
Compiling Qualitative Preferences into
Decision-Theoretic Golog Programs: Extended

Version with Proofs

Christian Fritz and Sheila McIlraith
Department of Computer Science

University of Toronto
Toronto, Ontario. Canada.
{fritz,sheila}@cs.toronto.edu

July 31, 2005

Abstract

Personalization is becoming increasingly important in agent programming, par-
ticularly as it relates to the Web. We propose to develop underspecified, task-
specific agent programs, and to automatically personalize them to the preferences
of individual users. To this end, we propose a framework for agent programming
that integrates rich, non-Markovian, qualitative user preferences with quantitative
Markovian reward functions. We begin with DT-Golog, a first-order, decision-
theoretic agent programming language in the situation calculus. We present an
algorithm that compiles qualitative preferences into Golog programs and prove it
sound and complete with respect to the space of solutions. To integrate these pref-
erences into DT-Golog we introduce the notion of multi-program synchronization
and restate the semantics of the language as a transition semantics. We demon-
strate the utility of this framework with an application to personalized travel plan-
ning over the Web. To the best of our knowledge this is the first work to combine
qualitative and quantiative preferences for temporal reasoning. Further, while the
focus of this paper is on the integration of qualitative and quantative preferences,
a side effect of this work is realization of the simpler task of integrating qualitative
preferences alone into agent programming.

1 Introduction

Personalization is becoming increasingly important to agent programming. Service-
sector agent programs such as personal assistants or travel planners are often charac-
terized by a relatively well-defined but under-specified set of tasks that can be realized
in a variety of different ways. As with an office admin assistant or a travel agent, these
high-level tasks are commissioned by numerous different customers/users. A good

1

agent program, like a good office assistant or travel planner must be able to personalize
the service they provide to meet the preferences and constraints of the individual.

Consider the oft-used example of travel planning: Fiona would like to book a trip
from Toronto, Canada to Edinburgh, Scotland for work. She’d like to depart between
July 25 and 28, returning no sooner than August 5, but no later than August 8. She
would prefer not to connect through London Heathrow, as she had a bad experience
being stuck at Heathrow when air traffic controllers went on strike last year. She’ll
need a hotel in Edinburgh, preferrably close to the castle but if the plane arrives late at
night, she’d prefer a hotel close to the airport. Fiona needs to economize, so she’d like
the cheapest flights and hotel accommodations possible. Nevertheless, she’s willing to
pay $100 more to get a direct flight. Finally, she has to work July 29 – August 5, so
she’s willing to spend up to $200 more to maximize sightseeing days before July 29
and/or after August 5.

This, presumably realistic setting, displays three types of constraints or preferences
that are commonplace in many planning and agent programming application domains:
hard constraints (when to go and where), qualitative preferences (airport and hotel
preferences), and quantitative preferences (financial restrictions).

We approach the problem of personalizable agent programs by developing task-
specific, but underspecified agent programs that have sufficient non-determinism to
support personalization. Personalization is achieved by integrating these agent pro-
grams with the three types of constraints illustrated in our example above. The goal
of this paper is to investigate the integration of qualitative and quantitative preferences
into agent programming, and specifically into the agent programming language Golog
[?].

Golog is a first-order agent programming language based on the situation calculus.
Golog enables the specification of, potentially nondeterministic, agent programs in the
context of a domain-specific action theory. As such, Golog programs impose hard
constraints on the possible evolution of the domain. Decision-Theoretic Golog (DT-
Golog) [?] extends Golog with the ability to solve MDP-like planning problems up to
a given horizon and starting in a known initial situation. In so doing, DT-Golog can
handle infinite state (situation) spaces while exploiting the underlying power of Golog
to restrict the search space.

There is a large body of research on the use of quantitive preferences in automated
reasoning. Indeed, decision-theoretic planning via Markov Decision processes (MDP)
[?] provides an effective means of generating task plans that maximize a user’s ex-
pected utility. Unfortunately, preferences and constraints must be specified in terms of
numeric, Markovian reward functions. Such specifications can be difficult to elicit and
don’t capture qualitative user preferences. Bacchus et al. [?] addressed the Markovian
restriction, by enabling the use of non-Markovian rewards. They did so by augmenting
state representation with a new set of temporal variables. Nevertheless, they did not
allow for qualitative preferences.

Unfortunately, there has been little work on the incorporation of qualitative prefer-
ences into planning, save recent work by [?, ?, ?]. These approaches are able to repre-
sent qualitative non-Markovian user preferences, while [?, ?] also propose a means of
planning with such preferences.

In [?] Domshlak et al. integrate quantitative soft constraints and qualitative pref-

2

erences expressed using the CP-nets formalism [?]. They approach the problem by
approximating the CP-net with soft constraints expressed in a semi-ring formalism.
Nevertheless, their focus is on reasoning about preferences, i.e. deciding on an or-
dering of possible world states, and it is not obvious how their approach applies to
planning or agent programming. In particular, the language they use for specifying
preferences does not enable the expression of temporally extended preferences, which
we believe are essential to the task at hand.

