Exploiting Procedural Domain Control Knowledge in State-of-the-Art Planners

Jorge A. Baier

Christian Fritz

Sheila A. Mcllraith

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, CANADA
{jabaier,fritz,sheild@cs.toronto.edu

Abstract

Domain control knowledge (DCK) has proven effective in
improving the efficiency of plan generation by reducing the
search space for a plarProcedural DCK is a compelling
type of DCK that supports a natural specification of the skele-
ton of a plan. Unfortunately, most state-of-the-art planners do
not have the machinery necessary to exploit procedural DCK.
To resolve this deficiency, we propose to compile procedural
DCK directly into PDDL2.1, thus enabling any PDDL2.1-
compatible planner to exploit it. The contribution of this pa-
per is threefold. First, we propose a PDDL-based seman-
tics for an Algol-like, procedural language that can be used
to specify DCK in planning. Second, we provide a polyno-
mial algorithm that translates an ADL planning instance and
a DCK program, into an equivalent, program-free PDDL2.1
instance whose plans are only those that adhere to the pro-
gram. Third, we argue that the resulting planning instance
is well-suited to being solved by domain-independent heuris-
tic planners. To this end, we propose three approaches to
computing domain-independent heuristics for our translated
instances, sometimes leveraging properties of our translation
to guide search. In our experiments on familiar PDDL plan-
ning benchmarks we show that the proposed compilation of
procedural DCK can significantly speed up the performance
of a heuristic search planner. Our translators are implemented
and available on the web.

Introduction

reduces the search space but still requires a planner ta back
track to find a valid plan, it should prove beneficial to exploi
better search techniques. In this paper we explore ways in
which SOA planning techniques and existing SOA planners
can be used in conjunction with DCK, with particular focus
on proceduralDCK.

As a simple example of DCK, consider theucks do-
main of the 5th International Planning Competition, where
the goal is to deliver packages between certain locations us
ing a limited capacity truck. When a package reaches its
destination it must be delivered to the customer. We can
write simple and natural procedural DCK that significantly
improves the efficiency of plan generation for instanRe:
peat the following until all packages have been delivered:
Unload everything from the truck, and, if there is any pack-
age in the current location whose destination is the current
location, deliver it. After that, if any of the local package
have destinations elsewhere, load them on the truck while
there is space. Drive to the destination of any of the loaded
packages. If there are no packages loaded on the truck, but
there remain packages at locations other than their destina
tions, drive to one of these locations.

Procedural DCK (as used in HTN (Na al. 1999) or
Golog (Levesquet al. 1997)) is action-centric. It is much
like a programming language, and often times like a plan
skeleton or template. It can (conditionally) constrain dine
der in which domain actions should appear in a plan. In or-

Domain control knowledge (DCK) imposes domain-specific ger to exploit it for planning, we require a procedural DCK
constraints on the definition of a valid plan. As such, it can specification language. To this end, we propose a language
be used to impose restrictions on the course of action that py35ed on ®Loc that includes typical programming lan-
achieves the goal. While DCK sometimes reflects a user's g,ages constructs such as conditionals and iteration as wel
desire to achieve the goal a particular way, it is most often 35 nondeterministic choice of actions in places where obntr
constructed to aid in plan generation by reducing the plan s not germane. We argue that these action-centric cortstruc
search space. Moreover, if well-crafted, DCK can elimi- rovide a natural language for specifying DCK for planning.
nate _those parts of the search space that_nece_ssﬂate backye contrast them with DCK specifications based on linear
tracking. In such cases, DCK together with blind search emporal logic (LTL) which are state-centric and though sti
can yield valid plans significantly faster than state-@-th of tremendous value, arguably provide a less natural way to
art (SOA) planners that do not exploit DCK. Indeed most specify DCK. We specify the syntax for our language as well
ﬁ':g;‘r?;; Tgs;seixgioﬁADLgKﬁ NSEF‘:Q Ij‘vsarTn';ﬁgm(B&a%Cg‘#:rti‘ as a PDDL-based semantics following Fox & Long (2003).

, ; X : With a well-defined procedural DCK language in hand,
2r(1)00|)(i do_I|ttIe more than télmd derp])th-ﬁrst sea_lrch with eycl we examine how to use SOA planning techniques together
checking in a DCK-pruned search space. Since most DCK \in bk, Of course, most SOA planners are unable to
exploit DCK. As such, we present an algorithm that trans-
lates a PDDL2.1-specified ADL planning instance and as-

Copyright © 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

sociated procedural DCK into an equivalent, program-free
PDDL2.1 instance whose plans provably adhere to the DCK.
Any PDDL2.1-compliant planner can take such a planning
instance as input to their planner, generating a plan that ad
heres to the DCK.

Since they were not designed for this purpose, existing
SOA planners may not exploit techniques that optimally
leverage the DCK embedded in the planning instance. As

Planning problems are tuple@nit, Goal, Objsp, 7p),
wherelnit is the initial state(Goal is a sentence with quan-
tifiers for the goal, andDbjs, and rp are defined analo-
gously as for domains.

