a, s)) back to a particular situations by Rs, e.g.
Rs[ψ(do([a1, a2], s))] = R[R[ψ(do([a1, a2], s))]]. Intuitively,
the regression of a formulaψ over an action sequence~a is the
condition that has to hold now forψ to hold after executing
~a. It is predominantly comprised of the fluents that play a
role in the conditional effects of the actions in the sequence.
Regression is a purely syntactic operation. Nevertheless,it
is often beneficial to simplify the resulting formula for later
evaluation. Regression can be defined in many action speci-
fication languages (e.g. STRIPS, ADL).
Notation: Lower case letters denote variables in the theory
of the situation calculus, upper case letters denote constants.
However, we use capitalS to denote arbitrary but explicit
situation terms, that isS = do(~a, S0) for some explicit ac-
tion sequence~a. For instance we will use,Sk for k > 0 to
denote a situation expected during planning, andS∗ to de-
note the actual situation that arises during execution. Vari-
ables that appear free are implicitly universally quantified
unless stated otherwise.

1For readability action and fluent arguments are generally sup-
pressed. Also,do(an, do(an−1, . . . do(a1, s))) is abbreviated to
do([a1, . . . , an], s) or do(~a, s).

2.2 Representing and Solving MDPs
An MDP is described through a state spaceS, a set of ac-
tionsA, a transition functionT , with T (s, a, ·) denoting a
distribution overS for all s ∈ S, a ∈ A, a reward function
R : S → IR, and a cost functionC : A×S → IR. The state
is assumed to be fully-observable by an agent acting in such
an environment and the agent’s goal is to behave according
to a policyπ : S → A that maximizes thevalue functionde-
fined using the infinite horizon, discounted reward criterion,
defined in terms of the expectationE:

V π(s) = E

"

∞
X

i=0

γi(ri − ci)

˛

˛

˛

˛

˛

s, π

#

whereri is the reward obtained after performing policyπ
for i steps starting ins, ci is the cost incurred by the action
performed at that stage, and0 ≤ γ < 1 is the discount factor.
Similarly, theQ-functionis defined as

Qπ(a, s) = R(s)− C(a, s) + γEs′∼T (s,a,·)

ˆ

V π(s′)
˜

where the expectationE is over the transition probabili-
ties T (s, a, ·). Finally, the optimal value function and op-
timal Q-function are defined asV ∗(s) = supπ V

π(s) and
Q∗(a, s) = supπ Q

π(a, s) respectively. The optimal policy
behaves greedily w.r.t. toQ∗, i.e. π∗(s) = argmaxa Q

∗(a, s).
An MDPM = 〈S,A, T ,R, C〉 can be represented through

a basic action theoryD in the situation calculus as follows
(cf. [7, 2]): Fluents describe the set of states relationally,
thusS is the set of all, possibly infinite, combinations of flu-
ent values. Further the user specifies for each (stochastic)
actiona ∈ A a predicateChoice(a, a′i) describing a collec-
tion of primitive actionsa′i that form the unique outcomes
of executinga. Preconditions are defined fora, but succes-
sor state axioms are defined in terms of the primitive actions
describing the outcomes. Using predicateProb(a′i, a, p, s),
the user specifies the probabilityp for outcomea′i whena
is performed in situations. Prob andChoicedescribe the
transition probabilitiesT . The specification is completed by
two more predicatesReward(r, s) describing the rewardr
obtained in situations, andCost(a, c, s) describing the cost
c of primitive actiona in s. The later deviates slightly from
the definitions used in [7, 2] as it defines costs for the out-
comes of stochastic actions rather than the stochastic actions
themselves. This is slightly more expressive and contains
the alternative as a special case.

The relational representation is more efficient than simple
state enumeration but more importantly it also allows us to
regress preconditions, rewards, costs, and probabilitiesover
actions. This is the key requirement for our algorithm.

Solving MDPs through Search
We assume we are given a decision-tree search planner, as
described e.g. in [5], which operates as follows. Starting
with a search tree containing only one node labeled with
situationS0, describing the current state of the world, the
planner works by repeatedly expanding nodes in the tree
and adding their successors (Figure 2 shows an example
tree). A node labeled with situations, denotedN [s], has
successorsN [ai, s], labeled with actionsai ∈ A. If ai

is possible ins, i.e. D |= Poss(ai, s), thenN [ai, s] has
successors labeled with the possible successor situations

do(a′i1, s), . . . , do(a′im, s) where thea′ij are the outcomes
(nature’s choices) of actionai as defined byChoice(ai, a

′
ij).