In this paper we address the problem of combining non-Markovian qualitative pref-
erences, expressed in first-order temporal logic, with quantitative decision-theoretic re-
ward functions and hard symbolic constraints. We do so by compiling non-Markovian
qualitative preferences into a DT-Golog program, integrating the potentially compet-
ing preferences through a multi-program synchronization. The resultant DT-Golog
program, maximizes the users expected utility within the most qualitatively preferred
plans. We prove the soundness and completeness of our compilation algorithm. To
the best of our knowledge, this is the first work to combine qualitative and quantitative
preferences for temporal reasoning.

Our work is related to that of Gabaldon [?] who, following previous work by Bac-
chus and Kabanza [?] and Doherty and Kvarnstrm [?], compiles temporal logic formu-
lae into preconditions of actions in the situation calculus. There, the temporal formulae
are hard constraints that serve to reduce the search space. In contrast, we are unable
to eliminate any of the search space, since qualitatively less preferred situations may
yield the best final solution. Also related is the work of Sardina and Shapiro [?] who
integrate qualitative prioritized goals into the IndiGolog programming language. Our
approach differs from theirs in serveral ways: our qualitative preference language is
richer than their specification of prioritized goals; we compile preferences into a Golog
program which is more efficient from a computational perspective; and we enable the
integration of both qualitative and quantitative constraints.

In Section 2 we review the situation calculus and Golog. In Section 3 we pro-
pose a first-order language for specifying non-Markovian qualitative user preferences.
The semantics of the language is described in the situation calculus. Section 4 de-
scribes our approach to integrating preferences. It comprises three steps: compila-
tion of non-Markovian qualitative preferences into a Golog program; multi-program
synchronization of the resulting Golog program with an existing Golog program; and
given this newly synchronized program, a means of defining preferences over different
possible subprograms. Included are a soundness and completeness result relating to
our compilation, and a new transition semantics for DT-Golog. We have implemented
our approach as an extension to Readylog [?], an existing on-line decision-theoretic
Golog interpreter. We demonstrate its utility with an application to personalized travel
planning over the Web, as discussed in Section 5. We summarize our contributions in
Section 6.

2 Situation Calculus and Golog

The situation calculus is a logical language for specifying and reasoning about dynam-
ical systems [?]. In the situation calculus, the state of the world is expressed in terms

3

of functions and relations (fluents) relativized to a particular situation s, e.g., F (~x, s).
In this paper, we distinguish between the set of fluent predicates, F , and the set of non-
fluent predicates, R, representing properties that do not change over time. A situation
s is a history of the primitive actions, a ∈ A, performed from a distinguished initial
situation S0. The function do(a, s) maps a situation and an action into a new situation.
The theory induces a tree of situations, rooted at S0.

A basic action theory in the situation calculus,D, comprises four domain-independent
foundational axioms, and a set of domain-dependent axioms. The foundational axioms
Σ define the situations, their branching structure and the situation predecessor relation
@. s @ s′ states that situation s precedes situation s′ in the situation tree. Σ includes
a second-order induction axiom. The domain-dependent axioms are strictly first-order.
Details of the form of these axioms can be found in [?]. Following convention we
will generally refer to fluents in situation-suppressed form, e.g., at(toronto) rather than
at(toronto, s).

Golog (e.g., [?]) is a high-level logic programming language for the specification
and execution of complex actions in dynamical domains. It builds on top of the situa-
tion calculus by providing Algol-inspired extralogical constructs for assembling primi-
tive situation calculus actions into complex actions δ. Constructs include the following:

a — primitive actions
δ1; δ2 — sequences
φ? — tests
(πx)δ(x) — nondeterministic choice of arguments
δ∗ — nondeterministic iteration
nondet(L) – nondeterministic choice of (complex) action in list, L
if φ then δ1 else δ2 endIf – conditionals
proc P (~v) δ endProc — procedure

These constructs can be used to write programs in the language of a domain theory,
e.g.,

buyAirTicket(~x);

if far then rentCar(~y) else bookTaxi(~y) endIf.
There are two popular semantics for Golog programs: the original evaluation seman-
tics [?] and a related single-step transition semantics that was proposed for on-line
execution [?]. Following the evaluation semantics, complex actions are macros that
expand to situation calculus formulae. The abbreviation Do(δ, S0, do(~a, S0)) denotes
that the Golog program δ, starting execution in S0 will legally terminate in situation
do(a1, do(a2, . . . , do(an, S0))) 1. The following are some example macro expansions.

Do(a, s, s′)
def
= Poss(a[s], s) ∧ s′ = do(a[s], s)2

Do(?(ϕ), s, s′)
def
= ϕ[s] ∧ s = s′.