Semantics:Fox & Long (2003) have given a formal seman-
tics for PDDL 2.1. In particular, they define when a sen-
tence istrue in a state and whattate traceis the result of
performing a set ofimed actions A state trace intuitively

such, we investigate how SOA planning techniques, rather ¢orresponds to an execution trace, and the sets of timed ac-

than planners, can be used in conjunction with our compiled
DCK planning instances. In particular, we propose domain-

tions are ultimately used to refer to plans. In the ADL sub-
set of PDDL2.1, since there are no concurrent or durative

independent search heuristics for planning with our newly- 5ctions, time does not play any role. Hence, state traces re-

generated planning instances. We examine three different g,ce to sequences of states and sets of timed actions reduce
approaches to generating heuristics, and evaluate them ony, sequences of actions.

three domains of the 5th International Planning Competi-
tion. Our results show that procedural DCK improves the
performance of SOA planners, and that our heuristics are
sometimes key to achieving good performance.

Background
A Subset of PDDL 2.1

A planning instances a pair/ = (D, P), whereD is a
domain definition and’ is a problem. To simplify notation,
we assume thab and P are described in an ADL subset of
PDDL. The difference between this ADL subset and PDDL
2.1is that no concurrent or durative actions are allowed.
Following convention, domains are tuples of finite sets
(PF, Ops, Objspp, T, mp), where PF' defines domain predi-
cates and functions)ps defines operators)bjs , contains
domain objectsT' is a set of types, ant, C Objsp x T'is
a type relation associating objects to types. An operator (0
action schema) is also a tupl€(7), t, Prec(Z), Eff (7)),
where O(Z) is the unique operator name andl =
T1,...,x,) iS a vector of variables. Furthermoré, =
t1,...,t,) is a vector of types. Each variable ranges
over objects associated with type Moreover, Prec(Z) is
a boolean formula with quantifiers (BQF) that specifies the
operator’s preconditions. BFQs are defined inductively as
follows. Atomic BFQs are either of the formy = ¢5 or
R(t1,...,tn), wheret; (i € {1,...,n}) is aterm (i.e. ei-
ther a variable, a function literal, or an object), aRds a
predicate symbol. Ifp is a BFQ, then so i8)z-t ¢, for a
variablez, a type symbot, and@Q € {3,V}. BFQs are also
formed by applying standard boolean operators over other
BFQs. FinallyEff (Z) is a list of conditional effects, each of
which can be in one of the following forms:

Yyi-ti - Vyn-tn. o(Z,9) = R(Z,7), 1)
Vyi-t1 - - Vyn-tn. o(7,9) = ~R(Z,), 2
Vyi-t1 - - Viyn-tn. ©(Z,9) = f(Z,9) = obj, (3)

wherey is a BFQ whose only free variables are amang
andj/, R is a predicatef is a function, andbj is an object
After performing a ground operator — action— O(¢) in a
certain state, for all tuples of objects that may instantiate
such thatp(¢, 4) holds ins, effect (1) (resp. (2)) expresses
that R(¢, y) becomes true (resp. false), and effect (3) ex-
presses thaf (¢, §) takes the valuebj. As usual, states are

Building on Fox and Long's semantics, we assume that
= is defined such that | ¢ holds when sentence is
true in states. Moreover, for a planning instande we as-
sume there exists a relatidfucc such thatSucc(s, a, s') iff
s’ results from performing an executable actiom s. Fi-
nally, a sequence of actions - - - a,, is a plan for[if there
exists a sequence of states- - - s, such thatsy, = Init,
Suce(s;, a1, si+1) fori € {0,...,n—1}, ands,, = Goal.

Domain-Independent Heuristics for Planning

In sections to follow, we investigate how procedural DCK
integrates into SOA domain-independent planners. Domain-
independent heuristics are key to the performance of these
planners. Among the best known heuristic-search planners
are those that compute their heuristic by solving a relaxed
STRIPS planning instance (e.g., as done in HSP (Bonet &
Geffner 2001) and FF (Hoffmann & Nebel 2001) planners).
Such a relaxation corresponds to solving the same planning
problem but on an instance that ignores deletes (i.e. ignore
negative effects of actions).

For example, the FF heuristics for a states computed
by expanding aelaxed planning grapliHoffmann & Nebel
2001) froms. We can view this graph as composedref
laxed statesA relaxed state at depth+ 1 is generated by
addingall the effects of actions that can be performed in the
relaxed state of depth, and then by copying all facts that
appear in layer.. The graph is expanded until the goal or a
fixed point is reached. The heuristic value farorresponds
to the number of actions inralaxed plarfor the goal, which
can be extracted in polynomial time.

Both FF-like heuristics and HSP-like heuristics can be
computed for (more expressive) ADL planning problems.

A Language for Procedural Control

In contrast to state-centric languages, that often use LTL-
like logical formulae to specify properties of the states tr
versed during plan execution, procedural DCK specification
languages are predominantly action-centric, defining a pla
template or skeleton that dictatastionsto be used at vari-
ous stages of the plan.

Procedural control is specified virogramsrather than
logical expressions. The specification language for these

represented as finite sets of atoms (ground formulae of the programs incorporates desirable elements from imperative

form R(¢) or of the formf(¢) = obj).

programming languages such as iteration and conditional

constructs. However, to make the language more suitable to e (load(C, P); fly(P, LA) | load(C,T); drive(T, LA)):

planning applications, it also incorporates nondeterstiai
constructs. These elements are key to writing flexible con-
trol since they allow programs to contain missing or open
program segments, which are filled in by a planner at the
time of plan generation. Finally, our language also incor-
porates property testing, achieved through so-cdbstiac-

tions These actions are not real actions, in the sense that

they do not change the state of the world, rather they can

be used to specify properties of the states traversed while

executing the plan. By using test actions, our programs
can also specify properties of executions similarly toestat
centric specification languages.