Situation labeled nodesN [s] have an associated rewardr
as defined throughReward(r, s), edgesE[a′, s] denoting ac-
tion outcomesa′ have associated costsc and probabilities
p, defined resp. byCost(a′, c, s) andProb(a′, a, p, s). We
make no assumptions regarding the expansion strategy of
the planner, that is, how to choose the next node to expand,
nor about its cutoff criterion, used to determine when to stop
expanding. But we do assume the existence of a predicate
V̄ (v, s) that provides a heuristic estimatev of the value of the
optimal value function (V ∗) in situations.2 This heuristic is
used to estimate the value in all leaf nodes.

Given a tree spanned this way, we can obtain a better es-
timate of the real value function for situations in the tree,by
backing-up the values from the leaves to the root using the
standard update rules:

Q(a, s) = rs +
X

a′

psa′

`

γV (do(a′, s))− csa′

´

V (s) = max
a∈A(s)

(Q(a, s))

with rs, psa′ , csa′ s.t.D |= Reward(rs, s)∧Prob(a′, a, psa′ , s)∧
Cost(a′, csa′ , s), and initialization in the leavesV (s) = v,
s.t. D |= V̄ (v, s). This function converges to the real
value function as the search horizon increases, that is, the
farther the search is performed, the closer the approxima-
tion will be. The best action to take in the initial sit-
uation S0 according to this function is the greedy action
a∗ = argmaxa∈A(Q(a, S0)), and similarly for all subsequent
actions. This produces a conditional plan representing the
best (partial) policy according to this value function approx-
imation, starting inS0, of the form

π(S0) = a; if ϕ(a′1) then π(do(a′1, S0))
elseifϕ(a′2) then π(do(a′2, S0))
. . .
elseifϕ(a′m) then π(do(a′m, S0)) fi

where the{π(do(a′i, S0))}1≤i≤m denote the sub-policies for
the considered outcomes of actiona, andϕ(a′i) denotes a
formula that holds iff the outcomea′i of a has happened.
Following the assumption of full-observability in the MDPs
we consider, these formulae can always be evaluated. But
what if after performing actiona in S0 we do not end in ei-
ther of these situationsdo(a′i, S0) but in some unexpected
situationS∗, or after planning we observe that some exoge-
nous event has altered the world and we are no longer in
S0 but in S∗? It seems one would need to perform time
consuming replanning starting fromS∗ in these cases. We
argue that this can often be avoided, namely when the dis-
crepancy between an expected state and the actual state is
irrelevant to the remaining policy. To distinguish between
relevant and irrelevant discrepancies, we propose, roughly,
to regress the value function and other relevant information
over the policy to derive a condition for its optimality (or
near-optimality depending on the initial policy’s degree of
optimality) in terms of the current situation.

We assume that the planner not only returns the policy, but
also the search tree itself. This serves our approach and also

2cf. e.g. [5] for notes on how to obtain such a heuristic

(π(S0), T (S0))← plan(S0)
π̂(S0)← annotate(π(S0), T (S0))
loop

obtainS∗

if S∗ ∈ T (S0) then { π̂ ← π̂(S∗) }
else { chooseS′ ∈ T (S0); π̂ ← patch(π̂(S′), S∗) }
extend(π̂)
execute-next-action(π̂)

Figure 1: general flow of control

N [s]

do(a′2,1, s)

do(a′2,2, s)

do(a′3,1, s)

do(a′3,2, s)

a1

a2

a3

E[a′2,1, s]

E[a′2,2, s]

E[a′3,1, s]

E[a′3,2, s]

N [a1, s]

N [a2, s]

N [a3, s]

Figure 2: A sample search tree. Circles denote states, boxes de-
note nature’s choices.

enables the planner to further improve the remaining policy
during execution.

3 Monitoring Policy Execution
Given a planner that provides a (near-)optimal policy ac-
cording to the given heuristic function as described above
starting from situationS, we assume, roughly, the general
control flow of Figure 1, presented in pseudo-code, where
T (S) is the (sub-)search-tree from situationS. That is, first
the planner generates a (near-) optimal policy and also re-
turns the search tree. This policy is annotated by associating
with each step an annotated copy of the corresponding sub-
search tree (Section 3.1). Then the policy is executed (cf.
loop). During execution the policy may be further improved
by extending the current sub-search tree. However, if the
current actual situationS∗ is unexpected and in particular
not planned for, for reasons outlined above, we first need to
patch the policy from some (expected) situationS′ included
in the original search tree to reflect this discrepancy (Sec-
tion 3.2). We will later address the issue of how to choose
S′, but intuitively it should be the result of one of the consid-
ered outcomes orS itself. It turns out that patching a policy
by patching its associated sub-search tree and possibly ex-
tracting a new greedy policy can generally be done much
faster than replanning from the new situation when exploit-
ing both, the annotations we propose, and knowledge about
the discrepancy itself. This is described in Section 3.2.

