
Finding State Similarities for Faster Planning

Christian Fritz
Department of Computer Science, University of Toronto,

Toronto, Ontario. CANADA.
fritz@cs.toronto.edu

Abstract

In many planning applications one can find actions with over-
lapping effects. If for optimally reaching the goal all that
matters is within this overlap, there is no need to consider all
these actions – for the task at hand they are equivalent. Using
this structure for speed-up has previously been proposed in
the context of least commitment planning. Of a similar spirit
is the approach for improving best-first search based plan-
ning we present here: intuitively, given a set of start states,
reachable from the initial state, we plan in parallel for all of
them, exploiting the similarities between them to gain compu-
tational savings. Since the similarity of two states is problem
specific, we explicitly infer it by regressing all relevant enti-
ties, goal, heuristic function, action preconditions and costs,
over the action sequences considered in planning. If the re-
sulting formulae mention only fluents whose values the two
states have in common, it suffices to evaluate the formulae in
one of them. This leads to computational savings over con-
ventional best-first search.

Introduction
Consider the oft-used trip planning problem, where a user
needs to book a flight, a hotel, and a rental car for specific
dates. A conventional forward search based planner, even
one which is heuristically guided, would go about enumerat-
ing the possible combinations of flight, hotel, and car book-
ing actions, not realizing that these are independent tasks
which can be optimized separately as long as there are no
constraints between them. A planner that can exploit this
independence can gain exponential speed-up, as has been
shown in the past in particular in the context of least com-
mitment planning (Friedman & Weld 1996).

However, many of the top performers at the International
Planning Competition are planners based on best-first for-
ward search. We show that above idea can be extended
and applied also to forward search based planners, includ-
ing heuristic search based ones, and that in fact more than
just similar action effects can be exploited. Intuitively,also
similar non-effects of actions can be exploited.

The intuitive idea of the approach we present and test em-
pirically is as follows: imagine there areN actions possi-
ble in the initial stateA1, . . . , AN . Each of these defines

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a sub-search tree explored separately during search, but the
difference between the states reached by these actions may
actually not be that significant. In fact, the difference may
not even be relevant to the given goal, feasibility of future
actions, and, if provided, metric function. If this is the case,
the resulting states could as well be considered in parallel,
allowing for great computational savings.

But how do we know which aspects of a state, i.e. which
state variables, are relevant? Let us consider partial-order
planning, which seems more amenable to least commit-
ment planning. One of the main differences to forward
search is that search begins with the goal, choosing actions
that satisfy parts of the goal in a backward chaining man-
ner. Thus, for each chosen action we know itspurpose.
When there are two actions with overlapping effects, say
BookFlight(United) and BookFlight(Delta),
whose particular effects beyond the commonality are irrele-
vant to the purpose, these can be treated jointly as one ab-
stract action (cf. (Friedman & Weld 1996)).

In this paper we present a very similar approach for im-
proving forward search. It works by fully expanding the
first few levels of the search tree and henceforth planning
for all the resulting states in parallel. We call these states
start states. Parallel search is enabled by the use of regres-
sion. Toprogressa state over an action, means to modify
the state according to the effects of the action. This is what
most planners deploy for evaluating conditions in possible
future states.Regressinga condition over an action in turn
does the inverse. It produces a formula, describing all states
from which the given action leads to a state where the con-
dition holds. Regression reveals the relevance-structureof
the problem. Note that the use of regression is not limited to
backward chaining- and partial-order planning. Also when
enumerating possible action sequences in a forward fashion,
we can use regression to reason about what will be true after
executing these actions.

We use this in our approach. To test, for instance, whether
the goal is reached by an action sequence[α1, α2] we regress
the goal condition over the action sequence and evaluate
the resulting formula in the current state. This can also be
done for all other relevant entities, like action preconditions,
costs, and even a heuristic function. Note that the regression
of a formula is independent of the state in which the result is
meant to be evaluated in, allowing us to evaluate it in many

states, in our case, in all start states. This alone would not
yet lead to computational savings, since the evaluation of the
formula can be complex. However, now that we have a con-
cise formula describing what is relevant to solving the given
planning problem, we can determine and exploit similarities
between all considered start states. If the formula does not
mention any of the state variables on which two particular
start states disagree (i.e. give different values to), thenit
suffices to evaluate the formula in one of them, the (truth-
)value with respect to the other will be the same! This can
lead to computational savings, as we show empirically.