The rest of this section describes the syntax and semantics

of the procedural DCK specification language we propose to
use. We conclude this section by formally defining what it
means to plan under the control of such programs.

Syntax

The language we propose is based anLGG (Levesqueet

al. 1997), a robot programming language developed by the
cognitive robotics community. In contrast tooGOG, our
language supports specification of types for program vari-
ables, but does not support procedures.

Programs are constructed using the implicit language for
actions and boolean formulae defined by a particular plan-
ning instance/. Additionally, a program may refer to vari-
ables drawn from a set of program variablés This set
V will contain variables that are used for nondeterministic
choices of arguments. In what follows, we assuthele-
notes the set of operator names fr@ms, fully instantiated
with objects defined i or elements ol/.

The set of programs over a planning instadcand a set
of program variable$” can be defined by induction. In what
follows, assume is a boolean formula with quantifiers on
the language of, possibly including terms in the set of pro-
gram variabled/. Atomic programs are as follows.

1. nil: Represents the empty program.

2. o: Is a single operator instance, where O.

3. any: A keyword denoting “any action”.

4. ¢7: A test action

If o1, 02 ando are programs, so are the following:

. (01;02): A sequence of programs.

if pthen o else o2: A conditional sentence.

. while ¢ do o: A while-loop.

o*: A nondeterministic iteration.

. (o1]02): Nondeterministic choice between two programs.
m(x-t) o: Nondeterministic choice of variable € V' of
typet € T.

Before we formally define the semantics of the language,

OUTARWN R

we show some examples that give a sense of the language’s

expressiveness and semantics.

e while —clear(B) do 7 (b-block) putOnTable(b): while
B is not clear choose artyof type block and put it on the
table.

e any™;loaded(A, Truck)?: Perform any sequence of ac-
tions until A is loaded inl'ruck. Plans under this control
are such thaloaded(A, Truck) holds in the final state.

Either loadC' on the planeP or on the truck?, and
perform the right action to move the vehicle fol.

Semantics

The problem of planning for an instanéainder the control

of programo corresponds to finding a plan férthat is also

an execution of from the initial state. In the rest of this sec-
tion we define what those legal executions are. Intuitively,
we define a formal device to check whether a sequence of
actionsa corresponds to the execution of a prograniThe
device we use is a nondeterministic finite state automaton
with e-transitions £-NFA).

For the sake of readability, we remind the reader that
NFAs are like standard nondeterministic automata except
that they can transition without reading any input symbol,
through the so-called-transitions.e-transitions are usually
defined over a state of the automaton and a special symbol
¢, denoting the empty symbol.

An ¢-NFA A, ; is defined for each program and each
planning instancé. Its alphabet is the set of operator names,
instantiated by objects df. Its states arprogram configu-
rations which have the formo, s|, whereo is a program
ands is a planning state. Intuitively, as it reads a word of ac-
tions, it keeps track, within its stafe, s], of the part of the
program that remains to be executed,as well as the cur-
rent planning state after performing the actions it has read
already,s.

Formally, A, 1 = (Q, A, d,q., F), whereQ is the set of
program configurations, the alphahdtis a set of domain
actions, the transition function &: Q x (AU {e}) — 2¢,
qo = [o, Init], andF' is the set of final states. The transition
function is defined as follows for atomic programs.

5([a, 5], @) = {[nil, s']} iff Succ(s,a,s’), st.a € A, 4)
§([any, s],a) = {[nil, s"} iff Succ(s,a,s’), st.a€ A, (5)
0([¢?, s],e) = {[nil, s]} iff s = ¢. (6)

Equations 4 and 5 dictate that actions in programs change
the state according to thg&ucc relation. Finally, Eq. 6 de-
fines transitions fop? wheng is a sentence (i.e., a formula
with no program variables). It expresses that a transitaom ¢
only be carried out if the plan state so far satisfies

Now we define for non-atomic programs. In the defini-
tions below, assume thate A U {c}, and that, ando, are
subprograms of, where occurring elements in may have
been instantiated by any object in the planning instance

§([(o1;02),5],a) = U {[(08;02), ']} if o1 # mil, @)
[01,s'1€8([o1,5],a)
5([(?’”1;0’2),8],&) :5([0’2,817(1), (8)

0([o1, 8], a)
5([02,5] a)

s, a),

if s = ¢,

O([if p then o else oy, s],a) = { i s b &

([(o1]02), 5],a) =

d([while¢p do o1, s],a {[mil, s]} if s [~ ¢ anda = ¢,

0([o1; whilepdo oy, s],a) if s |= ¢,

5([JT7]v)_5([(0—1701 ,SLCL Ifa7é5 (9)

5([o1, s],€) = 6([(o1501), s],&) U {[nil, s]}, (10) testtg)

3([m(z-t) o1, 8],a) = U ¥([o1]z /0, 5],). (11) test@) : ™ @ noop \‘ .
oo Ol ENE-0 IO =0
test(-y) @—>@ 0op

noop

whereo |/, denotes the program resulting from replacing
any occurrence af in o, by o. For space reasons we only .

explain two of them. First, a transition on a sequence cor- while sequente
responds to transitioning on its first component first (Eq. 7)

unless the first component is already the empty program, in
which case we transition on the second component (Eq. 8). ple program shown as finite state automatanintuitively,

On the other hand, a transition @f represents two alterna- the operators we generate in the compilation define the tran-
tives: executingr, at least once, or stopping the execution sitions of this automaton. Their preconditions and effects

if

Figure 1: Automaton fo#wvhile ¢ do (if) then a else b); c.

of o7, with the remaining programil (Eq. 9, 10). condition on and change the automaton’s state.

