
Exploiting Procedural Domain Control Knowledge in State-of-the-Art Planners

Jorge A. Baier Christian Fritz Sheila A. McIlraith
Department of Computer Science, University of Toronto,

Toronto, ON M5S 3G4, CANADA
{jabaier,fritz,sheila}@cs.toronto.edu

Abstract

Domain control knowledge (DCK) has proven effective in
improving the efficiency of plan generation by reducing the
search space for a plan.ProceduralDCK is a compelling
type of DCK that supports a natural specification of the skele-
ton of a plan. Unfortunately, most state-of-the-art planners do
not have the machinery necessary to exploit procedural DCK.
To resolve this deficiency, we propose to compile procedural
DCK directly into PDDL2.1, thus enabling any PDDL2.1-
compatible planner to exploit it. The contribution of this pa-
per is threefold. First, we propose a PDDL-based seman-
tics for an Algol-like, procedural language that can be used
to specify DCK in planning. Second, we provide a polyno-
mial algorithm that translates an ADL planning instance and
a DCK program, into an equivalent, program-free PDDL2.1
instance whose plans are only those that adhere to the pro-
gram. Third, we argue that the resulting planning instance
is well-suited to being solved by domain-independent heuris-
tic planners. To this end, we propose three approaches to
computing domain-independent heuristics for our translated
instances, sometimes leveraging properties of our translation
to guide search. In our experiments on familiar PDDL plan-
ning benchmarks we show that the proposed compilation of
procedural DCK can significantly speed up the performance
of a heuristic search planner. Our translators are implemented
and available on the web.

Introduction
Domain control knowledge (DCK) imposes domain-specific
constraints on the definition of a valid plan. As such, it can
be used to impose restrictions on the course of action that
achieves the goal. While DCK sometimes reflects a user’s
desire to achieve the goal a particular way, it is most often
constructed to aid in plan generation by reducing the plan
search space. Moreover, if well-crafted, DCK can elimi-
nate those parts of the search space that necessitate back-
tracking. In such cases, DCK together with blind search
can yield valid plans significantly faster than state-of-the-
art (SOA) planners that do not exploit DCK. Indeed most
planners that exploit DCK, such as TLPLAN (Bacchus &
Kabanza 1998) or TALPLANNER (Kvarnstr̈om & Doherty
2000), do little more than blind depth-first search with cycle
checking in a DCK-pruned search space. Since most DCK

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

reduces the search space but still requires a planner to back-
track to find a valid plan, it should prove beneficial to exploit
better search techniques. In this paper we explore ways in
which SOA planning techniques and existing SOA planners
can be used in conjunction with DCK, with particular focus
onproceduralDCK.

As a simple example of DCK, consider thetrucks do-
main of the 5th International Planning Competition, where
the goal is to deliver packages between certain locations us-
ing a limited capacity truck. When a package reaches its
destination it must be delivered to the customer. We can
write simple and natural procedural DCK that significantly
improves the efficiency of plan generation for instance:Re-
peat the following until all packages have been delivered:
Unload everything from the truck, and, if there is any pack-
age in the current location whose destination is the current
location, deliver it. After that, if any of the local packages
have destinations elsewhere, load them on the truck while
there is space. Drive to the destination of any of the loaded
packages. If there are no packages loaded on the truck, but
there remain packages at locations other than their destina-
tions, drive to one of these locations.

Procedural DCK (as used in HTN (Nauet al. 1999) or
Golog (Levesqueet al. 1997)) is action-centric. It is much
like a programming language, and often times like a plan
skeleton or template. It can (conditionally) constrain theor-
der in which domain actions should appear in a plan. In or-
der to exploit it for planning, we require a procedural DCK
specification language. To this end, we propose a language
based on GOLOG that includes typical programming lan-
guages constructs such as conditionals and iteration as well
as nondeterministic choice of actions in places where control
is not germane. We argue that these action-centric constructs
provide a natural language for specifying DCK for planning.
We contrast them with DCK specifications based on linear
temporal logic (LTL) which are state-centric and though still
of tremendous value, arguably provide a less natural way to
specify DCK. We specify the syntax for our language as well
as a PDDL-based semantics following Fox & Long (2003).

With a well-defined procedural DCK language in hand,
we examine how to use SOA planning techniques together
with DCK. Of course, most SOA planners are unable to
exploit DCK. As such, we present an algorithm that trans-
lates a PDDL2.1-specified ADL planning instance and as-



sociated procedural DCK into an equivalent, program-free
PDDL2.1 instance whose plans provably adhere to the DCK.
Any PDDL2.1-compliant planner can take such a planning
instance as input to their planner, generating a plan that ad-
heres to the DCK.

Since they were not designed for this purpose, existing
SOA planners may not exploit techniques that optimally
leverage the DCK embedded in the planning instance. As
such, we investigate how SOA planning techniques, rather
than planners, can be used in conjunction with our compiled
DCK planning instances. In particular, we propose domain-
independent search heuristics for planning with our newly-
generated planning instances. We examine three different
approaches to generating heuristics, and evaluate them on
three domains of the 5th International Planning Competi-
tion. Our results show that procedural DCK improves the
performance of SOA planners, and that our heuristics are
sometimes key to achieving good performance.

Background
A Subset of PDDL 2.1
A planning instanceis a pairI = (D,P ), whereD is a
domain definition andP is a problem. To simplify notation,
we assume thatD andP are described in an ADL subset of
PDDL. The difference between this ADL subset and PDDL
2.1 is that no concurrent or durative actions are allowed.