Do(nondet([σ1|σ̄], s, s′)
def
=

Do(σ1, s, s
′) ∨Do(nondet(σ̄), s, s′)3

Do(nondet([σ1], s, s′)
def
= Do(σ1, s, s

′)

1which we abbreviate to do(~a, S0) or do([a1, . . . , an], S0).
2a[s] denotes the re-insertion of s into fluent arguments of a.
3[a|r] denotes a list with first element a, and rest of list r.

4

Given a domain theory, D and Golog program δ, program execution must find a se-
quence of actions ~a such that: D |= Do(δ, S0, do(~a, S0)). Recall that D induces a tree of
situations rooted at S0. Requiring that D entails Do(δ, S0, do(~a, S0)) serves to constrain
the situations in the tree to only those situations that are consistent with the expansion
of δ.

These hard constraints can reduce the problem size by orders of magnitude. Con-
sider the following estimate of our travel planning example. The full grounded search
space involves 3652 date combinations and 1901 airports. Assuming 10 available
flights for every combination, there are more than 4.8 · 1012 flights. Optimistically
assuming that at each destination there are only 10 hotels with 5 room types each, the
total number of possible action combinations increases to 6.2 ·1021. Using a DT-Golog
procedure such as the one that follows reduces the number of alternatives to approx-
imately 3 · 3 · 10 · 50 = 4500 cases that are relevant to Fiona. Such reductions are
of particular importance for agent programming on the Web, where the vastness of
information creates enormous search spaces.

In this paper we exploit a decision-theoretic variant of Golog called DT-Golog [?],
which extends Golog to deal with uncertainty in action outcomes and general reward
functions. DT-Golog can be viewed alternatively as an extension to Golog, or as a
means to give “advice” to a decision-theoretic planner that maximizes expected utility.

For example, our travel planning problem could be described by the following DT-
Golog procedure:

proc(travel_planner,
[pickBest(depart_dt, [726..728],

pickBest(return_dt, [805..807],
[searchFlight("YYZ", "EDI", depart_dt, return_dt),

searchHotel("EDI", depart_dt, return_dt),
pickBest(bestFlight, allFlights,

[reserveFlight(bestFlight),
if(not(error),payFlight(bestFlight))]),

?(and([not(outflight = none),not(inflight = none)])),
pickBest(bestHotel, allHotels,

[reserveHotel(bestHotel),
if(not(error),payHotel(bestHotel))]),

?(not(hotel = none))]))]).

Note the extensive use of the DT-Golog construct pickBest(Value, Range, Program)

which picks the best value for Program from the range of possibilities. E.g., our program
picks the best departure and return dates from the specified ranges (726 denotes July 26,
etc.), and so on. In this framework the utility theory is specified by action costs (e.g.,
the cost of purchasing an airline ticket) and Markovian reward functions assigning real-
valued rewards to situations. E.g.,

reward(v, s) ≡
(at(EDI, s) ∧ date(s) < 729 ∨ date(s) > 805) ∧ v = 200) ∨
(¬ (at(EDI, s) ∧ (date(s) < 729 ∨ date(s) > 805)) ∧ v = 0)

This says that the reward, v is 200 if we are in Edinburgh before July 29 or after August
5, and v is 0 otherwise.

But Fiona cannot easily specify all her preferences as numeric Markovian rewards.
A rich qualitative preference language that exploits temporal logic should help!

5

3 Preference Language

To personalize agent programs, we use a subset of a rich first-order language for ex-
pressing non-Markovian user preferences recently proposed in [?]. The semantics of
this language is defined in the situation calculus.

3.1 Syntax

In this section we present the syntax of a first-order language for expressing qualitative,
non-Markovian user preferences. Our language is a subset of the preference language
we proposed in [?], which is a modification and extension of Son and Pontelli’s PP
language [?]. Constraints on the properties of situations are expressed by Basic Desire
Formulae (BDF). BDFs are combined into Qualitative Preference Formulae4, using a
preference ordering, ~& .

Definition 1 (Basic Desire Formula (BDF)). A basic desire formula is a sentence
drawn from the smallest set B where:

1. F ∪R ⊂ B, where F is the set of fluents andR is the set of non-fluent relations;

2. If a ∈ A, the set of primitive actions, then occ(a) ∈ B, stating that action a occurs;

3. If f ∈ F , then final(f) ∈ B;

4. If ψ,ψ1, ψ2 are in B, then so are ¬ψ, ψ1 ∧ ψ2, ψ1 ∨ ψ2, conditional ψ1 : ψ2 (equivalent
to (ψ1 ∧ ψ2) ∨ ¬ψ1), (∃x)ψ, (∀x)ψ, next(ψ), always(ψ), eventually(ψ), and until(ψ1,
ψ2).

BDFs establish desired properties of situations. The first three BDF forms are evaluated
with respect to the initial situation unless embedded in a temporal connective. By
combining BDFs using boolean and temporal connectives, we are able to express a
variety of properties of situations. In our travel example:

always[(∃y, z)(bookedflight(y) ∧ arrivesLate(y)∧
¬closeToAirport(z) : ¬occ(bookhotel(z)))] (1)

always(¬ at(LHR)) (2)

Again, BDFs enable a user to define preferred situations. To express preferences among
alternatives, we define the notion of qualitative preference formulae.