3.1 Annotation
We annotate each sub-policy with a copy of the (sub-)search
tree of the corresponding node of the overall search tree re-
turned by the planner as follows. Recall thatN [S] denotes
the (unique) node in the search tree labeled with situation
S, N [a, S] its successor nodes representing the execution of
actiona in S, andN [do(a′i, S)] the node representing itsith

outcome. E[a′i, S] denotes the edge betweenN [a, S] and
N [do(a′i, S)].

Definition 1 (Annotated Search Tree). The annotated
search treeT̂ (S) = (N̂, Ê) for T (S) = (N,E) is defined
as follows for all considered descendantsS′ of S:

N̂ [S′] =



(RS [V̄ (v, S′)], v′) if leaf node
(RS [Reward(r, S′)], r′) otherwise

with v′ s.t.D |= V̄ (v′, S′), andr′ s.t.D |= Reward(r′, S′),

N̂ [a, S′] = (RS [Poss(a, S′)], x)

with x s.t.D |= (Poss(a, S′)∧x = 1)∨ (¬Poss(a, S′)∧x = 0),
and

Ê[a′, S′] =
`

(RS [Cost(a′, c, S′)], c′),

(RS [Prob(a′, a, p, S′)], p′)
´

with c′ s.t. D |= Cost(a′, c′, S′), and p′ s.t. D |=
Prob(a′, a, p′, S′). Nodes have further an associated value:

N̂ [S′].v =



v′ if leaf node
r′ + maxa(N̂ [a, S′].v) otherwise

N̂ [a, S′].v =
X

a′

Ê[a′, S′].p′(γ · N̂ [do(a′, S′)].v − Ê[a′, S′].c′)

wherev′, r′ are as above and̂E[a′, S′].p′ andÊ[a′, S′].c′ de-
note the resp. values annotated inÊ[a′, S′].

That is, we annotate each situation-node of the tree with
the regression of the heuristic estimate of the real value func-
tion if it is a leaf node, or the regression of the reward pred-
icate otherwise. Action nodes are annotated with the regres-
sion of their preconditions, and edges with the regression of
their respective cost- and probability-predicates. In allcases,
the regression is performed back to the situation labeling the
root of the tree,S. The regressed predicates are all the in-
formation needed to determine the optimality of the policy
given the search horizon, solely based on what is true in the
current situation. This allows for greatly improved reevalu-
ation if on-line we find ourselves in the unexpected situation
S∗ rather thanS: Only those annotated conditions that men-
tion fluents that are affected by the discrepancy betweenS∗

andS need to be reevaluated.Given that most discrepancies
only affect a fraction of all fluents, this saves a lot of compu-
tation. After reevaluating the affected conditions, the values
of Q-function and value function can be updated (back-up).
This on-line behavior is subject of the next section.

Intuitively, the regression of a function over a sequence
of actions~a describes in terms of the current situation, the
value the function will take after performing~a. As an exam-
ple, consider the task of delivering a package to a location.
Assume the heuristic function yields a valuev = 0 when
a truck containing the package is at the right location and
v = 1 otherwise. Then, regressing this function through the
action of driving the truck to the right location would yielda
formula stating “v = 0 (v will be 0) if the package is on the
truck, andv = 1 otherwise”.

Note the correspondence betweenN̂ [S′].v and the value
functionV (S′), and between̂N [a, S′].v and the Q-function
Q(a, S′).

3.2 Execution Monitoring
Assume we have executed a (possible empty) pre-
fix a1, a2, . . . , ak of an earlier, in situationS, gen-
erated policy and the outcomes of these actions were
a′1i1

, a′2i2
, . . . , a′kik

so that we expect to be in situationSk =
do([a′1i1

, a′2i2
, . . . , a′kik

], S), but in fact find ourselves in a dif-
ferent situationS∗ that the current search tree and policy
don’t account for. The naive solution is to either fall back
to greedy behavior according to the heuristic estimate of the
value function or to replan fromS∗. We here propose a bet-
ter solution, “patching” the search tree to reflect all values
with respect toS∗ in place ofSk. We will do this as out-
lined earlier, by reevaluating all conditions that are affected
by the discrepancy and backing-up the altered values to also
update the Q-function and value function values.