Following convention, domains are tuples of finite sets
(PF ,Ops,ObjsD, T, τD), wherePF defines domain predi-
cates and functions,Ops defines operators,ObjsD contains
domain objects,T is a set of types, andτD ⊆ ObjsD × T is
a type relation associating objects to types. An operator (or
action schema) is also a tuple〈O(~x),~t,Prec(~x),Eff (~x)〉,
where O(~x) is the unique operator name and~x =
(x1, . . . , xn) is a vector of variables. Furthermore,~t =
(t1, . . . , tn) is a vector of types. Each variablexi ranges
over objects associated with typeti. Moreover,Prec(~x) is
a boolean formula with quantifiers (BQF) that specifies the
operator’s preconditions. BFQs are defined inductively as
follows. Atomic BFQs are either of the formt1 = t2 or
R(t1, . . . , tn), whereti (i ∈ {1, . . . , n}) is a term (i.e. ei-
ther a variable, a function literal, or an object), andR is a
predicate symbol. Ifϕ is a BFQ, then so isQx-t ϕ, for a
variablex, a type symbolt, andQ ∈ {∃,∀}. BFQs are also
formed by applying standard boolean operators over other
BFQs. FinallyEff (~x) is a list of conditional effects, each of
which can be in one of the following forms:

∀y1-t1 · · · ∀yn-tn. ϕ(~x, ~y) ⇒ R(~x, ~y), (1)

∀y1-t1 · · · ∀yn-tn. ϕ(~x, ~y) ⇒ ¬R(~x, ~y), (2)

∀y1-t1 · · · ∀yn-tn. ϕ(~x, ~y) ⇒ f(~x, ~y) = obj, (3)

whereϕ is a BFQ whose only free variables are among~x
and~y, R is a predicate,f is a function, andobj is an object
After performing a ground operator – oraction– O(~c) in a
certain states, for all tuples of objects that may instantiate~y
such thatϕ(~c, ~y) holds ins, effect (1) (resp. (2)) expresses
thatR(~c, ~y) becomes true (resp. false), and effect (3) ex-
presses thatf(~c, ~y) takes the valueobj. As usual, states are
represented as finite sets of atoms (ground formulae of the
formR(~c) or of the formf(~c) = obj).

Planning problems are tuples(Init ,Goal ,ObjsP , τP ),
whereInit is the initial state,Goal is a sentence with quan-
tifiers for the goal, andObjsP and τP are defined analo-
gously as for domains.

Semantics:Fox & Long (2003) have given a formal seman-
tics for PDDL 2.1. In particular, they define when a sen-
tence istrue in a state and whatstate traceis the result of
performing a set oftimed actions. A state trace intuitively
corresponds to an execution trace, and the sets of timed ac-
tions are ultimately used to refer to plans. In the ADL sub-
set of PDDL2.1, since there are no concurrent or durative
actions, time does not play any role. Hence, state traces re-
duce to sequences of states and sets of timed actions reduce
to sequences of actions.

Building on Fox and Long’s semantics, we assume that
|= is defined such thats |= ϕ holds when sentenceϕ is
true in states. Moreover, for a planning instanceI, we as-
sume there exists a relationSucc such thatSucc(s, a, s′) iff
s′ results from performing an executable actiona in s. Fi-
nally, a sequence of actionsa1 · · · an is a plan forI if there
exists a sequence of statess0 · · · sn such thats0 = Init,
Succ(si, ai+1, si+1) for i ∈ {0, . . . , n−1}, andsn |= Goal .

Domain-Independent Heuristics for Planning
In sections to follow, we investigate how procedural DCK
integrates into SOA domain-independent planners. Domain-
independent heuristics are key to the performance of these
planners. Among the best known heuristic-search planners
are those that compute their heuristic by solving a relaxed
STRIPS planning instance (e.g., as done in HSP (Bonet &
Geffner 2001) and FF (Hoffmann & Nebel 2001) planners).
Such a relaxation corresponds to solving the same planning
problem but on an instance that ignores deletes (i.e. ignores
negative effects of actions).

For example, the FF heuristics for a states is computed
by expanding arelaxed planning graph(Hoffmann & Nebel
2001) froms. We can view this graph as composed ofre-
laxed states. A relaxed state at depthn + 1 is generated by
addingall the effects of actions that can be performed in the
relaxed state of depthn, and then by copying all facts that
appear in layern. The graph is expanded until the goal or a
fixed point is reached. The heuristic value fors corresponds
to the number of actions in arelaxed planfor the goal, which
can be extracted in polynomial time.

Both FF-like heuristics and HSP-like heuristics can be
computed for (more expressive) ADL planning problems.

A Language for Procedural Control
In contrast to state-centric languages, that often use LTL-
like logical formulae to specify properties of the states tra-
versed during plan execution, procedural DCK specification
languages are predominantly action-centric, defining a plan
template or skeleton that dictatesactionsto be used at vari-
ous stages of the plan.

Procedural control is specified viaprogramsrather than
logical expressions. The specification language for these
programs incorporates desirable elements from imperative
programming languages such as iteration and conditional



constructs. However, to make the language more suitable to
planning applications, it also incorporates nondeterministic
constructs. These elements are key to writing flexible con-
trol since they allow programs to contain missing or open
program segments, which are filled in by a planner at the
time of plan generation. Finally, our language also incor-
porates property testing, achieved through so-calledtest ac-
tions. These actions are not real actions, in the sense that
they do not change the state of the world, rather they can
be used to specify properties of the states traversed while
executing the plan. By using test actions, our programs
can also specify properties of executions similarly to state-
centric specification languages.

The rest of this section describes the syntax and semantics
of the procedural DCK specification language we propose to
use. We conclude this section by formally defining what it
means to plan under the control of such programs.