Definition 2 (Qualitative Preference Formula). Φ is a qualitative preference formula if
one of the following holds:

• Φ is a basic desire formula

• Φ = Ψ1
~& Ψ2, with Ψ1,2 qualitative preference formulae.

~& is an Ordered And preference. We wish to satisfy both Ψ1 and Ψ2, but if that is not
possible, we prefer to satisfy Ψ1 over Ψ2. Note that this is enough to also express con-
ditional preferences of the form “if a then I prefer b over c”, as this can be transformed
to (a : b) ~& c which has the same semantics: if a holds, then I want to satisfy both b
and c with a preference for b. If a does not hold, a : b is immediately satisfied and it
only remains to satisfy c. Qualitative preference formulae may be arbitrarily long.

4Subsequently referred to as preference formulae.

6

3.2 Semantics

Following our recent work [?], preference formulae are interpreted as situation calcu-
lus formulae and are evaluated relative to an action theory D. Since BDFs may refer to
properties that hold over fragments of a situation history, we use the notation ϕ[s, s′],
proposed in [?], to explicitly denote that ϕ holds in the sequence of situations originat-
ing in s and terminating in s′ = do(~a, s). BDFs are interpreted in the situation calculus
as follows:

ϕ ∈ F , ϕ[s, s′]
def
= ϕ[s]

ϕ ∈ R, ϕ[s, s′]
def
= ϕ

final(ϕ)[s, s′]
def
= ϕ[s′]

occ(a)[s, s′]
def
= do(a, s) v s′ ∧ Poss(a[s], s)

eventually(ϕ)[s, s′]
def
= (∃s1 : s v s1 v s′)ϕ[s1, s

′]5

always(ϕ)[s, s′]
def
= (∀s1 : s v s1 v s′)ϕ[s1, s

′]

next(ϕ)[s, s′]
def
= (∃a).do(a, s) v s′ ∧ ϕ[do(a, s), s′]

until(ϕ,ψ)[s, s′]
def
= (∃s2 : s v s2 v s′){ψ[s2, s

′] ∧
(∀s1 : s v s1 @ s2)ϕ[s1, s

′]}

The boolean connectives are already defined in the situation calculus. Since each BDF
is shorthand for a situation calculus expression, a simple model-theoretic semantics
follows.

Definition 3. Let D be an action theory, and let s and s′ be two situations such that
s v s′. A basic desire formula ϕ is satisfied by the situation beginning in s and
terminating in s′ just in the case that D |= ϕ[s, s′].

Intuitively a qualitative preference formula Φ = Ψ1
~& Ψ2 partitions the space of situa-

tions into four equivalence classes of preferred situations, in decreasing order of prefer-
ence: (1) those satisfying both Ψ1 and Ψ2, (2) those only satisfying Ψ1, (3) those only
satisfying Ψ2, and (4) those satisfying neither. The semantics of qualitative preference
formulae are defined in a subsequent section using Golog constructs. Their semantics
follows from the semantics of Golog.

4 Adding Preferences to DT-Golog

BDFs are the building blocks of our qualitative preference formulae. Like Golog pro-
grams, BDFs impose constraints on situations. As such, it is natural to integrate BDFs
into Golog by translating them into (generally non-deterministic) Golog programs.
Preference over the enforcement of BDFs is expressed by qualitative preference formu-
lae. These preferences can be realized in Golog by the multi-program synchronization

5Temporal formulae follow [?], using the abbreviations:
(∃s1 : s v s1 v s′)Φ ≡ (∃s1){s v s1 ∧ s1 v s′ ∧ Φ} and (∀s1 : s v s1 v s′)Φ ≡ (∀s1){[s v
s1 ∧ s1 v s′] ⊃ Φ}

7

of BDF-induced Golog programs with the original agent program, and by prioritized
execution of the resultant nondeterministic programs in a manner consistent with the
defined preferences.

Synchronization of BDF-induced Golog programs with DT-Golog programs [?] re-
sults in a natural integration of agent programming under both qualitative preferences
and quantitative utility theory. Since qualitative and quantitative expressions of prefer-
ence are not immediately comparable, one has to decide how to rank them in case they
are contradictory, i.e. favour different plans. In this paper we rank qualitative pref-
erences over quantitative ones. As a result, we first try to find the quantitatively best
plan within the set of most preferred plans, and only if no such plan exists, broaden our
scope to less qualitatively preferred plans. Nevertheless, a different ordering or even
several ’layers’ would be easy to realize in the presented framework.

The outline of our approach is as follows: (1) compile BDFs into Golog programs
such that any successful execution of that program will result in a situation that satisfies
the BDF, (2) define multi-program synchronization to couple the execution of two pro-
grams so as to combine a given agent program with the compilation result, (3) based
on this, define preferences over different subprograms.