Let ∆F (Sk, S
∗) be the set of fluents whose truth values

differ betweenSk andS∗, i.e. ∆F (Sk, S
∗) = {F (~X) | F ∈ F

andD |= F (~X, Sk) 6≡ F (~X, S∗)}, with F the set of fluents3.
Only conditions mentioning any of these fluents need to be
reevaluated, all others remain unaffected by the discrepancy.
Let fluents(φ) denote the fluents occurring in formulaφ.

redoSit(N̂ [S′], T̂ (Sk), S∗)

Φ← successors(N̂ [S′], T̂ (Sk))

if (Φ = ∅) then
if (fluents(RS [V̄ (v, S′)]) ∩∆f = ∅) then N̂ [S′].v ← N̂ [S′].v′

elseN̂ [S′].v ← vnew s.t.D |= RS [V̄ (vnew, S′)](S∗)

else
maxq ← max

N̂[a,S′]∈Φ(redoAction(N̂ [a, S′], T̂ (Sk)))

if (fluents(RS [Reward(r, S′)]) ∩∆f = ∅) then r′ ← N̂ [S′].r′

elser′ ← rnew s.t.D |= RS [Reward(rnew, S′)](S∗)

N̂ [S′].v ← r′ + maxq

return N̂ [S′].v

redoAction(N̂ [a, S′], T̂ (Sk), S∗)

Φ← successors(N̂ [a, S′], T̂ (Sk))

if (fluents(RS [Poss(a, S′)]) ∩∆f = ∅) then x← N̂ [a, S′].x

elsex← xnew s.t.

D |= (RS [Poss(a, S′)](S∗) ∧ xnew = 1) ∨

(¬RS [Poss(a, S′)](S∗) ∧ xnew = 0)

if (x = 0) then N̂ [a, S′].v ← −∞

else if(Φ = ∅) then N̂ [a, S′].v = vnew s.t.D |= RS [V̄ (vnew, S′)](S∗)

else
foreach (N̂ [do(a′, S′)] ∈ Φ) do redoOutcome(Ê[a′, S′])

N̂ [a, S′].v ← γ
P

a′ Ê[a′, S′].p′(Ê[a′, S′].c′ + N̂ [do(a′, S′)].v)

return N̂ [a, S′].v

redoOutcome(̂E[a′, S′], T̂ (Sk), S∗)

if (fluents(RS [Cost(a′, c, S′)]) ∩∆f = ∅) then c′ ← Ê[a′, S′].c′

elsec′ ← c′new s.t.D |= RS [Cost(a′, c′new, S′)](S∗)

if (fluents(RS [Prob(a′, a, p, S′)]) ∩∆f = ∅) then p′ ← Ê[a′, S′].p′

elsep′ ← p′

new s.t.D |= RS [Prob(a′, a, p′

new, S′)](S∗)

redoSit(N̂ [do(a′, S′)], T̂ (Sk))

Figure 3:algorithm for propagating the effects of discrepancies

Figure 3 shows functions that implement the patching,
using the node and edge annotation as defined above.

3We can actually limit our attention to the list of fluents that
actually occur in some annotated condition.

RS [ϕ(do(~a, S))](S∗) denotes for the formula resulting from
regressing formulaϕ over the action sequence~a, the instan-
tiation in situationS∗, that is, substitutingS∗ for S. The
call redoSit(N̂ [Sk], T̂ (Sk), S∗) patches the treêT (Sk) from
Sk to situationS∗, possibly making a different action the
best (greedy) choice, in which case the annotation needs to
be redone.

Proposition 1. By construction of the algorithm we have
that after calling redoSit(N̂ [Sk], T̂ (Sk), S∗), all annotated
costs, rewards, probabilities, and heuristic values are with
respect toS∗ instead ofSk, i.e. in all situation labeled
nodesN̂ [do(~a′, Sk)], r′ is s.t. D |= Reward(r′, do(~a′, S∗))
(or v′ is s.t. D |= V̄ (v′, do(~a′, S∗)) in leaf nodes). In
action labeled nodesN̂ [a, do(~a′, Sk)], x is s.t. D |=
(Poss(a, do(~a′, S∗))∧x = 1)∨(¬Poss(a, do(~a′, S∗))∧x = 0).
And in edgesÊ[a′′, do(~a′, Sk)], c′, p′ are such thatD |=
RS [Cost(a′′, c′, do(~a′, S∗))] ∧RS [Prob(a′′, a, p′, do(~a′, S∗))].