Syntax
The language we propose is based on GOLOG (Levesqueet
al. 1997), a robot programming language developed by the
cognitive robotics community. In contrast to GOLOG, our
language supports specification of types for program vari-
ables, but does not support procedures.

Programs are constructed using the implicit language for
actions and boolean formulae defined by a particular plan-
ning instanceI. Additionally, a program may refer to vari-
ables drawn from a set of program variablesV . This set
V will contain variables that are used for nondeterministic
choices of arguments. In what follows, we assumeO de-
notes the set of operator names fromOps, fully instantiated
with objects defined inI or elements ofV .

The set of programs over a planning instanceI and a set
of program variablesV can be defined by induction. In what
follows, assumeφ is a boolean formula with quantifiers on
the language ofI, possibly including terms in the set of pro-
gram variablesV . Atomic programs are as follows.
1. nil : Represents the empty program.
2. o: Is a single operator instance, whereo ∈ O.
3. any: A keyword denoting “any action”.
4. φ?: A test action.
If σ1, σ2 andσ are programs, so are the following:
1. (σ1;σ2): A sequence of programs.
2. if φ thenσ1 elseσ2: A conditional sentence.
3. whileφdoσ: A while-loop.
4. σ∗: A nondeterministic iteration.
5. (σ1|σ2): Nondeterministic choice between two programs.
6. π(x-t)σ: Nondeterministic choice of variablex ∈ V of

typet ∈ T .
Before we formally define the semantics of the language,

we show some examples that give a sense of the language’s
expressiveness and semantics.
• while¬clear(B)doπ(b-block) putOnTable(b): while
B is not clear choose anyb of type block and put it on the
table.

• any∗; loaded(A, Truck)?: Perform any sequence of ac-
tions untilA is loaded inTruck. Plans under this control
are such thatloaded(A, Truck) holds in the final state.

• ( load(C,P ); fly(P,LA) | load(C, T ); drive(T,LA) ):
Either loadC on the planeP or on the truckT , and
perform the right action to move the vehicle toLA.

Semantics
The problem of planning for an instanceI under the control
of programσ corresponds to finding a plan forI that is also
an execution ofσ from the initial state. In the rest of this sec-
tion we define what those legal executions are. Intuitively,
we define a formal device to check whether a sequence of
actions~a corresponds to the execution of a programσ. The
device we use is a nondeterministic finite state automaton
with ε-transitions (ε-NFA).

For the sake of readability, we remind the reader thatε-
NFAs are like standard nondeterministic automata except
that they can transition without reading any input symbol,
through the so-calledε-transitions.ε-transitions are usually
defined over a state of the automaton and a special symbol
ε, denoting the empty symbol.

An ε-NFA Aσ,I is defined for each programσ and each
planning instanceI. Its alphabet is the set of operator names,
instantiated by objects ofI. Its states areprogram configu-
rations which have the form[σ, s], whereσ is a program
ands is a planning state. Intuitively, as it reads a word of ac-
tions, it keeps track, within its state[σ, s], of the part of the
program that remains to be executed,σ, as well as the cur-
rent planning state after performing the actions it has read
already,s.

Formally,Aσ,I = (Q,A, δ, qo, F ), whereQ is the set of
program configurations, the alphabetA is a set of domain
actions, the transition function isδ : Q× (A ∪ {ε}) → 2Q,
q0 = [σ, Init ], andF is the set of final states. The transition
functionδ is defined as follows for atomic programs.

δ([a, s], a) = {[nil , s′]} iff Succ(s, a, s′), s.t.a ∈ A, (4)

δ([any, s], a) = {[nil, s′]} iff Succ(s, a, s′), s.t.a ∈ A, (5)

δ([φ?, s], ε) = {[nil , s]} iff s |= φ. (6)

Equations 4 and 5 dictate that actions in programs change
the state according to theSucc relation. Finally, Eq. 6 de-
fines transitions forφ? whenφ is a sentence (i.e., a formula
with no program variables). It expresses that a transition can
only be carried out if the plan state so far satisfiesφ.

Now we defineδ for non-atomic programs. In the defini-
tions below, assume thata ∈ A ∪ {ε}, and thatσ1 andσ2 are
subprograms ofσ, where occurring elements inV may have
been instantiated by any object in the planning instanceI.

δ([(σ1;σ2), s], a) =
[

[σ′

1
,s′]∈δ([σ1,s],a)

{[(σ′
1;σ2), s

′]} if σ1 6= nil , (7)

δ([(nil ;σ2), s], a) = δ([σ2, s], a), (8)

δ([if φ thenσ1 elseσ2, s], a) =

(

δ([σ1, s], a) if s |= φ,

δ([σ2, s], a) if s 6|= φ,

δ([(σ1|σ2), s], a) = δ([σ1, s], a) ∪ δ([σ2, s], a),

δ([whileφdoσ1, s], a) =

(

{[nil , s]} if s 6|= φ anda = ε,

δ([σ1;whileφdoσ1, s], a) if s |= φ,

δ([σ∗
1 , s], a) = δ([(σ1;σ

∗
1), s], a) if a 6= ε (9)



δ([σ∗
1 , s], ε) = δ([(σ1;σ

∗
1), s], ε) ∪ {[nil , s]}, (10)

δ([π(x-t)σ1, s], a) =
[

(o,t)∈τD∪τP

δ([σ1|x/o, s], a). (11)

whereσ1|x/o denotes the program resulting from replacing
any occurrence ofx in σ1 by o. For space reasons we only
explain two of them. First, a transition on a sequence cor-
responds to transitioning on its first component first (Eq. 7),
unless the first component is already the empty program, in
which case we transition on the second component (Eq. 8).
On the other hand, a transition ofσ∗

1 represents two alterna-
tives: executingσ1 at least once, or stopping the execution
of σ∗

1 , with the remaining programnil (Eq. 9, 10).
To end the definition ofAσ,I , Q corresponds precisely to

the program configurations[σ′, s] whereσ′ is eithernil or
a subprogram ofσ such that program variables may have
been replaced by objects inI, ands is any possible plan-
ning state. Moreover,δ is assumed empty for elements of its
domain not explicitly mentioned above. Finally, the set of
accepting states isF = {[nil , s] | s is any state overI}, i.e.,
those where no program remains in execution. We can now
formally define an execution of a program.