4.1 Compilation

This section describes how we compile BDFs into Golog programs. The compilation
works by progression up to a given horizon. At each progression step, the mechanism
produces a set whose elements consist of a possible program step that can be performed
without violating the BDF, and a possibly modified BDF that remains to be satisfied.
Recursively these remaining BDFs are processed. As a progression step may return
more than one branch (program-step/remaining-formula combination), compilation
produces a tree, where branches are linked using nondeterministic choice. This tree
describes the set of all possible program traces, i.e. situations of the situation calculus,
that satisfy the BDF.

Example 1. Consider the following BDF: always(happy)∧final(rich) and assumeA is a
list of all primitive actions in our domain theory. Then the following program describes
all possible sequences of length ≤ 2 that satisfy this BDF:

nondet([(happy ∧ rich)?,

[happy?; nondet(A); nondet([(happy ∧ rich)?,

[happy?; nondet(A); (happy ∧ rich)?]])]])

That is, either I am happy and rich already, or I am happy, take some action and then
am happy and rich, or again I am happy and take another step. In the end I always have
to be happy and rich. Any successful execution of this Golog program will satisfy the
BDF.

Again, BDFs define desired properties of situations. As such, the maintenance of
BDFs restricts the set of actions that may be taken in a situation. This insight is key
to our compilation approach. We call the constraints required to enforce our BDFs
situation constraints. We express a situation constraint in Golog by a test ϕ? that

8

enforces a fluent/nonfluent and/or a nondeterministic choice of the actions available in
the current situation. In many cases, this is all actions, A.

Recall that in Golog ϕ? states that the formula ϕ has to hold in the current situation
and that nondet(L) is the non-deterministic choice among the elements of the list L.
For example, the only possible next steps for nondet([a, b]) are taking action a or
taking action b. Thus, assuming the current situation is s, the set of possible successor
situations are restricted to {do(a, s), do(b, s)}. The scope of situation constraints can
be expanded over several situations by using temporal expressions. In the example, the
constraint of being happy is extended over all situations using always. Observe that
several BDFs are contributing situation constraints to the same situation. To combine
several situation constraints we define the function χ. Note that the BDFs ψ are treated
as syntactic entities in the context of our compilation and are syntactically manipulated
accordingly.

• χ(ψ1?, ψ2?) = (ψ1 ∧ ψ2)?

• χ(ψ?, nondet(L)) = (ψ?; nondet(L))

• χ(nondet(L1), nondet(L2)) = nondet(L1 ∩ L2)

• χ((ψ1?; nondet(L1)), (ψ2?; nondet(L2)))
= ((ψ1 ∧ ψ2)?; nondet(L1 ∩ L2))

plus its reflexive completion, where the ψ’s are formulae of the situation calculus and
the L’s are lists of actions. In our example, the temporal extent of always and final
overlap. In these situations, the situation constraints imposed by the two BDFs are
combined using χ.

Let A be the set of actions in our domain, F the set of fluents, R the set of non-
fluent predicates, then, formally the compilation of a basic desire formula ψ is defined
using the predicate C: C(ψ, SC, ψ′) holds iff SC is a situation constraint whose exe-
cution will not violate preference ψ, and further ψ′ is a BDF that needs to be satisfied
in the future. In the following we use STOP as a shorthand for 6 ∃a.occ(a). C is defined
by the following set of axioms.

• C(f, f?,TRUE), ∀f ∈ F ∪R
• C(occ(a), nondet([a]),TRUE), ∀a ∈ A
• C(final(f), SC, ψ′) ≡

(SC = (f?, nondet([])) ∧ ψ′ = STOP)
∨ (SC = nondet(A) ∧ ψ′ = final(f))6

• C(ψ1 ∧ ψ2, SC, ψ
′) ≡

C(ψ1, SC1, ψ
′
1) ∧ C(ψ2, SC2, ψ

′
2)

∧ SC = χ(SC1, SC2) ∧ ψ′ = ψ′1 ∧ ψ′2
• C(ψ1 ∨ ψ2, SC, ψ

′) ≡ C(ψ1, SC, ψ
′) ∨ C(ψ2, SC, ψ

′)

• C(ψ1 : ψ2, SC, ψ
′) ≡ C((ψ1 ∧ ψ2) ∨ ¬ψ1, SC, ψ

′)

• C((∃x)ψ, SC, ψ′) ≡ C(Wc∈C(ψc/x), SC, ψ′)7

6nondet([]) states that no action may be taken. Together with the remaining BDF STOP, it enforces
immediate program termination.

7We assume a finite domain. tc/v denotes the result of substituting the constant c for all instances of the
variable v in t, and C denotes the set of constants.