To end the definition of, ;, Q corresponds precisely to The translation is defined inductively by a function
the program configurationg’, s] whereo’ is eithernil or C(o,n,E) which takes as input a program, an inte-
a subprogram ot such that program variables may have gern, and a list of program variables with typds =
been replaced by objects i) ands is any possible plan- [e1-t1, ..., ex-tg], and outputs a tupléL, L', n’) with L a

ning state. Moreoves is assumed empty for elements ofits list of domain-independent operator definitiods,a list of
domain not explicitly mentioned above. Finally, the set of domain-dependent operator definitions, aridanother in-

accepting states i8' = {[nil, s] | s is any state ovef}, i.e., teger. Intuitively, E contains the program variables whose
those where no program remains in execution. We can now scope includes (sub-)program Moreover,L’ contains re-
formally define an execution of a program. strictions on the applicability of operators definedinand
Definition 1 (Execution of a program)A sequence of ac- L contains additional control operators needed to enforce
tionsay - - - a, is an execution ofr in I if ay - - - a,, is ac- the search control defined in Integers: andn’ abstractly
cepted byA,. ;. denote the program state before and after executien of

: . We use two auxiliary functions”noop(n, n2) produces
The following remark illustrates how the automaton tran- an operator definition that allows a transition from state
sitions in order to accept executions of a program. to ny. Similarly Ctest(¢,n1,ns, E) defines the same tran-
Remark 1. Let o = (if pthenaelseb;c), and suppose sition, but conditioned op. They are defined ds:
that Init is the initial state of planning instande Assume
furthermore that;, b, andc are always possible. Thef, ;
acceptsic if Init = .

Cnoop(ny, n2) = (noopni_na(),[], state= s, , [state= sp,])
Ctest(¢,n1,nz2, E) = (test_ny_na(E), , Prec(Z), Eff (£)) with

Proof. Suppose; +, ¢’ denotes thatd,, ; can transition (e-t, &) = mentions(¢, E), et = e1-t1,. .., €m-tm,
from ¢ to ¢’ by reading symbak. Then if Init |= ¢ observe Prec(i) = (state= sn, A ¢lei/xi]ity A
that [0, Init] F, [nil;c, s3] . [nil, s3], for some planning m
statess, andss;. /\i:lbouno(ei) — map(e:, i),
Now that we have defined those sequences of actions cor- Eff (%) = [state= sn,| - [bounde;), map(e;,)] .

responding to the execution of our program, we are ready to Functionmentions

define the notion of planning under procedural control. (¢, I) returns a vectoe-# of program

variables and types that occur ¢n and a vectotr of new

Definition 2 (Planning under procedural controlpA se- variables of the same length. Bookkeeping predicates serve
guence of actio@ is aplan for instancel under the control the following purposesstatedenotes the state of the au-
of programo if @ is a plan in/ and is an execution ef in I. tomaton; bounde) expresses that the program varialkle
has been bound to an object of the domaiap(e, o) states
Compiling Control into the Action Theory that this object iso. Thus, the implicatiorbounde;) —

This section describes a translation function that, given a Mape;, z;) forces parameter; to take the value to which
programs in the DCK language defined above together with € iS bound, but has no effectd is not bound. :
a PDDL2.1 domain specificatiaf, outputs a new PDDL2.1 Consider the inner box of Figure 1, depicting the compi-
domain specificatio,, and problem specificatioR,. The lation of the if statement. It is defined as:
two resulting specifications can then be combined with any C(if #then o, elseos,n, E) = (L1 - Lo - X, L' - L}, n3)
problemP defined oveD, _creating anew planning instance with (L1, L}, m) = C(o1,n+ 1, E),
tha_t embeds the control given byl._e. thatis such_ that on_Iy (La, Ly, n2) = C(02,m1 + 1, E), ng = ns + 1,
action sequences that are executions afe possible. This
enables any PDDL2.1-compliant planner to exploit search X = [Ctest(¢,n,n + 1, B), Ctest(=¢,n,m +1, B),
control specified by any program. Cnoop(ny,n3), CNoop(na, ns) |

To account for the state o_f execution of progra_mand and in the example we have= ¢, n = 2,n, = 4,1, =
to describe legal transitions in that program, we introduce g nz = 7,01 = a, andoy = b.
a few bookkeeping predicates and a few additional actions. __~ '~ '
Figure 1 graphically illustrates the translation of an exam "We useA - B to denote the concatenation of listsand B.