Definition 1 (Execution of a program). A sequence of ac-
tions a1 · · · an is an execution ofσ in I if a1 · · · an is ac-
cepted byAσ,I .

The following remark illustrates how the automaton tran-
sitions in order to accept executions of a program.

Remark 1. Let σ = (if ϕ then a else b; c), and suppose
that Init is the initial state of planning instanceI. Assume
furthermore thata, b, andc are always possible. ThenAσ,I

acceptsac if Init |= ϕ.
Proof. Supposeq ⊢a q′ denotes thatAσ,I can transition
from q to q′ by reading symbola. Then ifInit |= ϕ observe
that [σ, Init ] ⊢a [nil ; c, s2] ⊢c [nil , s3], for some planning
statess2 ands3.

Now that we have defined those sequences of actions cor-
responding to the execution of our program, we are ready to
define the notion of planning under procedural control.

Definition 2 (Planning under procedural control). A se-
quence of action~a is aplan for instanceI under the control
of programσ if ~a is a plan inI and is an execution ofσ in I.

Compiling Control into the Action Theory
This section describes a translation function that, given a
programσ in the DCK language defined above together with
a PDDL2.1 domain specificationD, outputs a new PDDL2.1
domain specificationDσ and problem specificationPσ. The
two resulting specifications can then be combined with any
problemP defined overD, creating a new planning instance
that embeds the control given byσ, i.e. that is such that only
action sequences that are executions ofσ are possible. This
enables any PDDL2.1-compliant planner to exploit search
control specified by any program.

To account for the state of execution of programσ and
to describe legal transitions in that program, we introduce
a few bookkeeping predicates and a few additional actions.
Figure 1 graphically illustrates the translation of an exam-

1 2

3 4

5 6

7 8 9

noop

noop

noop

test(ψ)

test(¬ψ)

test(φ)

test(¬φ)

a

b

c

if

while
sequence

Figure 1: Automaton forwhileφdo (if ψ then a else b); c.

ple program shown as afinite state automaton. Intuitively,
the operators we generate in the compilation define the tran-
sitions of this automaton. Their preconditions and effects
condition on and change the automaton’s state.

The translation is defined inductively by a function
C(σ, n,E) which takes as input a programσ, an inte-
ger n, and a list of program variables with typesE =
[e1-t1, . . . , ek-tk], and outputs a tuple(L,L′, n′) with L a
list of domain-independent operator definitions,L′ a list of
domain-dependent operator definitions, andn′ another in-
teger. Intuitively,E contains the program variables whose
scope includes (sub-)programσ. Moreover,L′ contains re-
strictions on the applicability of operators defined inD, and
L contains additional control operators needed to enforce
the search control defined inσ. Integersn andn′ abstractly
denote the program state before and after execution ofσ.

We use two auxiliary functions.Cnoop(n1, n2) produces
an operator definition that allows a transition from staten1

to n2. SimilarlyCtest(φ, n1, n2, E) defines the same tran-
sition, but conditioned onφ. They are defined as:1

Cnoop(n1, n2) = 〈noopn1 n2(), [ ], state= sn1
, [state= sn2

]〉

Ctest(φ, n1, n2, E) = 〈test n1 n2(~x),~t,Prec(~x),Eff (~x)〉 with

( ~e-t, ~x) = mentions(φ,E), ~e-t = e1-t1, . . . , em-tm,

Prec(~x) =
`

state= sn1
∧ φ[ei/xi]

m
i=1 ∧

^m

i=1
bound(ei) → map(ei, xi)

´

,

Eff (~x) = [state= sn2
] · [bound(ei),map(ei, xi)]

m
i=1.

Functionmentions(φ,E) returns a vector~e-t of program
variables and types that occur inφ, and a vector~x of new
variables of the same length. Bookkeeping predicates serve
the following purposes:statedenotes the state of the au-
tomaton; bound(e) expresses that the program variablee
has been bound to an object of the domain;map(e, o) states
that this object iso. Thus, the implicationbound(ei) →
map(ei, xi) forces parameterxi to take the value to which
ei is bound, but has no effect ifei is not bound.

Consider the inner box of Figure 1, depicting the compi-
lation of the if statement. It is defined as:

C(if φ thenσ1 elseσ2, n, E) = (L1 · L2 ·X,L
′
1 · L

′
2, n3)

with (L1, L
′
1, n1) = C(σ1, n+ 1, E),

(L2, L
′
2, n2) = C(σ2, n1 + 1, E), n3 = n2 + 1,

X = [ Ctest(φ, n, n+ 1, E), Ctest(¬φ, n, n1 + 1, E),

Cnoop(n1, n3), Cnoop(n2, n3) ]

and in the example we haveφ = ψ, n = 2, n1 = 4, n2 =
6, n3 = 7, σ1 = a, andσ2 = b.