9

• C((∀x)ψ, SC, ψ′) ≡ C(Vc∈C(ψc/x), SC, ψ′)

• C(next(ψ), nondet(A), ψ)

• C(always(ψ), SC, ψ′) ≡
(C(ψ, SC, ψ′′) ∧ ψ′=STOP ∧ (ψ′′=STOP ∨ ψ′′=TRUE))
∨ (C(ψ ∧ next(always(ψ)), SC, ψ′)

• C(eventually(ψ), SC, ψ′) ≡
C(ψ ∨ next(eventually(ψ)), SC, ψ′)

• C(until(ψ1, ψ2), SC, ψ′) ≡
C(ψ2 ∨ (ψ1 ∧ next(until(ψ1, ψ2))), SC, ψ′)

• C(TRUE, SC,TRUE) ≡
SC = nondet([]) ∨ SC = nondet(A)

Negation requires special treatment. Golog finds situations, i.e. action sequences, that
satisfy a program, but to address negation it is not obvious how the complement, that
is the situations that do not satisfy the program, would be computed. We address this
by pushing the negation down to the atomic level. For parsimony we only show some
less obvious cases:

• C(¬f, (¬f)?,TRUE), ∀f ∈ F ∪R
• C(¬occ(a), SC, ψ′) ≡

(SC = nondet([]) ∧ ψ′ = STOP)
∨ (SC = nondet(A \ {a}) ∧ ψ′ = TRUE), ∀a ∈ A.

• C(¬always(ψ), SC, ψ′) ≡ C(eventually(¬ψ), SC, ψ′)

• C(¬until(ψ1, ψ2), SC, ψ′) ≡
C((¬ψ2 ∧ (¬ψ1 ∨ next(¬until(ψ1, ψ2))))
∨ always(¬ψ2)), SC, ψ′)

Based on C we can define the following (second-order) formula that relates a BDF ψ
to a Golog program P such that every successful execution of P results in a situation
that satisfies ψ where h is the maximal number of actions in any such execution.

Ξ(ψ, P, h)≡(ψ = TRUE ∧ P = (nondet(A))∗)

∨ (ψ = STOP ∧ P = nil)

∨ (h = 0 ∧ ∃x.C(ψ, P, x) ∧ ∃ϕ.P =?(ϕ))

∨ (h > 0 ∧ ψ 6= TRUE ∧ ψ 6= STOP ∧ C(ψ, SC, ψ′) ∧
Ξ∗(ψ′,P, h− 1) ∧ P = SC; nondet(P))

Ξ∗(ψ,P, h) ≡ P = { P | Ξ(ψ, P, h) }

A constructive proof of ∃P.Ξ∗(ψ,P, h) then, as a side-effect, provides the program
Phψ = nondet(P) that describes all possible execution traces, i.e. situations, of length
≤ h that satisfy the BDF. These definitions lead to a Prolog implementation, able
to conduct the constructive proof, producing the corresponding Golog program (cf.
Section 5). Some optimization of the generated code is advisable, but for parsimony
we omit the rather technical details of this here.
Soundness The soundness of our compilation method follows from the semantics of
our preference language.

10

Theorem 1. (Soundness) Let ψ be a basic desire formula and P hψ be the corresponding
program for horizon h. Then for any situation sh = do([a1, a2, . . . , ah], s) such that
D |= Do(P hψ , s, sh), it holds that D |= ψ[s, sh].
Proof Sketch: The proof proceeds by double induction over the structure of basic
desire formulae and the length of the situation term. The base case for the structural
induction is:

• f ∈ F : as we have C(f, ?(f), TRUE) and by hypothesis know thatD |= Do(P hψ , s, sh)
we have from the definition of Do (Golog semantics) that f [s] and thus f [s, sh];

• occ(a): C(occ(a),nondet([a]), TRUE) enforces that a1 = a and thus occ(a)[s, sh];

• ¬f ∈ F : as we have C(f, (¬f)?, TRUE) and by hypothesis know that D |=
Do(P hψ , s, sh) we have from the definition of Do that ¬f [s] and thus ¬f [s, sh];

• ¬occ(a): C(occ(a),nondet(A \ {a}), TRUE) enforces that a1 6= a and thus
¬occ(a)[s, sh];

Completeness Completeness likewise follows from the semantics of our preference
language. This establishes that all situations that satisfy the BDF are preserved.

Theorem 2. (Completeness) Let ψ be a basic desire formula and P hψ be the corre-
sponding program for horizon h. Then for any situation sh = do([a1, a2, . . . , ah], s)

such that D |= ψ[s, sh] it holds that D |= Do(P hψ , s, sh).
Proof Sketch: The proof is established by induction.

Details of both proofs are presented in [?].

4.2 Multi-Program Synchronization

Now that we have a Golog program enforcing satisfaction of a BDF, we want to com-
bine this with a pre-existing agent program or another BDF-induced program to even-
tually provide a semantics for our qualitative preference formulae. To this end, we
define multi-program synchronization.