The inductive definitions for other prograrasare:

C(nil,n, E) = ([],[],n)

C(0(7),n, E) = ([], (O(@), 1, Prec' (%), Eff (Z))], n + 1) with
(O(&),F, Prec(Z), Eff (7)) € Ops,
Prec'(Z) = (state= s, A

/\ boundr;) — mag(rs, z;) A

istr,eE

r="Tri,...,Tm,

N wi=ro),

istr;¢F
Eff' (%) = [state= s,, = state= s, 41] -
[state= s, = boundr;) A map(rs, x:)|i st reE

C(¢?,n,E) = ([Ctest(p,n,n+ 1, E)], [], n+1)
C((O‘1;O’2),77,,E) = (L1 . LQ, Lll . L/27 nz) with

(Ll,Lll,nl) = C(O‘l,n, E), (LQ,L’Q,TLQ) = C(Ug7n1,E)
C((O’ﬂo‘z)ﬂLE) = (L1 L2 X, Lll . L’27n2 + 1) with

(L1,L'1,n1) = C(Ul,ﬂ+ 17E’)7

(La, L5, n2) = C(o2,n1 + 1, E),

= [Cnoop(n,n + 1), Cnoofn,n, + 1),
Cnoop(ny, nz + 1), Cnoop(na,na + 1) |
C(while ¢doo,n, E) = (L- X, L',n1 + 1) with
(L,L',n1) = C(o,n+ 1,E), X = [Ctest(¢d,n,n+ 1, E),
Ctest(—¢,n,n1 + 1, E), Cnoop(ni, n)]
C(o*,n, E) = (L - [Cnoof(n, na), Cnoogni,n)], L', n2)
with (L, L', n1) = C(o,n, E),n2 =n1 + 1
C(n(z-t,0),n, E) = (L-X,L',n1 + 1) with
(L, L' ,n1) = C(o,n, E - [x-1]),
X = [(free-ni(x),t, state= s,
[state= sp,+1, "boundz), Vy.—map(x,y)]) |

The atomic programny is handled by macro expansion to
above defined constructs.

As mentioned above, given program the return value
(L, L', ninat) 0f C(0,0,[]) is such that. contains new oper-
ators for encoding transitions in the automaton, wheigas
contains restrictions on the applicability of the origingler-
ators of the domain. Now we are ready to integrate these new
operators and restrictions with the original domain specifi
cation D to produce the new domain specificatiby .

D, contains a constrained version of each op-
erator O(Z) of the original domain D. Let
[((O(Z),t, Preci(Z), Eff ;(Z))]7_, be the sublist of L’
that contains additional conditions for operat(z). The
operator replacin@ () in D, is defined as:

) A \/ PrecZ Z)U U;lEﬁl(f»

Additionally, D, contains all operator definitions . Ob-
jects inD,, are the same as thoseih plus a few new ones
to represent the program variables and the automatonésstat
8; (0 < i < nfinay). Finally D, inherits all predicates i
plusboundz), map«x,y), and functionstate.

The translation, up to this point, is problem-independent;
the problem specificatio®, is defined as follows. Given
any predefined probler® over D, P, is like P except that
its initial state contains conditiostate = sy, and its goal
containsstate = s,,,,. Those conditions ensure that the
program must be executed to completion.

(O'(Z), T, Prec(Z

As is shown below, planning in the generated instance
1, (D,, P,) is equivalent to planning for the original
instancel = (D, P) under the control of prograra, ex-
cept that plans o, contain actions that were not part of
the original domain definitiontést noop andfree).

Theorem 1 (Correctness) Let Filter(a, D) denote the se-
guence that remains when removing frahany action not
defined inD. If @ is a plan for instancé, = (D,, P,) then
Filter (@, D) is a plan for = (D, P) under the control of.
Conversely, ifc‘i is a plan forl under the control of, there
exists a plar’ for I,,, such thati = Filter(a’, D).

Proof. See (Baier, Fritz, & Mcllraith 2007).

Now we turn our attention to analyzing the succinctness
of the output planning instance relative to the original in-
stance and control program. Assume we define the size of a
program as the number of programming constructs and ac-
tions it contains. Then we obtain the following result.

Theorem 2(Succinctness)If ¢ is a program of sizen, and
k is the maximal nesting depth af(z-t) statements i,
then|I,| (the overall size of ;) is O(km).

Proof. See (Baier, Fritz, & Mcllraith 2007).

The encoding of programs in PDDL2.1 is, hence, in worst
caseO(k) times bigger than the program itself. It is also
easy to show that the translation is done in time linear in the
size of the program, since, by definition, every occurrence
of a program construct is only dealt with once.

Exploiting DCK in SOA Heuristic Planners

Our objective in translating procedural DCK to PDDL2.1
was to enableany PDDL2.1-compliant SOA planner to
seamlessly exploit our DCK. In this section, we investigate
ways to best leverage our translated domains using domain-
independent heuristic search planners.

There are several compelling reasons for wanting to ap-
ply domain-independent heuristic search to these problems
Procedural DCK can take many forms. Often, it will pro-
vide explicit actions for some parts of a sequential plan, bu
not for others. In such cases, it will contain unconstrained
fragments (i.e., fragments with nondeterministic choicks
actions) where the designer expects the planner to figure
out the best choice of actions to realize a sub-task. In
the absence of domain-specific guidance for these uncon-
strained fragments, it is natural to consider using a domain
independent heuristic to guide the search.

In other cases, it is the choice of action arguments that
must be optimized. In particular, fragments of DCK may
collectively impose global constraints on action argument
choices that need to be enforced by the planner. As such,
the planner needs to tmvare of the procedural control in
order to avoid backtracking. By way of illustration, con-
sider a travel planning domain comprising two tasks “buy
air ticket” followed by “book hotel”. Each DCK fragment
restricts the actions that can be used, but leaves the choice
of arguments to the planner. Further suppose that budget is
limited. We would like our planner to realize that actions
used to complete the first part should save enough money to
complete the second task. The ability to do such lookahead
can be achieved via domain-independent heuristic search.