1We useA ·B to denote the concatenation of listsA andB.



The inductive definitions for other programsσ are:

C(nil , n, E) = ([ ], [ ], n)

C(O(~r), n, E) = ([ ], [〈O(~x),~t,Prec
′(~x),Eff

′(~x)〉], n+ 1) with

〈O(~x),~t,Prec(~x),Eff (~x)〉 ∈ Ops, ~r = r1, . . . , rm,

Prec
′(~x) = (state= sn ∧
^

i s.t. ri∈E

bound(ri) → map(ri, xi) ∧
^

i s.t. ri 6∈E

xi = ri),

Eff
′(~x) = [ state= sn ⇒ state= sn+1] ·

[state= sn ⇒ bound(ri) ∧ map(ri, xi)]i s.t. ri∈E

C(φ?, n, E) = ( [Ctest(φ, n, n+ 1, E)], [ ], n+ 1)

C((σ1;σ2), n, E) = (L1 · L2, L
′
1 · L

′
2, n2) with

(L1, L
′
1, n1) = C(σ1, n, E), (L2, L

′
2, n2) = C(σ2, n1, E)

C((σ1|σ2), n, E) = (L1 · L2 ·X,L
′
1 · L

′
2, n2 + 1) with

(L1, L
′
1, n1) = C(σ1, n+ 1, E),

(L2, L
′
2, n2) = C(σ2, n1 + 1, E),

X = [ Cnoop(n, n+ 1), Cnoop(n, n1 + 1),

Cnoop(n1, n2 + 1), Cnoop(n2, n2 + 1) ]

C(whileφdoσ, n,E) = (L ·X,L′, n1 + 1) with

(L,L′, n1) = C(σ, n+ 1, E), X = [Ctest(φ, n, n+ 1, E),

Ctest(¬φ, n, n1 + 1, E), Cnoop(n1, n)]

C(σ∗, n, E) = (L · [Cnoop(n, n2), Cnoop(n1, n)], L′, n2)

with (L,L′, n1) = C(σ, n,E), n2 = n1 + 1

C(π(x-t, σ), n, E) = (L ·X,L′, n1 + 1) with

(L,L′, n1) = C(σ, n,E · [x-t]),

X = [〈free n1(x), t, state= sn1
,

[state= sn1+1,¬bound(x), ∀y.¬map(x, y)]〉 ]

The atomic programany is handled by macro expansion to
above defined constructs.

As mentioned above, given programσ, the return value
(L,L′, nfinal) ofC(σ, 0, [ ]) is such thatL contains new oper-
ators for encoding transitions in the automaton, whereasL′

contains restrictions on the applicability of the originaloper-
ators of the domain. Now we are ready to integrate these new
operators and restrictions with the original domain specifi-
cationD to produce the new domain specificationDσ.
Dσ contains a constrained version of each op-

erator O(~x) of the original domain D. Let
[〈O(~x),~t,Preci(~x),Eff i(~x)〉]

n
i=1 be the sublist of L′

that contains additional conditions for operatorO(~x). The
operator replacingO(~x) in Dσ is defined as:

〈O′(~x), ~t, Prec(~x) ∧
_n

i=1
Preci(~x), Eff (~x) ∪

[n

i=1
Eff i(~x)〉

Additionally,Dσ contains all operator definitions inL. Ob-
jects inDσ are the same as those inD, plus a few new ones
to represent the program variables and the automaton’s states
si ( 0 ≤ i ≤ nfinal). FinallyDσ inherits all predicates inD
plusbound(x), map(x, y), and functionstate.

The translation, up to this point, is problem-independent;
the problem specificationPσ is defined as follows. Given
any predefined problemP overD, Pσ is like P except that
its initial state contains conditionstate = s0, and its goal
containsstate = snfinal. Those conditions ensure that the
program must be executed to completion.

As is shown below, planning in the generated instance
Iσ = (Dσ, Pσ) is equivalent to planning for the original
instanceI = (D,P ) under the control of programσ, ex-
cept that plans onIσ contain actions that were not part of
the original domain definition (test, noop, andfree).
Theorem 1 (Correctness). Let Filter(~a,D) denote the se-
quence that remains when removing from~a any action not
defined inD. If ~a is a plan for instanceIσ = (Dσ, Pσ) then
Filter(~a,D) is a plan forI = (D,P ) under the control ofσ.
Conversely, if~a is a plan forI under the control ofσ, there
exists a plan~a′ for Iσ, such that~a = Filter(~a′,D).
Proof. See (Baier, Fritz, & McIlraith 2007).

Now we turn our attention to analyzing the succinctness
of the output planning instance relative to the original in-
stance and control program. Assume we define the size of a
program as the number of programming constructs and ac-
tions it contains. Then we obtain the following result.
Theorem 2(Succinctness). If σ is a program of sizem, and
k is the maximal nesting depth ofπ(x-t) statements inσ,
then|Iσ| (the overall size ofIσ) isO(km).
Proof. See (Baier, Fritz, & McIlraith 2007).

The encoding of programs in PDDL2.1 is, hence, in worst
caseO(k) times bigger than the program itself. It is also
easy to show that the translation is done in time linear in the
size of the program, since, by definition, every occurrence
of a program construct is only dealt with once.

Exploiting DCK in SOA Heuristic Planners
Our objective in translating procedural DCK to PDDL2.1
was to enableany PDDL2.1-compliant SOA planner to
seamlessly exploit our DCK. In this section, we investigate
ways to best leverage our translated domains using domain-
independent heuristic search planners.