3.3 An Illustrative Example
Consider the following simplified example from the TPP
domain where we modified the drive action to be stochas-
tic. In this domain an agent drives from Depot to var-
ious markets to purchase goods. For simplicity, assume
there is only one kind of good, two markets, and the fol-
lowing fluents: in situations, At(l, s) denotes the cur-
rent locationl, Request(q, s) represents the numberq re-
quested of the good,Price(p,m, s) denotes the pricep of
the good on marketm, andDriveCost(c, src, dest, s) the
cost c normally incurred by driving fromsrc to dest. Let
there be two actions:drive(dest) moves the agent from the
current location todest, and buyAllNeeded purchases the
requested number of goods at the current (market) loca-
tion. The drive action is stochastic and may result in one
of two outcomesdrive10(dest), and drive12(dest), where
the only difference is that the latter incurs a cost of1.2
times the drive cost specified byDriveCost(c, src, dest, s),
whereas the former only incurs the normal cost (factor
1.0). This could represent the risk of a traffic jam on
the route. Assume the planner has determined the plan
~α = [drive(Market1), buyAllNeeded] to be optimal, but has
as well considered~β = [drive(Market2), buyAllNeeded] as
one alternative among others. Note that we here simplified
the representation of the plan by collapsing the two possible
outcomes of drive actions into one straight line plan, as op-
posed to a conditional plan where the conditions are over the
possible outcomes of the drive actions. This is possible, be-
cause the plan-suffixes for the two outcomes are identical in
our example. For simplicity we also assume no rewards, i.e.
Reward(0, s) ≡ true. The search tree resulting from this
problem is shown in Figure 4. For the first step of the policy,
we annotate the search treeT (S0) as follows, where for par-
simony we ignore preconditions, rewards, and the heuristic
value function used for evaluating leaf nodes.

Ê[drive10(Market1), S′] =

(((∃l).At(l, S′) ∧DriveCost(c, l,Market1, S′), 381),

(Prob(drive10(Market1), drive(Market1), p, S′), 0.8))

Ê[drive12(Market1), S′] =

(((∃c′, l).At(l, S′) ∧DriveCost(c, l,Market1, S′) ∧

c = c′ · 1.2, 457.2),

(Prob(drive12(Market1), drive(Market1), p, S′), 0.2))

Ê[drive10(Market2), S′] =

(((∃l).At(l, S′) ∧DriveCost(c, l,Market2, S′), 458),

(Prob(drive10(Market2), drive(Market2), p, S′), 0.8))

Ê[drive12(Market2), S′] =

(((∃c′, l).At(l, S′) ∧DriveCost(c, l,Market2, S′) ∧

c = c′ · 1.2, 549.6),

(Prob(drive12(Market2), drive(Market2), p, S′), 0.2))

Ê[buyAllNeededSuccess, do(drive10(Market1), S′)] =

(((∃p′, q′).P rice(p′,Market1, S′) ∧

Requested(q′, S′) ∧ p = p′ ∗ q′, 17), (true, 1.0))

Ê[buyAllNeededSuccess, do(drive12(Market1), S′)] =

(((∃p′, q′).P rice(p′,Market1, S′) ∧

Requested(q′, S′) ∧ p = p′ ∗ q′, 17), (true, 1.0))

Ê[buyAllNeededSuccess, do(drive10(Market2), S′)] =

(((∃p′, q′).P rice(p′,Market2, S′) ∧

Requested(q′, S′) ∧ p = p′ ∗ q′, 14), (true, 1.0))

Ê[buyAllNeededSuccess, do(drive12(Market2), S′)] =

(((∃p′, q′).P rice(p′,Market2, S′) ∧

Requested(q′, S′) ∧ p = p′ ∗ q′, 14), (true, 1.0))

Let’s assume that even before we begin the execution of the
plan, a discrepancy in form of an exogenous actione hap-
pens, putting us in situationS∗ = do(e, S0) instead ofS0.
How does this affect the relevant values in the search tree
and, as a consequence, the optimal policy? This clearly de-
pends on the effects ofe. If e does not affect any of the
fluents occurring in above annotated formulae, it can be ig-
nored, the plan is guaranteed to remain optimal. This would,
for instance, be the case whene represents the event of a
price change on a market not considered, as that price would
not find its way into the regressed formulae, which only
mention relevant fluents.

Consider, for instance, the case wheree represents the
event of an increased demand, that is, increasing the
value q of Request(q), formally D |= Request(q, S∗) >
Request(q, S0). Then we need to reevaluate all conditions
that mention this fluent, that is, in our example, the costs of
all occurrences of thebuyAllNeededSuccess action. Af-
terwards any value that has changed need to be propagated
up the tree, in order to determine whether the optimal policy
has changed.

As a second example, imagine that the evente represents
an update on the traffic situation between Depot and Mar-
ket1, stating that the risk of a traffic jam has increased to 0.5
(D |= Prob(drive12(Market1), drive(Market), 0.5, S′),
D |= Prob(drive10(Market1), drive(Market), 0.5, S′)).
Then we only need to recompute the backup values for the
upper two branches without reevaluating any predicates ex-
cept for these probabilities. After the backup, the optimal
policy can again be greedily read off the tree.