In the rest of the section we propose three ways in which
one can leverage our translated domains using a domain-
independent heuristic planner. These three techniquies dif
predominantly in the operands they consider in computing
heuristics.

Direct Use of Translation (Simple) As the hame suggests,
a simple way to provide heuristic guidance while enforcing
program awareness is to use our translated domain directly
with a domain-independent heuristic planner. In shortetak
the original domain instancé and controlo, and use the
resulting instancé, with any heuristic planner.
Unfortunately, when exploiting a relaxed graph to com-
pute heuristics, two issues arise. First, since both the
map and bound predicates are relaxed, whatever value
is already assigned to a variable, will remain assigned
to that variable. This can cause a problem with it-

erative control. For example, assume program def
while ¢ do 7(c-crate) unload(c, T), is intended for a do-
main where crates can be only unloaded sequentially from a
truck. While expanding the relaxed plan, as soon as variable
c is bound to some value, actiamload can only take that
value as argument. This leads the heuristic to regard most
instances as unsolvable, returning misleading estimates.
The second issue is one of efficiency. Since flugnte
is also relaxed, the benefits of the reduced branching factor
induced by the programs is lost. This could slow down the
computation of the heuristic significantly.

Modified Program Structure (H-ops) TheH-opsapproach
addresses the two issues potentially affecting the computa
tion of the Simpleheuristic. It is designed to be used with
planners that employ relaxed planning graphs for heuris-
tic computation. The input to the planner in this case is a
pair (I,, HOps), wherel, = (D, P,) is the translated in-
stance, and{Ops is an additional set of planning operators.
The planner uses the operatorsiin to generate succes-
sor states while searching. However, when computing the
heuristic for a state it uses the operators iHOps.

Additionally, function state and predicatesound and
maparenot relaxed. This means that when computing the
relaxed graph we actually delete their instances from the re
laxed states. As usuadleletesare processed befowsdds
The expansion of the graph is stopped if the goal or a fixed
point is reached. Finally, a relaxed plan is extracted in the
usual way, and its length is reported as the heuristic value.

The un-relaxing ofstate, bound andmap addresses the
problem of reflecting the reduced branching factor pro-
vided by the control program while computing the heuris-
tics. However, it introduces other problems. Returnindno t
o, program defined above, sincéate is now un-relaxed,
the relaxed graph expansion cannot escape from the loop,
because under the relaxed planning semantics, as sapn as
is true, it remains true forever. A similar issue occurs with
the nondeterministic iteration.

This issue is addressed by t#B)ps operators. Due to
lack of space we only explain how these operators work in
the case of the while loop. To avoid staying in the loop
forever, the loop will be exited when actions in it are no
longer adding effects. Figure 2 provides a graphical repre-

test@ot ¢)

est() C
@M»—/\/\» test(fp > 5)

test(fp <5)

Figure 2:H-opstranslation ofwhile loops. While comput-

ing the heuristics, pseudo-fluefi is increased each time
no new effect is added into the relaxed state, and it is set
to 0 otherwise. The loop can be exited if the last five (7-2)
actions performed didn’t add any new effect.

sentation. An important detail to note is that the loop is not
entered wher is not found true in the relaxed state. (The
expressiomot ¢ should be understood as negation as fail-
ure.) Moreover, the pseudo-fluefip is an internal variable
of the planner that acts as a real fluent for fi@ps.

Since loops are guaranteed to be exited, the computation
of H-opsis guaranteed to finish because at some relaxed
state the final state of the automaton will be reached. At this
point, if the goal is not true, no operators will be possible
and a fixed point will be produced immediately.

A Program-Unaware Approach (Basic) Our program-
unaware approactBg@sig completely ignores the program
when computing heuristics. Here, the input to the planner
is a pair(I,, Ops), wherel, is the translated instance, and
Ops are theoriginal domain operators. Th&®ps operators
are used exclusively to compute the heuristic. Hel3ze,
sic's output is not at all influenced by the control program.

Although Basic is program unaware, it can sometimes
provide good estimates, as we see in the following section.
This is especially true when the DCK characterizes a solu-
tion that would be naturally found by the planner if no con-
trol were used. It is also relatively fast to compute.

Implementation and Experiments

Our implementatiohtakes a PDDL planning instance and
a DCK program and generates a nhew PDDL planning in-
stance. It will also generate appropriate output forBasic
andH-opsheuristics, which require a different set of oper-
ators. Thus, the resulting PDDL instance may contain def-
initions for operators that are used only for heuristic com-
putation using the h- acti on keyword, whose syntax is
analogous to the PDDL keywordact i on.

Our planner is a modified version of TILBN, which
does a best-first search using an FF-style heuristic. It-is ca
pable of reading the PDDL with extended operators.

We performed our experiments on ttracks storageand
rovers domains (30 instances each). We wrote DCK for
these domains. For lack of space, we do not show the DCK
in detail, however for trucks we used the control shown as
an example in the Introduction. We ran our three heuris-
tic approachesHasic H-ops and Simplg and cycle-free,
depth-first search on the translated instaridang). Addi-
tionally, we ran the original instance of the program (DCK-
free) using the domain-independent heuristics provided by
the planner driginal). Table 1 shows various statistics on
the performance of the approaches. Furthermore, Fig. 3
shows times for the different heuristic approaches.