There are several compelling reasons for wanting to ap-
ply domain-independent heuristic search to these problems.
Procedural DCK can take many forms. Often, it will pro-
vide explicit actions for some parts of a sequential plan, but
not for others. In such cases, it will contain unconstrained
fragments (i.e., fragments with nondeterministic choicesof
actions) where the designer expects the planner to figure
out the best choice of actions to realize a sub-task. In
the absence of domain-specific guidance for these uncon-
strained fragments, it is natural to consider using a domain-
independent heuristic to guide the search.

In other cases, it is the choice of action arguments that
must be optimized. In particular, fragments of DCK may
collectively impose global constraints on action argument
choices that need to be enforced by the planner. As such,
the planner needs to beawareof the procedural control in
order to avoid backtracking. By way of illustration, con-
sider a travel planning domain comprising two tasks “buy
air ticket” followed by “book hotel”. Each DCK fragment
restricts the actions that can be used, but leaves the choice
of arguments to the planner. Further suppose that budget is
limited. We would like our planner to realize that actions
used to complete the first part should save enough money to
complete the second task. The ability to do such lookahead
can be achieved via domain-independent heuristic search.



In the rest of the section we propose three ways in which
one can leverage our translated domains using a domain-
independent heuristic planner. These three techniques differ
predominantly in the operands they consider in computing
heuristics.

Direct Use of Translation (Simple) As the name suggests,
a simple way to provide heuristic guidance while enforcing
program awareness is to use our translated domain directly
with a domain-independent heuristic planner. In short, take
the original domain instanceI and controlσ, and use the
resulting instanceIσ with any heuristic planner.

Unfortunately, when exploiting a relaxed graph to com-
pute heuristics, two issues arise. First, since both the
map and bound predicates are relaxed, whatever value
is already assigned to a variable, will remain assigned
to that variable. This can cause a problem with it-

erative control. For example, assume programσL
def
=

whileφdoπ(c-crate)unload(c, T ), is intended for a do-
main where crates can be only unloaded sequentially from a
truck. While expanding the relaxed plan, as soon as variable
c is bound to some value, actionunload can only take that
value as argument. This leads the heuristic to regard most
instances as unsolvable, returning misleading estimates.

The second issue is one of efficiency. Since fluentstate
is also relaxed, the benefits of the reduced branching factor
induced by the programs is lost. This could slow down the
computation of the heuristic significantly.

Modified Program Structure (H-ops) TheH-opsapproach
addresses the two issues potentially affecting the computa-
tion of theSimpleheuristic. It is designed to be used with
planners that employ relaxed planning graphs for heuris-
tic computation. The input to the planner in this case is a
pair (Iσ,HOps), whereIσ = (Dσ, Pσ) is the translated in-
stance, andHOps is an additional set of planning operators.
The planner uses the operators inDσ to generate succes-
sor states while searching. However, when computing the
heuristic for a states it uses the operators inHOps.

Additionally, function state and predicatesbound and
maparenot relaxed. This means that when computing the
relaxed graph we actually delete their instances from the re-
laxed states. As usual,deletesare processed beforeadds.
The expansion of the graph is stopped if the goal or a fixed
point is reached. Finally, a relaxed plan is extracted in the
usual way, and its length is reported as the heuristic value.

The un-relaxing ofstate, bound andmap addresses the
problem of reflecting the reduced branching factor pro-
vided by the control program while computing the heuris-
tics. However, it introduces other problems. Returning to the
σL program defined above, sincestate is now un-relaxed,
the relaxed graph expansion cannot escape from the loop,
because under the relaxed planning semantics, as soon asφ
is true, it remains true forever. A similar issue occurs with
the nondeterministic iteration.

This issue is addressed by theHOps operators. Due to
lack of space we only explain how these operators work in
the case of the while loop. To avoid staying in the loop
forever, the loop will be exited when actions in it are no
longer adding effects. Figure 2 provides a graphical repre-

1 2 7 8
test(φ)

test(not φ)

test(fp ≤ 5) test(fp > 5)

Figure 2:H-opstranslation ofwhile loops. While comput-
ing the heuristics, pseudo-fluentfp is increased each time
no new effect is added into the relaxed state, and it is set
to 0 otherwise. The loop can be exited if the last five (7-2)
actions performed didn’t add any new effect.

sentation. An important detail to note is that the loop is not
entered whenφ is not found true in the relaxed state. (The
expressionnot φ should be understood as negation as fail-
ure.) Moreover, the pseudo-fluentfp is an internal variable
of the planner that acts as a real fluent for theHOps.

Since loops are guaranteed to be exited, the computation
of H-ops is guaranteed to finish because at some relaxed
state the final state of the automaton will be reached. At this
point, if the goal is not true, no operators will be possible
and a fixed point will be produced immediately.
A Program-Unaware Approach (Basic) Our program-
unaware approach (Basic) completely ignores the program
when computing heuristics. Here, the input to the planner
is a pair(Iσ,Ops), whereIσ is the translated instance, and
Ops are theoriginal domain operators. TheOps operators
are used exclusively to compute the heuristic. Hence,Ba-
sic’s output is not at all influenced by the control program.

Although Basic is program unaware, it can sometimes
provide good estimates, as we see in the following section.
This is especially true when the DCK characterizes a solu-
tion that would be naturally found by the planner if no con-
trol were used. It is also relatively fast to compute.

Implementation and Experiments
Our implementation2 takes a PDDL planning instance and
a DCK program and generates a new PDDL planning in-
stance. It will also generate appropriate output for theBasic
andH-opsheuristics, which require a different set of oper-
ators. Thus, the resulting PDDL instance may contain def-
initions for operators that are used only for heuristic com-
putation using the:h-action keyword, whose syntax is
analogous to the PDDL keyword:action.