The approach we present here works with any action
language for which regression can be defined, including
STRIPS and ADL. Here we use the situation calculus, which
we review in the next section. We then present our approach,
followed by empirical results, and a discussion.

Background
The situation calculus is a logical language for specifying
and reasoning about dynamical systems (Reiter 2001). In
the situation calculus, thestateof the world is expressed in
terms offluents(setF), functions and relations relativized
to asituations, e.g.,F (~x, s). A situation is ahistoryof the
primitive actionsa performed from a distinguished initial
situationS0. The functiondo(a, s) maps an action and a sit-
uation into a new situation thus inducing a tree of situations
rooted inS0. For readability, action and fluent arguments are
generally suppressed. Also,do(an, do(an−1, . . . do(a1, s))) is
abbreviated todo([a1, . . . , an], s) or do(~a, s) anddo([], s) def

= s.
In this paper we only consider finite sets of actions,A.

A basic action theory in the situation calculus,D, com-
prises fourdomain-independent foundational axioms, and
a set ofdomain-dependent axioms. Details of the form of
these axioms can be found in (Reiter 2001). Included in the
domain-dependent axioms are the following sets:
Initial State, S0: a set of first-order sentences relativized to
situationS0, specifying what is true in the initial state.
Successor state axioms: provide a parsimonious represen-
tation of frame and effect axioms under an assumption of the
completeness of the axiomatization. There is one successor
state axiom for each fluent,F , of the formF (~x, do(a, s)) ≡
ΦF (~x, a, s), whereΦF (~x, a, s) is a formula with free vari-
ables among~x, a, s. ΦF (~x, a, s) characterizes the truth value
of the fluentF (~x) in the situationdo(a, s) in terms of what
is true in situations. These axioms can be automatically
generated from effect axioms (e.g. add and delete lists).
Action precondition axioms: specify the conditions under
which an action is possible. There is one axiom for each
action a ∈ A of the form Poss(a(~x), s) ≡ Πa(~x, s) where
Πa(~x, s) is a formula with free variables among~x, s.

Regression
The regressionof a formula ψ through an actiona is a
formulaψ′ that holds prior toa being performed if and only
if ψ holds aftera is performed. In the situation calculus, one
step regression is defined inductively using the successor
state axiom for a fluentF (~x) as above:
R[F (~x, do(a, s))] = ΦF (~x, a, s) R[¬ψ] = ¬R[ψ]
R[ψ1 ∧ ψ2] = R[ψ1] ∧R[ψ2] R[(∃x)ψ] = (∃x)R[ψ]

S0

S :

S1

S2

Sn

...

~α1

~α2

~αn

β1

β2

β3

Phase 1
Phase 2

Figure 1: Schematic overview of our approach.

We useR[ψ, α] to denoteR[ψ(do(α, s))], and R[ψ, ~α] to
denote the repeated regression over all actions in the se-
quence~α (in reverse order). The resulting formula has a free
variables of sort situation. Intuitively, it is the condition
that has to hold ins in order forψ to hold after executing
~α (i.e. in do(~α, s)). It is predominantly comprised of the
fluents occurring in the conditional effects of the actions in
~α. Due to the Regression Theorem (Reiter 2001) we have
thatD |= ψ(do(~α, s)) ≡ R[ψ, ~α] for all situationss.