2Available atwwy. ¢s. t or ont 0. edu/ kr/ syst ens

original Simple Basic H-ops blind
#n 1 0.31 0.41 0.26 19.85
L #s 9 9 15 14 3
S Lrin 1 1 1 1 1
F Layg 1.1 1.03 1.02 1.04 1.04
max 1.2 1.2 1.07 1.2 1.07
n N 1 0.74 1.06 1.06 1.62
5 #s 10 19 28 22 30
3 Lmin 1 1 1 1 1
X layg 2.13 1.03 1.05 1.21 1.53
Lrmax 4.59 1.2 1.3 1.7 2.14
o #n 1 12 113 0.76 145
2 #s 18 18 20 21 20
B Zmin 1 1 1 1 1
n Lavg 4.4 1.05 1.01 1.07 1.62
max 21.11 1.29 1.16 1.48 211

Table 1: Comparison between different approaches to planning
(with DCK). #n is the average factor of expanded nodes to the
number of nodes expanded byiginal (i.e., #n=0.26 means the

ning instances. Each contribution is of value in and of ftsel
The language can be used without the compilation, and the
compiled PDDL2.1 instance can be input to any PDDL2.1-
compliant SOA planner, not just the domain-independent
heuristic search planner that we propose. Our experiments
show that procedural DCK improves the performance of
SOA planners, and that our heuristics are sometimes key to
achieving good performance.

Much of the previous work on DCK in planning has ex-
ploited state-centric specification languages. In padicu
TLPLAN (Bacchus & Kabanza 1998) and TALRNNER
(Kvarnstom & Doherty 2000) employ declarative, state-
centric, temporal languages based on LTL to specify DCK.
Such languages define necessary properties of states over
fragments of a valid plan. We argue that they could be less
natural than our procedural specification language.

Though not described as DCK specification languages

approach expanded 0.26 times the number of nodes expanded bythere are a number of languages from the agent program-

original). #s is the number of problems solved by each approach.

ming and/or model-based programming communities that

faug denotes the average ratio of the plan length to the shortest plan are related to procedural control. Among these as&EE,

found by any of the approaches (i.é.g=1.50 means that on av-

a goal language designed to also express intentionality (da

erage, on each instance, plans where 50% longer than the shortesti_ ago, Pistore, & Traverso 2002). MoreoveroGoG is a

plan found for that instancefmin and/max are defined analogously.

Not surprisingly, our data confirms that DCK helps to
improve the performance of the planner, solving more in-

stances across all domains. In some domains (i.e. storage

and rovers) blind depth-first cycle-free search is sufficien
for solving most of the instances. However, quality of so-
lutions (plan length) is poor compared to the heuristic ap-
proaches. In trucks, DCK is only effective in conjunction
with heuristics; blind search can solve very few instances.
We observe that-opsis the most informative (expands
fewer nodes). This fact does not pay off in time in the ex-
periments shown in the table. Nevertheless, it is easy te con
struct instances where th&opsperforms better thaBasic
This happens when the DCK control restricts the space of
valid plans (i.e., prunes out valid plans). We have experi-

mented with various instances of the storage domain, where

we restrict the plan to use only one hoist. In some of these
cased-opsoutperformsBasicby orders of magnitude.

Summary and Related Work

DCK can be used to constrain the set of valid plans and
has proven an effective tool in reducing the time required

procedural language proposed as an alternative to planning
by the cognitive robotics community. It essentially con-
strains the possible space of actions that could be perfbrme
by the programmed agent allowing non-determinism. Our
DCK language can be viewed as a version abLBG.
Further, languages such as the Reactive Model-Based Pro-
gramming Language (RMPL) (Kim, Williams, & Abram-
son 2001) — a procedural language that combines ideas from
constraint-based modeling with reactive programming con-
structs — also share expressive power and goals with proce-
dural DCK. Finally, Hierarchical Task Network (HTN) spec-
ification languages such as those used in SHOP @{al
1999) provide domain-dependent hierarchical task decom-
positions together with partial order constraints, notilgas
describable in our language.

A focus of our work was to exploit SOA planners and
planning techniques with our procedural DCK. In contrast,
well-known DCK-enabled planners such as TlaR and
TALPLANNER use DCK to prune the search space at each
step of the plan and then employ blind depth-first cycle-free
search to try to reach the goal. Unfortunately, pruning is
only possible for maintenance-style DCK and there is no
way to plan towards achieving other types of DCK as there

to generate a plan. Nevertheless, many of the planners thatis with the heuristic search techniques proposed here.

exploit it use arguably less natural state-centric DCK spec
ification languages, and their planners use blind search. In
this paper we examined the problem of exploiting procedu-
ral DCK with SOA planners. Our goal was to specify rich
DCK naturally in the form of a program template and to
exploit SOA planning techniques to actively plan towards
the achievement of this DCK. To this end we made three
contributions: provision of a procedural DCK language syn-
tax and semantics; a polynomial-time algorithm to compile
DCK and a planning instance into a PDDL2.1 planning in-
stance that could be input to any PDDL2.1-compliant plan-
ner; and finally a set of techniques for exploiting domain-
independent heuristic search with our translated DCK plan-