Our planner is a modified version of TLPLAN , which
does a best-first search using an FF-style heuristic. It is ca-
pable of reading the PDDL with extended operators.

We performed our experiments on thetrucks, storageand
rovers domains (30 instances each). We wrote DCK for
these domains. For lack of space, we do not show the DCK
in detail, however for trucks we used the control shown as
an example in the Introduction. We ran our three heuris-
tic approaches (Basic, H-ops, andSimple) and cycle-free,
depth-first search on the translated instance (blind). Addi-
tionally, we ran the original instance of the program (DCK-
free) using the domain-independent heuristics provided by
the planner (original). Table 1 shows various statistics on
the performance of the approaches. Furthermore, Fig. 3
shows times for the different heuristic approaches.

2Available atwww.cs.toronto.edu/kr/systems



original Simple Basic H-ops blind

T
ru

ck
s

#n 1 0.31 0.41 0.26 19.85
#s 9 9 15 14 3
ℓmin 1 1 1 1 1
ℓavg 1.1 1.03 1.02 1.04 1.04
ℓmax 1.2 1.2 1.07 1.2 1.07

R
ov

er
s #n 1 0.74 1.06 1.06 1.62

#s 10 19 28 22 30
ℓmin 1 1 1 1 1
ℓavg 2.13 1.03 1.05 1.21 1.53
ℓmax 4.59 1.2 1.3 1.7 2.14

S
to

ra
ge

#n 1 1.2 1.13 0.76 1.45
#s 18 18 20 21 20
ℓmin 1 1 1 1 1
ℓavg 4.4 1.05 1.01 1.07 1.62
ℓmax 21.11 1.29 1.16 1.48 2.11

Table 1: Comparison between different approaches to planning
(with DCK). #n is the average factor of expanded nodes to the
number of nodes expanded byoriginal (i.e., #n=0.26 means the
approach expanded 0.26 times the number of nodes expanded by
original). #s is the number of problems solved by each approach.
ℓavg denotes the average ratio of the plan length to the shortest plan
found by any of the approaches (i.e.,ℓavg=1.50 means that on av-
erage, on each instance, plans where 50% longer than the shortest
plan found for that instance).ℓmin andℓmax are defined analogously.

Not surprisingly, our data confirms that DCK helps to
improve the performance of the planner, solving more in-
stances across all domains. In some domains (i.e. storage
and rovers) blind depth-first cycle-free search is sufficient
for solving most of the instances. However, quality of so-
lutions (plan length) is poor compared to the heuristic ap-
proaches. In trucks, DCK is only effective in conjunction
with heuristics; blind search can solve very few instances.

We observe thatH-ops is the most informative (expands
fewer nodes). This fact does not pay off in time in the ex-
periments shown in the table. Nevertheless, it is easy to con-
struct instances where theH-opsperforms better thanBasic.
This happens when the DCK control restricts the space of
valid plans (i.e., prunes out valid plans). We have experi-
mented with various instances of the storage domain, where
we restrict the plan to use only one hoist. In some of these
casesH-opsoutperformsBasicby orders of magnitude.

Summary and Related Work
DCK can be used to constrain the set of valid plans and
has proven an effective tool in reducing the time required
to generate a plan. Nevertheless, many of the planners that
exploit it use arguably less natural state-centric DCK spec-
ification languages, and their planners use blind search. In
this paper we examined the problem of exploiting procedu-
ral DCK with SOA planners. Our goal was to specify rich
DCK naturally in the form of a program template and to
exploit SOA planning techniques to actively plan towards
the achievement of this DCK. To this end we made three
contributions: provision of a procedural DCK language syn-
tax and semantics; a polynomial-time algorithm to compile
DCK and a planning instance into a PDDL2.1 planning in-
stance that could be input to any PDDL2.1-compliant plan-
ner; and finally a set of techniques for exploiting domain-
independent heuristic search with our translated DCK plan-

ning instances. Each contribution is of value in and of itself.
The language can be used without the compilation, and the
compiled PDDL2.1 instance can be input to any PDDL2.1-
compliant SOA planner, not just the domain-independent
heuristic search planner that we propose. Our experiments
show that procedural DCK improves the performance of
SOA planners, and that our heuristics are sometimes key to
achieving good performance.

Much of the previous work on DCK in planning has ex-
ploited state-centric specification languages. In particular,
TLPLAN (Bacchus & Kabanza 1998) and TALPLANNER
(Kvarnstr̈om & Doherty 2000) employ declarative, state-
centric, temporal languages based on LTL to specify DCK.
Such languages define necessary properties of states over
fragments of a valid plan. We argue that they could be less
natural than our procedural specification language.

Though not described as DCK specification languages
there are a number of languages from the agent program-
ming and/or model-based programming communities that
are related to procedural control. Among these are EAGLE,
a goal language designed to also express intentionality (dal
Lago, Pistore, & Traverso 2002). Moreover, GOLOG is a
procedural language proposed as an alternative to planning
by the cognitive robotics community. It essentially con-
strains the possible space of actions that could be performed
by the programmed agent allowing non-determinism. Our
DCK language can be viewed as a version of GOLOG.
Further, languages such as the Reactive Model-Based Pro-
gramming Language (RMPL) (Kim, Williams, & Abram-
son 2001) – a procedural language that combines ideas from
constraint-based modeling with reactive programming con-
structs – also share expressive power and goals with proce-
dural DCK. Finally, Hierarchical Task Network (HTN) spec-
ification languages such as those used in SHOP (Nauet al.
1999) provide domain-dependent hierarchical task decom-
positions together with partial order constraints, not easily
describable in our language.