4 Analysis
Three questions come to mind when trying to evaluate our
approach. First, is the annotation of manageable size and
does it scale? Second, what kind of guarantees can we make

a1

a2

Ê[a′
1,1, S]

Ê[a′
1,2, S]

Ê[a′
2,1, S]

Ê[a′
2,2, S]

b

b

b

b Ê[b′, do(a′
1,1, S)]

Ê[b′, do(a′
1,2, S)]

Ê[b′, do(a′
2,1, S)]

Ê[b′, do(a′
2,2, S)]S

Figure 4:The annotated search tree of the example. Circles denote states, boxes denote nature’s choices. The policy is marked by bold lines.
For readability we abbreviate:a1 = drive(Market1), a2 = drive(Market2), a′1,1 = drive10(Market1), a′1,2 = drive12(Market1),
a′2,1 = drive10(Market2), a′2,2 = drive12(Market2), b = buyAllNeeded, b′ = buyAllNeededSuccess.

about the quality of the value function (approximation) de-
rived from the resurrected search tree? Last but not least,
how does the approach perform compared to simple replan-
ning from scratch, does it offer computational savings? We
here address these questions in this order.

4.1 Space Complexity

The space complexity of our approach is determined by the
space required to store the annotation. This looks dramatic
at first, as we annotate a copy of the (sub-)search tree with
each action of the policy. Let there ben actions (n > 1),
let m be the maximal number of outcomes an action has,
and leth be the maximal depth of the search tree. In the
worst case, the tree is uniformly expanded to depthh, each
action is possible in each situation-node, and each action has
m outcomes. Then the search tree has size(nm)h. It turns
out, that the annotation is not significantly larger and is in
fact only constantly so inh, despite the number of sub-tree
copies at each subsequent level of the policy.

Theorem 1 (Annotation Size). If the search tree has size
X = (nm)h, then the size of the annotation is inO(λX)

with λ =
n− 1

nh

n−1
.

Proof: Recall the format of the annotated policy from Sec-
tion 3.1. In the root,T (S) has sizec(nm)h for some con-
stantc reflecting the per node annotation. We annotate each
of the (at most)m outcomesa′ of a with a copy of the
resp. sub-search tree of the remaining horizonh− 1, in total
cm(nm)h−1. This goes on forh steps, eventually annotating
mh leaves with a constant size value. In total we annotate

c(nm)h +mc(nm)h−1 + · · ·+mhc(nm)h−h

= c(nm)h(1 +
1

n
+ · · ·+

1

nh
) = c(nm)h

n− 1
nh

n− 1
�

Becauselimn→∞ λ = 1, this means that we generally
have no space requirements above those required to store
the search tree in the first place.

4.2 Optimality Considerations
What can we claim about the quality of the resurrected value
function we obtain after patching a tree from situationS
to S∗? This depends on the usage, i.e. the problem being
solved and the type of planner used. In this section we do
the analysis for two classes of MDPs.

Finite Horizon MDPs
Assume the task is to solve an MDP of finite horizonH
starting in situationS0, given an admissible heuristic func-
tion4, and that the planner has expanded the tree to a maxi-
mal depth ofH, possibly pruning some branches according
to standard pruning techniques, as inA∗ search. The value
according to the thus obtained value function for any sit-
uationS at level2h of the tree is preciselyV ∗H−h(S) and
the maximizing actions describe the optimal policy. Our ap-
proach can be used to verify the continued optimality of this
policy in the face of discrepancies.

Theorem 2. A policy π(S) starting from situationS and an-
notated withT̂ (S) as in Definition 1 continues to be optimal
in S∗ if after calling redoSit(N̂ [S], T̂ (S), S∗), the greedy
policy for T̂ (S) coincides withπ(S).
Proof Sketch:The theorem follows from the admissibility of
the heuristic function and Proposition 1.

Sampling in Large MDPs
In [4], Kearns et al. show that the time required to compute
a near-optimal action from any particular state in an infinite
horizon MDP with discounted rewards does not depend on
the size of the state space. This is significant, as it allows,at
least theoretically, for the computation of near-optimal ac-
tions even in infinite state MDPs. They propose a sampling
based decision tree search algorithmA and prove bounds
on how many samplesC and what horizonH is necessary

4An admissible heuristic function is an estimate of the real
value function that doesn’t underestimate the real value for any
state.

in order to obtain anǫ-optimal action. The algorithm works
like the one described in Section 2.2, but only exploresC
outcomes from the set of outcomes of each action, where
the samples are chosen according to the probability distri-
bution over the outcomes. The boundsC andH only de-
pend onǫ, the discounting factorγ, and a boundRmax on
the absolute value of the reward function. The bound on the
horizon isH = ⌈logγ(ǫ(1−γ)3/(4Rmax))⌉. The algorithm
runs in the initial situationS, returning a best actiona. Af-
ter executinga and observing the outcomea′i, the algorithm
needs to be re-run indo(a′i, S), because (i) the error-bound
of the value function approximation for nodedo(a′j , S) for
any outcomea′j of a is greater thanǫ, but more severely (ii)
it is unlikely that the actual action outcomea′i is among the
C samples considered in planning. The latter is particularly
true in continuousdomains with continuous sets of action
outcomes where this probability becomes0.