Regression is a purely syntactic operation. Nevertheless,
it is often beneficial to simplify the resulting formula for
later evaluation. Regression can be defined in many action
specification languages. In STRIPS, regression of a literall

over an actiona is defined based on the add and delete lists
of a: RSTRIPS[l] = FALSE if l ∈ DEL(a) and{l} \ ADD(a) oth-
erwise. Regression in ADL was defined in (Pednault 1989).
Notation: We useα to denote arbitrary but explicit actions
andS to denote arbitrary but explicit situations, that isS =
do(~α, S0) for some explicit action sequence~α. Further~α · α
denotes the result of appending actionα to the sequence~α.

As an example of regression, consider a formula stating “at
Union Square and cash= $10”. Regressing this formula
over an action sequence [“take subway to Times Square”,
“buy ice cream”] yields a condition “cash= $15”, when a
subway ride costs$2 and an ice cream$3, say.

Forward Search Regression Planning
To give a formal account of our approach, we assume the
planning domain is described as a basic action theoryD.

Figure 1 shows our approach schematically. In Phase
1, we generate a small set of action sequences~α1, . . . , ~αn

feasible in the initial state described byS0. We refer to
the resulting situations asstart situationsand denote them
Si = do(~αi, S0), and their set byS. We refer to the tree
spanned by them as thepre-tree. In Phase 2, we then per-
form planning for all these situations in parallel, only ex-
ploring one search tree for all start situations together. When
Phase 2 finds a goal for this abstract state, the result can be
combined with the best start sequence, which can be easily
determined from additional information returned in Phase 2.

To better distinguish between action sequences consid-
ered in the two phases, we use~α to refer to action sequences
of Phase 1, and~β for those considered in Phase 2.

Phase 1: Pre-computation
The set of start situations can be generated in a variety of

ways, for instance, using a depth limited breadth-first search
orA∗ search with a small expansion limit. Our approach is
independent of the generation and shape of the pre-tree, as
long as it includes a prefix for each feasible action sequence.

Algorithm 1 Pre-compute matrix M (Phase 1)
Input: situationsS, ground fluentsFg, theoryD
Output: matrix M
1: n⇐ |S|; m⇐ |Fg|
2: M ⇐ new matrix(n,m)
3: for i⇐ 1 to n do // For each start situation
4: for j ⇐ 1 tom do // and each fluent
5: M[i, j] ⇐ v with v s.t.D |= Fj(Si) = v
6: end for // compute the assigned value.
7: end for // Then, determine
8: for i⇐ 1 to n do // for each start situation
9: for j ⇐ 1 tom do // and each fluent

10: equals⇐ new empty set // the set of
11: for all i′ ⇐ 1 to n do // all other situations
12: if [i, j] = [i′, j] then // with the same fluent value
13: addi′ to equals // and store it
14: end if
15: end for
16: M[i, j] ⇐ (M[i, j], equals) // in the matrix.
17: end for
18: end for
19: return M

We study the effects of using different cardinalities of start
situations in the empirically results section and, as we will
see, guessing a good value is not that hard.

We assume complete knowledge of the initial state of the
world, described inS0, and a finite number of ground flu-
ents over a finite number of objects. We refer to the set of all
ground fluents{F1, . . . , Fm} asFg. For each situation inS
we can compute the values of all ground fluents, effectively
progressing the initial state over the actions in the sequence
describing that situation. Further, we can group start situa-
tions by fluents on whose value they agree.

Algorithm 1 formalizes this pre-computation. It con-
sults the action theoryD to determine the (truth-)value for
formulae, by testing entailment (|=). The algorithm re-
turns a matrix, M, whose rows denote start situations, and
columns denote ground fluents. Hence[i, j] denotes the
cell corresponding to thei-th start situationSi and j-th
ground fluentFj . The entries of the matrix are of the
form (v, {i′

1
, . . . , i′k}), wherev is the value ofFj in Si, i.e.

D |= Fj(Si) = v, and{i′
1
, . . . , i′k} is a possibly empty set

of indices. The latter indicates all other start situationsthat
assign the same valuev to fluentFj . This set is the key to
the speed-up provided by our approach.

Phase 2: Parallel Planning
With the matrix M in place, we can start the actual plan-

ning in Phase 2.1 In this second phase, we plan in parallel
for all considered start situations.