A focus of our work was to exploit SOA planners and
planning techniques with our procedural DCK. In contrast,
well-known DCK-enabled planners such as TLPLAN and
TALPLANNER use DCK to prune the search space at each
step of the plan and then employ blind depth-first cycle-free
search to try to reach the goal. Unfortunately, pruning is
only possible for maintenance-style DCK and there is no
way to plan towards achieving other types of DCK as there
is with the heuristic search techniques proposed here.

Similarly, GOLOG interpreters, while exploiting procedu-
ral DCK, have traditionally employed blind search to in-
stantiate nondeterministic fragments of a GOLOG program.
Most recently, Claßenet al. (2007) have proposed to inte-
grate an incremental GOLOG interpreter with a SOA plan-
ner. Their motivation is similar to ours, but there is a sub-
tle difference: they are interested in combiningagent pro-
grammingand efficient planning. The integration works
by allowing a GOLOG program to make explicit calls to a
SOA planner to achieve particular conditions identified by
the user. The actual planning, however, is not controlled in
any way. Also, since the GOLOG interpreter executes the
returned plan immediately without further lookahead, back-



1000

100

1

0.1

0.01
0 5 10

10

15 20 25 30

se
c
o
n
d
s

problem

original

Basic

H-ops

Simple

blind

(a) rovers

1000

100

1

0.1

0.01
0 5 10

10

15 20 25 30

se
c
o
n
d
s

problem

original

Basic

H-ops

Simple

blind

(b) storage

1000

100

1

0.1

0.01
0 5 10

10

15 20 25

se
c
o
n
d
s

problem

original

Basic

H-ops

Simple

blind

(c) trucks

Figure 3:Running times of the three heuristics and the original instance; logarithmic scale; run on an Intel Xeon, 3.6GHz, 2GB RAM

tracking does not extend over the boundary between GOLOG
and the planner. As such, each fragment of nondeterminism
within a program is treated independently, so that actions
selected locally are not informed by the constraints of later
fragments as they are with the approach that we propose.
Their work, which focuses on the semantics of ADL in the
situation calculus, is hence orthogonal to ours.

Finally, there is related work that compiles DCK into stan-
dard planning domains. Baier & McIlraith (2006), Cress-
well & Coddington (2004), Edelkamp (2006), and Rinta-
nen (2000), propose to compile different versions of LTL-
based DCK into PDDL/ADL planning domains. The main
drawback of these approaches is that translating full LTL
into ADL/PDDL is worst-case exponential in the size of the
control formula whereas our compilation produces an addi-
tion to the original PDDL instance that is linear in the size
of the DCK program. Sonet al. (2006) further show how
HTN, LTL, and GOLOG-like DCK can be encoded into plan-
ning instances that can be solved using answer set solvers.
Nevertheless, they do not provide translations that can be in-
tegrated with PDDL-compliant SOA planners, nor do they
propose any heuristic approaches to planning with them.

Acknowledgments We are grateful to Yves Lespérance
and the ICAPS anonymous reviewers for their feedback.
This research was funded by Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) and the Ontario
Ministry of Research and Innovation (MRI).

References
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals.Annals of Mathematics and Artificial
Intelligence22(1-2):5–27.
Baier, J. A., and McIlraith, S. A. 2006. Planning with first-
order temporally extended goals using heuristic search. In
Proc. of the 21st National Conference on Artificial Intelli-
gence (AAAI-06), 788–795.
Baier, J.; Fritz, C.; and McIlraith, S. 2007. Exploiting pro-
cedural domain control knowledge in state-of-the-art plan-
ners (extended version). Technical Report CSRG-565, Uni-
versity of Toronto.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence129(1-2):5–33.
Claßen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007.
Towards an integration of Golog and planning. InProc.

of the 20th Int’l Joint Conference on Artificial Intelligence
(IJCAI-07), 1846–1851.
Cresswell, S., and Coddington, A. M. 2004. Compilation
of LTL goal formulas into PDDL. InProc. of the 16th
European Conference on Artificial Intelligence (ECAI-04),
985–986.
dal Lago, U.; Pistore, M.; and Traverso, P. 2002. Planning
with a language for extended goals. InProc. of AAAI/IAAI,
447–454.
Edelkamp, S. 2006. On the compilation of plan con-
straints and preferences. InProc. of the 16th Int’l Confer-
ence on Automated Planning and Scheduling (ICAPS-06),
374–377.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains.Journal
of Artificial Intelligence Research20:61–124.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.
Kim, P.; Williams, B. C.; and Abramson, M. 2001. Execut-
ing reactive, model-based programs through graph-based
temporal planning. InProc. of the 17th Int’l Joint Confer-
ence on Artificial Intelligence (IJCAI-01), 487–493.
Kvarnstr̈om, J., and Doherty, P. 2000. TALPlanner: A
temporal logic based forward chaining planner.Annals of
Mathematics and Artificial Intelligence30(1-4):119–169.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains.Journal of Logic Program-
ming31(1-3):59–83.
Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. InProc. of
the 16th Int’l Joint Conference on Artificial Intelligence
(IJCAI-99), 968–975.
Rintanen, J. 2000. Incorporation of temporal logic control
into plan operators. In Horn, W., ed.,Proc. of the 14th
European Conference on Artificial Intelligence (ECAI-00),
526–530. Berlin, Germany: IOS Press.
Son, T. C.; Baral, C.; Nam, T. H.; and McIlraith,
S. A. 2006. Domain-dependent knowledge in answer
set planning.ACM Transactions on Computational Logic
7(4):613–657.