We argue that the former issue is not severe, and that
the latter can in many cases be accounted for using our
approach. Simple term manipulation of the above hori-
zon bound yields the error-bound for considered succes-
sor situationdo(a′j , S) of the initial situation asǫ′ <

4γH−1Rmax/(1− γ)3. This error bound on the value func-
tion can be resurrected by applying our algorithm with the
limitation that neither action outcome probabilities nor pre-
conditions must have been affected by the discrepancy.

Theorem 3. Let T be the search tree as spanned by the al-
gorithm A [4] with horizon H and sample widthC from
initial situationS, π(S) be the greedy policy extracted from
T with best-first actiona, andT̂ (S) be the annotated search
tree (cf. Def. 1). Let the execution ofa yield the ac-
tual situationS∗. If there is a nodeN̂ [do(a′j , S)] in T̂ (S)
such thatD |= ϕ(do(a′j , S)) ≡ ϕ(S∗) for all ϕ s.t. ϕ
is a regressed precondition or regressed probability pred-
icate in the annotated search treêT (S), then, after call-
ing redoSit(N̂ [do(a′j , S)], T̂ (do(a′j , S)), S∗) the value func-
tion V ′ described bŷT (S) is such that|V ′(S∗)− V ∗(S∗)| <
4γH−1Rmax/(1− γ)

3.

This is particularly useful when gauging the relevance of
exogenous events. If situationS is expected but the actual
situationdo(e, S) for some exogenous evente is observed,
then, if e doesn’t affect any preconditions or action proba-
bilities, redoSit(N̂ [S], T̂ (S), do(e, S)) resurrects the approxi-
mation quality of the current policy for the new situation.

4.3 Experiments
We were interested in determining whether the approach was
time-effective – whether the discrepancy-based incremental
reevaluation of the search tree could indeed be done more
quickly than simply replanning when a discrepancy was de-
tected. The intuition was that most discrepancies only affect
a small subset of all fluents and that this effect often doesn’t
propagate to relevant values. In this section we show the
results of some experiments we did which support this intu-
ition practically.

To this end, we compared a preliminary implementation
of our redoSit algorithm to replanning from scratch on

0 1000 2000 3000

replan

not aff.

reeval.

65535

16384

4096

1024

256

64

16

4

1

(a) # of conditions

0 1000 2000 3000

redoSit

replan

8

4

2

1

0.25

0.06

0.02

0.01

(b) running time in seconds

Figure 5:replanning vs. tree patching (using logarithmic scale)

different problems in a variant of the metricTPP domain
of the 5th International Planning Competition, where we
changed some actions to have stochastic outcomes. In each
case, we uniformly spanned the search tree up to a partic-
ular horizon, perturbed the state of the world by changing
some fluent, and then ran bothredoSit and replanning
from scratch. To maximize objectivity, the perturbations
were done systematically by multiplying the value of one of
the numeric fluents (driving costs between locations, prices
and number of goods on sale on different markets, number of
requested goods) by a factor between 0.5 and 1.5 (step-size
0.1) or by redistributing 0.5 of the probability mass of some
action’s outcomes. In total we tested 3256 cases. Figure
5 shows from top to bottom: the number of relevant con-
ditions as evaluated by replanning, the number of actually
affected conditions, and the number of such conditions that
are unique. The latter is the number of conditions that ac-
tually need to be reevaluated. Values for all other affected
conditions, effectively copies of earlier seen ones, can be
obtained from a cache of evaluated conditions. The number
of unique affected conditions is extremely low. On average
this number was 9751.03 times lower than the number of
relevant conditions. This strongly motivates a patching ap-
proach over replanning. To enhance readability we ordered
the test cases by the number of affected conditions.

5 Related Work
Our idea of annotating a policy with the relevant conditions
for its quality is inspired by earlier work in classical plan-
ning. The idea has been exploited in a number of systems
to monitor the continued validity of a straight-line plan dur-
ing execution (e.g., [6], also cf. [3]). None of these system,
however considered more complex goals or stochastic ac-
tions.

Except for our earlier work [3], to the best of our knowl-
edge the SHERPA system [8] is the sole previous work that
addresses the problem of monitoring the continued optimal-
ity of a (deterministic!) plan. However, this system, which
is a lifted version of the Life-Long PlanningA∗ (LPA∗)
search algorithm, is limited to discrepancies in the costs of
actions.