While our approach is conceptually compatible with a
number of forward search algorithms, we here only consider
A∗ search-based planning, and assume that the metric is de-
fined in terms of positive action costs.

The first difference between conventionalA∗ and the vari-
ant we present here, is that our algorithm deploys regression
to reason about the state of the world as opposed to progres-
sion, as outlined earlier. The second difference is that we

1For parsimony, we assume no plan can be found in Phase 1.

Algorithm 2 RegressionA∗ Parallel Search (Phase 2)
Input: D,S,M,Goal(s),Cost(a, s),H(s)
Output: a plan for someS ∈ S or “failure” if none exists
1: OPEN⇐

ˆ

(~g, ~∞, [], {1, . . . , n})
˜

2: plan⇐ (∞, [], 0)
3: repeat
4: (~g,~h, ~β, I) ⇐ get-and-remove first element from OPEN

5: plan, I ′⇐GOALTEST((~g,~h, ~β, I),D,S,M,Goal(s), plan)
6: (g∗, ~β∗, i∗) ⇐ plan
7: if g∗ < mini∈I′(~g[i] + ~h[i]) then // found plan is optimal
8: return plan
9: else // there may still be a better plan, continue

10: succ⇐ EXPAND((~g,~h, ~β, I ′),D,S,M,Cost(a, s),H(s))
11: insert-sortedsucc into OPEN
12: end if
13: until OPEN= []
14: return “no plan exists”

evaluate each relevant function or relation in all start states
rather than just one initial state. This is made possible by
the use of regression and sped up by exploiting the lists of
situations with coinciding fluent values, stored in M.

Besides the basic action theoryD, the algorithm receives
as input the set of start situationsS, the matrix M, the goal
formula Goal(s), the cost functionCost(a, s) defining the
cost of performing actiona in situations, and an admissi-
ble heuristic functionH(s). The latter two are expressed in
terms of (regressable) formulae inD. The heuristic defines
for a situations a lower bound on the minimal costs accrued
by any action sequence that connectss with a goal state.
The algorithm outputs a sequence of actions~β∗, and an in-
dexi such that:~β∗ is executable inSi, the reached situation
do(~β∗, Si) satisfies the goal, and is optimal in the sense that
the costs accumulated by executing its actions are minimal.
By assumption, all start situations are executable inS0.

The algorithm is specified in Algorithm 2. It uses anopen
list, OPEN, containing elements of the form(~g,~h, ~β, I).
HereI is a subset of all start situation indices,~β is an ac-
tion sequence possible in all situations contained inI, and
~g and~h are vectors of values, one fori ∈ I. The vector
~g states the accumulated costs,~h the heuristic values. The
i-th vector element of~g, for instance, denotes the costs ac-
cumulated when~β is executed inSi. Similarly the value
~h[i], the i-th element of the second vector, is such that
D |= H(do(~β, Si)) = ~h[i]. The open list is initialized with
a single element(~g, ~∞, [], {1, . . . , n}), denoting the empty
sequence and~g containing the costs accumulated by the ac-
tions of the start situations. The last element in the tuple is
a set of all indicesi of start situations,Si, for which this ac-
tion sequence is feasible (D |= executable(do(~β, Si))). Ini-
tially this set includes all indices1, . . . , n, since the empty
sequence is trivially executable in all start situations. The
algorithm then repeatedly expands the first element of the
open list until an optimal goal is found, where new search
nodes are inserted into the open list (Line 11) sorted by their
minimalf value defined asf = mini∈I(~g[i] + ~h[i]).

So far, the algorithm looks like conventionalA∗ search.

Algorithm 3 GOALTEST

Input: (~g,~h, ~β, I),D,S,M,Goal(s), plan
Output: the best plan so far, its costs, and a pruned setI

1: G⇐ R[Goal(s), ~β] // Regress the goal over~β.
2: I ′ ⇐ HOLDSIN(G, I,S,M) // Test it inI.
3: if I ′ 6= ∅ then // If it holds for someI ′ ⊆ I,
4: i∗ ⇐ argmini∈I′(~g[i]) // get best new plan and

5: (g′, ~β′, i′) ⇐ plan // get best previous plan.
6: if ~g[i∗] < g′ then // If better than previous plan
7: return (g∗, ~β, i∗), I \ I ′ // return it,
8: else // otherwise
9: return (g′, ~β′, i′), I \ I ′ // keep old one.