Roughly, we understand two programs to execute synchronously if they traverse the
same sequence of situations. Thus, at each step we need to find a common successor
situation for both programs. This can be done efficiently by determining the successors
of both individually and then intersecting the results. It is however not efficient if
both programs are evaluated completely first. This motivates the use of a transition
semantics as opposed to the evaluation semantics originally used to define DT-Golog.

A transition semantics for Golog was first introduced in [?] where, for the same rea-
sons as above, it was used to define the concurrent execution of two programs. Roughly,
a transition semantics is axiomatized through two predicates Trans(σ, s, σ′, s′) and
Final(σ, s). The former defines for a program σ and a situation s the set of possi-
ble successor configurations (σ′, s′) according to the action theory. The later defines
whether a program is final, i.e. successfully terminated, in a certain situation. For in-
stance, for the program a1; a2, that is the sequence of actions a1 and a2, and a situation
s, Trans(a1; a2, s, a2, do(a1, s)) describes the only possible transition and is only pos-
sible, if the action a1 is possible in situation s according to the action theory. Using

11

the transitive closure of Trans, denoted Trans∗, one can define a new Do predicate as
follows:

Do(δ, s, s′)
def
= ∃δ′.Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′).

As is shown in [?], this definition is equivalent to the original Do. Thus, all results for
the one semantics hold equally for the other.

In transition semantics we can formally define the synchronization of two programs
σ1, σ2 by a new Golog construct sync(σ1, σ2):

Trans(sync(σ1, σ2), s, sync(σ′1, σ
′
2), s′) ≡

(Trans(σ1, s, σ
′
1, s
′) ∧ Trans(σ2, s, σ

′
2, s
′))

∨(s′ = s ∧ ((Trans(σ1, s, σ
′
1, s) ∧ σ′2 = σ2)

∨(σ′1 = σ1 ∧ Trans(σ2, s, σ
′
2, s)))

Final(sync(σ1, σ2), s) ≡ Final(σ1, s) ∧ Final(σ2, s)

The program sync(σ1, σ2) can perform a transition in a situation s to a new situation
s′ iff both programs σ1 and σ2 can perform a transition to s′ or when s′ = s and one of
σ1 and σ2 can do a transition that does not affect the situation, for example evaluating
a test. In both cases, the program that remains to be run will be the synchronous
execution of the two remaining subprograms (σ′1, σ

′
2). To synchronize more than two

programs we can use nesting, so for instance sync(σ1, sync(σ2, σ3)) would synchronize
three programs.

The following theorem follows immediately from above definitions.

Theorem 3. Let σa, σb be two Golog programs. Then for any S ′,D |= Do(σa, S0, S
′)

and D |= Do(σb, S0, S
′) if and only if D |= Do(sync(σa, σb), S0, S

′).

The theorem states that if there is a situation S ′ that describes a legal execution in
both programs starting in S0, then this is also a legal execution for the synchonization
of the two programs. Further, the inverse also holds, saying that any legal execution of
the synchonization is also legal for the two individual programs.

4.2.1 A Decision-Theoretic Transition Semantics

As stated above, DT-Golog is defined using an evaluation semantics and that does not
suit our requirements. Thus, we have to redefine DT-Golog in an equivalent transition
semantics, or, seen differently, extend the available transition semantics to decision-
theoretic planning. The semantics follows intuitively from the established relationship
between the two semantics. In this section we provide an overview of our new DT-
Golog transition semantics. Unfortunately, space precludes us from stating all but an
example of the necessary definitions:

BestTrans([nondet([σ]) | σ′], s, d, π, v, prob,B,D) ≡
B = [([σ|σ′], s, d, [π, v, prob])] ∧ D = []

BestTrans([nondet([σ1 | σ2]) | σ′], s, d, π, v, prob,B,D) ≡
BestTrans([nondet(σ2) | σ′], s, d, π2, v2, prob2,B2,D2) ∧
B = [([σ1|σ′], s, d, [π1, v1, prob1]) | B2] ∧
D = [([π, v, prob], [π1, v1, prob1], [π2, v,prob2]) | D2]

12

where π1, v1, prob1, π2, v2, prob2 are new variables, s is the situation, d the recursion
depth, π the policy, v the value, and prob the termination probability. B is the list of
possible successor configurations/branches andD a list of decisions to be made once all
contained values have been determined. Roughly, the tuple ([π, v, prob], [π1, v1, prob1], [π2, v,prob2])

says that [π, v, prob] is equal to [π1, v1, prob1] or [π2, v2, prob2] depending on which
is better. However, this cannot be decided until both branches have been evaluated.