Also related is [11] in which the authors exploit the ‘ratio-
nale’, the reasons for choices made during planning, to deal
with discrepancies that occur during (partial-order)plan-
ning. The authors acknowledge the possibility that previ-
ously sub-optimal alternatives become better than the cur-
rent plan candidate as the world evolves while planning, but
the treatment of optimality is informal and limited.

Other methods for creating robust policies under time
constraints include [10]. The authors consider finite hori-
zon MDPs with an explicit goal area and assume there is
a method for creating some path with positive probability
from the initial state to the goal. They propose to then, time
permitting, extend this path to anenvelopeof states by suc-
cessively including additional states that are on the fringe
of the current envelope, i.e. possible successors of certain
actions when executed in a state inside the envelope. This
way, successively more contingencies are added to the pol-
icy. This approach differs from ours, as it relies on knowl-
edge about an accurate model of the world and thus does not
increase robustness against completely unforeseen courses
of events.

Also Real-Time Dynamic Programming [1] (RTDP) ad-
dresses the problem of incrementally creating a policy for
the accessible region of state space given an initial state.
RTDP works by interleaving value function estimate im-
provement and execution. The action executed is always the
greedy one according to the current estimate. Interleaved
with execution, some form of look-ahead search from the
current state is performed and the values of visited states
backed-up accordingly. As with Dean et al.’s approach, also
RTDP relies on an accurate model of the world.

Strongly related to our approach is the work on solving
first-order MDPs by Boutilier et al. [2] and more recently
Sanner et al. [9]. This work proposes first-order decision-
theoretic regression (FODTR) to solve First-Order MDPs
exactly for all states, as opposed to a particular initial state.
The approach works, roughly, by repeatedly regressing the
value function and rewards, both represented as first-order
formulae of a particular form, over stochastic actions, pro-
viding an improved value function for abstract states, where
the abstraction is induced by the regression. There are cer-
tain limitations to this approach, in particular it does notgen-
erally allow for continuous domains. In real-world systems
it further seems beneficial to follow a forward search ap-

proach to focus on the reachable subset of state space. As
such our approach explores a middle-ground between this
and plain decision-tree forward search.

6 Summary and Future Work
We have presented an algorithm that lifts an idea commonly
used to monitor the validity of deterministic plans to deci-
sion theoretic planning in relational MDPs, monitoring the
adequacy and potential optimality of a policy. The approach
works by annotating the policy with conditions regressed to
the situations where they are relevant. In so doing, the dis-
crepancy between an unplanned-for state and an expected
state can be evaluated with respect to the objective of a near-
optimal or optimal policy. The intuition that this can be sig-
nificantly more efficient than replanning, should something
unexpected happen, is supported by experiments with a pre-
liminary implementation. In future work we intend to per-
form further theoretical analysis of our approach, and to run
more experiments, in particular in continuous domains.

References
[1] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning

to act using real-time dynamic programming.Artificial
Intelligence, 72(1):81–138, 1995.

[2] C.Boutilier, R.Reiter, and B.Price. Symbolic dynamic
programming for first-order MDPs. InProc. IJCAI’01,
690–700, 2001.

[3] C.Fritz and S.McIlraith. Monitoring plan optimality
during execution. InProc. ICAPS-07, 2007. (to ap-
pear).

[4] M.Kearns, Y.Mansour, and A.Y.Ng. A sparse sampling
algorithm for near-optimal planning in large markov
decision processes. InProc. IJCAI-99, 1324–1231,
1999.

[5] R.Dearden and C.Boutilier. Integrating planning and
execution in stochastic domains. InProc. AAAI Spring
Symposium on Decision Theoretic Planning, 55–61,
1994.

[6] R.Fikes, P.Hart, and N.Nilsson. Learning and exe-
cuting generalized robot plans.Artificial Intelligence,
3:251–288, 1972.

[7] R.Reiter. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems.
MIT Press, Cambridge, MA, 2001.

[8] S.Koenig, D.Furcy, and C.Bauer. Heuristic search-
based replanning. InProc. AIPS’02, 294–301, 2002.

[9] S.Sanner and C.Boutilier. Approximate linear pro-
gramming for first-order MDPs. InProc. UAI05, 509–
517, 2005.

[10] T.Dean, L.Kaelbling, J.Kirman, and A.Nicholson.
Planning under time constraints in stochastic domains.
Artificial Intelligence, 76(1-2):35–74, 1995.

[11] M.M. Veloso, M.E. Pollack, and M.T. Cox. Rationale-
based monitoring for continuous planning in dynamic
environments. InProc. AIPS’98, 171–179, 1998.