10: end if // In both cases: prune goal states fromI,
11: else // otherwise
12: return plan, I // nothing to do.
13: end if

Algorithm 4 EXPAND

Input: (~g,~h, ~β, I),D,S,M,Cost(a, s),H(s)

Output: all feasible successors of(~g,~h, ~β, I)
1: successors⇐ []
2: for all β′ ∈ A do // For all actions
3: P ⇐ R[Poss(β′, s), ~β] // regress the preconditions
4: I ′ ⇐ HOLDSIN(P, I,S,M) // and evaluate them.
5: if I ′ 6= ∅ then // If β′ is possible for at least onei ∈ I

6: C ⇐ R[Cost(β′, s), ~β] // regress the costs,
7: ~c⇐ EVAL IN(C, I ′,S,M) // evaluate,
8: ~g′ ⇐ ~g ⊕ ~c // and add them.
9: H ⇐ R[H(s), ~β · β′] // Also regress the heuristic

10: ~h′ ⇐ EVAL IN(H, I ′,S,M) // and evaluate it.
11: append(~g′,~h′, ~β · β′, I ′) to successors
12: end if
13: end for
14: return successors

The difference is in the auxiliary methods GOALTEST and
EXPAND and the functions they use, which we will explain
next. Later we also elaborate on the particularities of Line
11, given the format of the elements of the open list.

The function GOALTEST returns a tuple representing the
best plan found so far or(∞, [], 0) otherwise. The returned
tuple(g, ~β, i) is such that executing~β in Si achieved the goal
with total costsg. The function begins by regressing the goal
condition over the corresponding action sequence of the first
open list element, and tests, using the functionHOLDSIN
described below, for which start situations the resulting for-
mula holds. For all these, the minimum is determined and
compared to the best previously found plan. If it is better,
this new plan is returned, otherwise the old one is kept.

Another function used in our RegressionA∗ Parallel
Search algorithm is EXPAND (Alg. 4). This function re-
ceives the first element of the open list,(~g,~h, ~β, I), and re-
turns the list of all its feasible successors. Feasibility is de-
fined in terms of the set of start situations indicated inI for
which ~β is feasible. As long as an actionβ′ is possible ac-
cording to one of them, a successor will be produced. To
test this, the preconditions ofβ′ are regressed over the ac-
tion sequence thus far, and theHOLDSIN function is used
to determine the subset ofI of indices for which they hold.

Algorithm 5 HOLDSIN

Input: ψ, I,S,M
Output: a set of indicesholds⊆ I in whichψ holds
1: holds⇐ ∅
2: while I 6= ∅ do
3: same⇐ I
4: i⇐ get-and-remove one element fromI // For Si

5: for all F ∈ FLUENTSIN(ψ) do // and all fluents
6: (v, equals) ⇐ M[i, F] // get the equals lists
7: same⇐ same∩ equals // and intersect them.
8: end for
9: I ⇐ I \ same // Prune the result fromI.

10: if D |= ψ(Si) then // If ψ holds inSi

11: holds⇐ holds∪ same∪ {i} // append the indices.
12: end if
13: end while
14: return holds

Algorithm 6 EVAL IN

Input: ψ, I,S,M
Output: a vector of values, one for each element inI
1: values⇐ new vector of length|S|
2: while I 6= ∅ do
3: same⇐ I
4: i⇐ get-and-remove one element fromI // For Si

5: for all F ∈ FLUENTSIN(ψ) do // and all fluents
6: (v, equals) ⇐ M[i, F] // get the equals lists
7: same⇐ same∩ equals // and intersect them.
8: end for
9: I ⇐ I \ same // Prune the result fromI,