Similarly, GoOLOG interpreters, while exploiting procedu-
ral DCK, have traditionally employed blind search to in-
stantiate nondeterministic fragments of @®G program.
Most recently, ClaRemrt al. (2007) have proposed to inte-
grate an incremental @.0G interpreter with a SOA plan-
ner. Their motivation is similar to ours, but there is a sub-
tle difference: they are interested in combiniagent pro-
grammingand efficient planning. The integration works
by allowing a GL0G program to make explicit calls to a
SOA planner to achieve particular conditions identified by
the user. The actual planning, however, is not controlled in
any way. Also, since the GLOG interpreter executes the
returned plan immediately without further lookahead, back

. —x
1000 | Pox 1000 - * 1000 | ko
¥ X X,
o o =2 o ,v N * o of o *
=} ¥ 100 | 100 - x
g nooX 04 XX
2 Uy Px ¥X 2 10 2 10 ;
= - PR .. = P = P
g **; * + % original —+— g original —+— § B % X original —+—
* X Basic, “ 1F Basic * 1F % Basic
*
H-ops % H-ops % H-ops %
Simple & 0.1¢ Simple & 0.1p Simple & §
blind blind blind
0.015 5 10 15 20 25 30 0015553 10 15 25 30 0015 5 10 15 20 25
problem problem problem
(@rovers (b) st or age (c) trucks

Figure 3:Running times of the three heuristics and the original instance; logarithmilie;san on an Intel Xeon, 3.6GHz, 2GB RAM

tracking does not extend over the boundary between@

and the planner. As such, each fragment of nondeterminism
within a program is treated independently, so that actions

selected locally are not informed by the constraints ofrlate

fragments as they are with the approach that we propose.

Their work, which focuses on the semantics of ADL in the
situation calculus, is hence orthogonal to ours.

Finally, there is related work that compiles DCK into stan-
dard planning domains. Baier & Mcllraith (2006), Cress-
well & Coddington (2004), Edelkamp (2006), and Rinta-
nen (2000), propose to compile different versions of LTL-
based DCK into PDDL/ADL planning domains. The main
drawback of these approaches is that translating full LTL
into ADL/PDDL is worst-case exponential in the size of the
control formula whereas our compilation produces an addi-
tion to the original PDDL instance that is linear in the size
of the DCK program. Soeet al. (2006) further show how
HTN, LTL, and GoLoG-like DCK can be encoded into plan-

ning instances that can be solved using answer set solvers.

Nevertheless, they do not provide translations that can-be i
tegrated with PDDL-compliant SOA planners, nor do they
propose any heuristic approaches to planning with them.

Acknowledgments We are grateful to Yves Le&pance
and the ICAPS anonymous reviewers for their feedback.

This research was funded by Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) and the Ontario

Ministry of Research and Innovation (MRI).

References

Bacchus, F., and Kabanza, F. 1998. Planning for tempo-

rally extended goalsAnnals of Mathematics and Atrtificial
Intelligence22(1-2):5-27.

Baier, J. A., and Mcllraith, S. A. 2006. Planning with first-

order temporally extended goals using heuristic search. In

Proc. of the 21st National Conference on Artificial Intelli-
gence (AAAI-06)788—795.

Baier, J.; Fritz, C.; and Mcllraith, S. 2007. Exploiting pro
cedural domain control knowledge in state-of-the-art plan

ners (extended version). Technical Report CSRG-565, Uni-

versity of Toronto.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search Artificial Intelligence129(1-2):5-33.

Claf3en, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007.

Towards an integration of Golog and planning. Rroc.

of the 20th Int’l Joint Conference on Atrtificial Intelligeac
(IJCAI-07), 1846-1851.

Cresswell, S., and Coddington, A. M. 2004. Compilation
of LTL goal formulas into PDDL. InProc. of the 16th
European Conference on Atrtificial Intelligence (ECAI-04)
985-986.

dal Lago, U.; Pistore, M.; and Traverso, P. 2002. Planning
with a language for extended goals.Rroc. of AAAI/IAA]
447-454.

Edelkamp, S. 2006. On the compilation of plan con-
straints and preferences. Rroc. of the 16th Int'l Confer-
ence on Automated Planning and Scheduling (ICAP$-06)
374-377.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domaidsurnal
of Artificial Intelligence Research0:61-124.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic sea¥ohrnal
of Artificial Intelligence Research4:253-302.

Kim, P.; Williams, B. C.; and Abramson, M. 2001. Execut-
ing reactive, model-based programs through graph-based
temporal planning. IfProc. of the 17th Int'l Joint Confer-
ence on Artificial Intelligence (IJCAI-01%87—-493.

Kvarnstom, J., and Doherty, P. 2000. TALPlanner: A
temporal logic based forward chaining plannénnals of
Mathematics and Artificial Intelligencg0(1-4):119-169.
Levesque, H.; Reiter, R.; Lesmnce, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domainsJournal of Logic Program-
ming31(1-3):59-83.

Nau, D. S.; Cao, Y.; Lotem, A.; and Migz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. Rroc. of
the 16th Int'l Joint Conference on Atrtificial Intelligence
(1JCAI-99), 968-975.

Rintanen, J. 2000. Incorporation of temporal logic control
into plan operators. In Horn, W., ed2roc. of the 14th
European Conference on Atrtificial Intelligence (ECAI-00)
526-530. Berlin, Germany: IOS Press.

Son, T. C.; Baral, C.; Nam, T. H.; and Mcllraith,
S. A. 2006. Domain-dependent knowledge in answer
set planning.ACM Transactions on Computational Logic
7(4):613-657.