10: getval s.t.D |= ψ(Si) = val // compute the value forψ
11: values[i] ⇐ val // and set it fori
12: for all i′ ∈ same do // as well as for all pruned indices.
13: values[i′] ⇐ val
14: end for
15: end while
16: return values

If the resulting set is non-empty, then also the action costs
are regressed and evaluated for all start situations inI using
another functionEVAL IN. This function, which works sim-
ilarly to HOLDSIN, returns the values for a given formula
with respect to a set of start situation indices. The result is a
vector of values. This vector is added to the accumulated
costs so far, vector~g, to determine the new accumulated
costs vector~g′. Similarly, the heuristic function is regressed
over the new sequence formed by appending the considered
action to the existing sequence. Again, the value vector is
obtained fromEVAL IN. Finally, a new successor is added:
~g′ is the new accumulated costs vector,~h′ contains the new
heuristic values,~β · β′ is the new action sequence, andI ′

contains all start situation indices for which it is feasible.
Let us now turn to the key to our computational savings:

The functionsHOLDSIN andEVAL IN (Alg. 5 and 6). Since
these work very similarly, we describe them together and
only in abstract terms. Both are given a formulaψ to eval-
uate to a (truth-)value for each start situation indicated in a
given setI. They also both receive the matrix computed in
Phase 1. Both algorithms iterate overI, pruning it as much
as possible as they go along. For each elementi ∈ I, for
each fluentF mentioned by the formulaψ, the matrix is con-

sulted to retrieve all start situations that give the same value
to F asSi. The resulting sets are intersected and the result
is removed fromI. This can be done because if for a start
situationSj all fluents mentioned inψ are assigned the same
value as bySi, we do not need to evaluateψ twice and can
thus removej from I. This is the core of our computational
savings, which we demonstrate in the next section.

When Phase 2 terminates, a tuple(g∗, ~β∗, i∗) is returned and
the action sequence described by the situationdo(~β∗, Si∗) is
an optimal plan. Our algorithm preserves both the complete-
ness and optimality ofA∗.

Theorem 1. (Completeness) If there exists a sequence of
actions~α s.t. D |= executable(do(~α, S0)) ∧ Goal(do(~α, S0)),
then our algorithm will find and return such a sequence.

Theorem 2. (Optimality) Any action sequence returned by
our algorithm is optimal in the sense that it minimizes the
costs accumulated by its execution.2

Intuitively, the theorems hold because (a) all computedg
andh values stated in the open list are correct with respect
to their corresponding start situations, (b) the list is sorted
according to the minimummini∈I(~g[i] + ~h[i]), whereI is
the list of start situations for which the action sequence is
feasible, and (c) these sets,I, correctly denote all feasible
action sequences that can be built by appending the action
sequence stated in the open list element to any start situa-
tion. Completeness and optimality are then shown based on
the admissibility of the heuristic, analogous to the proof for
conventionalA∗ search. Roughly, item (a) regards the cor-
rectness ofHOLDSIN andEVAL IN and follows from Reiter’s
Regression Theorem, and the correctness of the progression
performed in the pre-tree. The latter is trivial given the as-
sumption of complete knowledge and a finite set of ground
fluents. Item (b) and (c) follow by construction of our algo-
rithms, and for (c), again by correctness ofHOLDSIN.

Empirical Results
We compared a preliminary implementation of our approach
to a planner based on conventionalA∗ search. We used prob-
lems from the Trucks and the Zenotravel domain from the
International Planning Competition. In both domains we
experimented with different expansion depths for the pre-
tree, resulting in different numbers of start situations. In all
graphs, the expansion time and expanded nodes for this tree
are included in the respective numbers for our approach.

In the Trucks domain we tested using uniform-cost search
for both the baseline and our Phase 2 planner, by applying
the zero-heuristic. Figure 2(a) shows the running time of the
conventional best-first search baseline approach and our ap-
proach for various expansion depths of the pre-tree. Recall
that both approaches produce an optimal plan. For read-
ability we sorted the test cases by the running time of the
A∗ search baseline approach. The results show that our ap-
proach is particularly beneficial on large problems. Not vis-
ible in the graph is that for small problems a low number of

2A formal definition of optimality for planning in the situation
calculus is provided by Lin (1999).

start situations is better, while for larger problems the initial
overhead for a large number of start situations pays off. The
speed-up is explained by the reduced number of expanded
nodes, shown in Figure 2(b). This number is, however, only
of limited indication of the benefit of our approach. Only
when the start situations have similarities that can be ex-
ploited does this lead to a practical speed-up. Such similari-
ties depend on the domain, problem, and heuristic function,
but also on the number of considered start situations.

In the Zenotravel domain we tested with several hand-
coded, problem specific heuristics, the results of which we
present jointly, for parsimony. In this domain, we did not at
first achieve good results. Investigating the reason for this
showed that there were fewer similarities than in Trucks and
that the branches of the search tree in Phase 2 quickly got
“thin”, in the sense that the action sequences were only fea-
sible for very few start situations, i.e.I got small. We hence
added an adaptive functionality to our approach: when the
pruning of I, done inHOLDSIN and EVAL IN, is low, our
search algorithm switches to conventionalA∗ search. The
resulting adaptive algorithm enabled us to sometimes also
obtain speed-ups in the Zenotravel domain, shown in 2(c),
and almost never perform worse than the baseline approach.

Discussion
We have presented a novel approach for exploiting structure
in planning problems that works by planning in parallel for
several initial states, exploiting their problem specific sim-
ilarities to gain computational savings. Our approach pre-
serves the completeness and optimality ofA∗ search. Pre-
liminary empirical results show that when states exhibit sim-
ilarities, our approach can exploit them to realize computa-
tional savings. This seems particularly true for large prob-
lems. More experiments need to be run in future work to
better characterize domains and problems for which the ap-
proach works well.

With respect to future work, first and foremost, the un-
informed and in-adaptive choice of start situations seems to
leave room for improvement. We imagine that an adaptive
approach which dynamically adds and removes start situ-
ations during Phase 2, could perform significantly better,
in particular on small problems. This also brings back the
question as to how many start situations to use. Theoret-
ically, the more start situations we consider, the greater the
possible speed-up. But higher cardinalities also prolong pre-
computation and node expansion. We hope to establish the-
oretical insights on this trade-off in the future. Also, a better
implementation with optimized data structures is requiredin
order to compare the approach to state-of-the-art planners.

In future work we may also consider planning under un-
certainty. It is conceivable that there are similarities between
the possible physical states of a belief state. This relatesto
similar work by Boutilier, Reiter, & Price (2001), who define
symbolic dynamic programming using regression.

The main limitation of our approach when compared to
state-of-the-art heuristic search based planners, is the re-
quirement for the heuristic to be defined in terms of a re-
gressable formula in the action theory (cf. (Reiter 2001) re-
garding the regressability of formulae). This does not seem

00 5 10 15 20 25

100

200

300

400

500

600

700

800

900
conventionalA∗ search

depth 4

depth 9

depth 11

test case

tim
e

in
se

co
nd

s

(a) Trucks domain, CPU time
00 5 10 15 20 25

100

200

300

400

500

600
conventionalA∗ search

depth 4

depth 9

depth 11

test case

ex
pa

nd
ed

no
de

s
(t

ho
us

an
ds

)

(b) Trucks, expanded nodes
00 5 10 15 20

50

100

150

200

250
conventionalA∗ search

depth 2

depth 4

test case

tim
e

in
se

co
nd

s

(c) Zenotravel domain, CPU time

Figure 2: Experimental results for various problems of the Trucks and Zenotravel domain.

immediately possible for popular heuristics, which are of-
ten defined algorithmically. Finding and applying success-
ful heuristics that are compatible with our approach is an-
other topic of future work. One such heuristic might be
pattern databases (Edelkamp 2001). Also heuristics which
are themselves already computed in a regression fashion
as described, for instance, by McDermott (1999), Bonet &
Geffner (2001), and Refanidis & Vlahavas (2001)), may be
more amenable to our approach.

Our approach is similar in spirit to work by Friedman &
Weld (1996), regarding least commitment action selection in
partial-order planning. The idea presented there is to support
open sub-goals by abstract actions, which represent sets of
physical actions whose common effects satisfy the sub-goal,
and only later refine them to concrete actions. This can lead
to exponential speed-ups.

Perhaps the most recent and most closely related work is
by Cushing & Bryce (2005). Cushing & Bryce consider the
problem of spanning planning graphs, as it is done by many
state-of-the-art heuristic search based planners, in order to
compute heuristic values. To speed up the repeated gener-
ation of this graph for several states, referred to as “source
states”, they also exploit similarities between these states.
Their empirical results compare to ours: while degrading
performance is possible, on difficult problems often signifi-
cant speed-ups can be realized. Besides the different appli-
cation to plan graph generation rather than planning itself,
their approach also contrasts with ours by their limitation
to reachability analysis. In particular, it does not allow to
reason about action costs or similar metric functions, while
our approach works with any metric function that can be
expressed as a regressable formula. Also, the use of pro-
gression commits the planning graph to a fixed set of source
states, while with regression, as used in our approach, it is
technically possible to add and remove states at a later time.

Nebel, Dimopoulos, & Koehler (1997) propose a method
for a-priori detecting features of a planning domain which
are irrelevant and can be ignored in planning, allowing for
great speed-ups. Our approach is similar in that irrelevant
features do not show up in the regression of the relevant
formulae and thus any set of states only differing on these
irrelevant features could be treated jointly. However, our
approach only exploits this for the chosen set of start sit-
uations, while Nebel, Dimopoulos, & Koehler are able to
benefit from such irrelevance at any level of the search tree.

Finally, our approach differs from bi-directional search
(e.g. (Rosenschein 1981)), which also combines forward
search and regression, as we do not search backwards from
the goal, but regress over a given action sequence, explored
during forward search.
Acknowledgments I would like to thank Jorge Baier for a
fruitful discussion and helpful suggestions regarding theal-
gorithm, and the anonymous reviewers for their constructive
comments. I gratefully acknowledge funding from the Nat-
ural Sciences and Engineering Research Council of Canada.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence129(1-2):5–33.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic dynamic
programming for first-order MDPs. InProc. of the 17th Interna-
tional Joint Conference on Artificial Intelligence, 690–700.
Cushing, W., and Bryce, D. 2005. State agnostic planning graphs.
In Proceedings of the 20th National Conference on Artificial In-
telligence, 1131–1138.
Edelkamp, S. 2001. Planning with pattern databases. InProceed-
ings of the 6th European Conference on Planning, 13–24.
Friedman, M., and Weld, D. S. 1996. Least-commitment action
selection. InProceedings of the 3rd International Conference on
Artificial Intelligence Planning Systems, 86–93.
Lin, F. 1999. Search algorithms in the situation calculus.Logical
Foundations of Cognitive Agents: Contributions in Honor of Ray
Reiter213–233.
McDermott, D. V. 1999. Using regression-match graphs to con-
trol search in planning.Artificial Intelligence109(1-2):111–159.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring irrel-
evant facts and operators in plan generation. InProceeding of the
4th European Conference on Planning, 338–350.
Pednault, E. 1989. ADL: exploring the middle ground between
STRIPS and the situation calculus. InProceeding of the 6th Inter-
national Conference on Principles of Knowledge Representation
and Reasoning, 324–332.
Refanidis, I., and Vlahavas, I. 2001. The GRT planning system:
Backward heuristic construction in forward state-space planning.
Journal of Artificial Intelligence Research15:115–161.
Reiter, R. 2001.Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. Cambridge,
MA: MIT Press.
Rosenschein, S. J. 1981. Plan synthesis: A logical perspective.
In Proc. of the 7th International Joint Conference on Artificial
Intelligence, 331–337.