4.3 Expressing Preference in DT-Golog

In previous sections we showed how to compile BDFs into hard constraints, realized as
Golog programs. To make these constraints soft and to rank these constraints to even-
tually create ordered preferences we need to introduce two more Golog constructs:
• withPref(σprog, Phψ): run program σprog and try to synchronously run P hψ , the result
of compiling BDF ψ. This is implemented by creating two branches one with the re-
maining program sync(σprog, P

h
ψ) and one with σprog. We devise the interpreter so that

the first branch will is explored first. Only if it fails is the second branch explored.
• pref(P hψ1

, Phψ2
): Let ψ1, ψ2 be two BDFs and P hψ1

, Phψ2
their corresponding Golog

programs as acquired by compilation. Then pref(P hψ1
, Phψ2

) gives semantics to the qual-
itative preference formula ψ1

~&ψ2 by creating three branches of decreasing preference:
sync(P hψ1

, Phψ2
), Phψ1

, and P hψ2
. Again, the later branches are only explored if no plan is

found for the first. Formally this intuition is captured by extending BestTrans such that
it defines clusters of branches (and corresponding decisions) of equal degree of prefer-
ence. Then all previously seen Golog constructs return exactly one cluster of (possibly
multiple) branches and the above two constructs return two, respectively three clusters:

BestTrans([withPref(σprog, P
h
ψ) | σ′], s, d, π, v, prob,

[C1, C2], [[], []]) ≡
C1 = [([sync(σprog, P

h
ψ) | σ′], s, d, [π, v, prob])] ∧

C2 = [([σprog | σ′], s, d, [π, v, prob])]
BestTrans([pref(P hψ1

, Phψ2
) | σ′], s, d, π, v, prob,

[C1, C2, C3], [[], [], []]) ≡
C1 = [([sync(P hψ1

, Phψ2
) | σ′], s, d, [π, v, prob])] ∧

C2 = [([Phψ1
| σ′], s, d, [π, v, prob])] ∧

C3 = [([Phψ2
| σ′], s, d, [π, v, prob])]

13

The preference over former clusters is formally defined in the evaluation strategy of
clusters and branches:

BestTrans∗(B, h) ≡ B = (σ, s, d, [π, v, prob])∧
(d ≤ h ∧ BestTrans(σ, s, d, π, v, prob, ~B, ~D) ∧
BestTrans∗quali(~B, ~D, prob, h))

∨ (d > h ∧ π = nil ∧Reward(r)[s] ∧ v = r ∧ prob = 1)

BestTrans∗quali([B], [D], prob, h) ≡
BestTrans∗quanti(B, h) ∧MakeDecisions(D)

BestTrans∗quali([B | ~B], [D | ~D], prob, h) ≡
(BestTrans∗quanti(B, h) ∧MakeDecisions(D) ∧ prob > 0)

∨ BestTrans∗quali(~B, ~D, prob, h)

BestTrans∗quanti([], h) ≡ TRUE

BestTrans∗quanti([B1 | B], h) ≡
BestTrans∗(B1, h) ∧ BestTrans∗quanti(B, h)

In BestTrans∗quali the clusters are evaluated starting with the first and proceeding with
the next only if the termination probability prob for the first cluster is zero. Thus, we
first explore only that partition of the situation space that is most preferred and only if
within this partition no valid plan is found, less preferred partitions are considered. The
predicate MakeDecisions(D) makes decisions as described above, once all variables in
D have been instantiated.

A Qualitative Preference Formulae Ψ is compiled by compiling the contained BDFs
and replacing any occurence of ~& by a pref construct. We denote the compilation by
Ω(Ψ, P hΨ, h).

Example 2. Consider the following Golog program for determining transprotation:
σ = nondet([drive, plane]) and the preference Ψ = final(eco) ~& always(¬(occ(drive)))8.
Compilation with horizon one, Ω(Ψ, P 1

Ψ, 1), of the preference will provide us with the
following Golog program P 1

Ψ:
pref(nondet([eco?, [nondet([plane, drive]); eco?]]),

nondet([nil, nondet([drive])]))
This will be combined with the original Golog program, outlining the rough planning
problem, by withPref(σ, P 1

Ψ). When fed into our interpreter this will produce different
clusters of decreasing preference, which will be explored for a solution one at a time.
The most preferred is:
sync(nondet([plane, drive]),
sync(nondet([[eco?], [nondet([plane, drive]), eco?]]),

nondet([nil, nondet([plane])])))
Let’s assume that driving is the only economical means of transporation. Then obvi-
ously we cannot satisfy both desires and in fact after the only possible synchronized
transition, doing plane, the test eco? fails. We thus move on to the next best cluster:
sync(nondet([plane, drive]),

8eco is a fluent stating that the transportation is economical.

14

nondet([[eco?], [nondet([plane, drive]), eco?]])).
There are two possible synchronized transitions here, either doing plane or drive, how-
ever, only the second will let the test eco? succeed and will thus be chosen.

The following corollary follows from the soundness and completeness of our com-
pilation, Theorem 3, and the correctness of above decision-theoretic transition seman-
tics.

Corollary 1. Let σ be an arbitrary Golog program, Ψ a qualitative preference formula,
and h ∈ IN a horizon. Let further P hΨ be such that Ω(Ψ, P hψ , h). Then any constructive
proof of

D |= ∃π, v, prob.
BestTrans∗((withPref(σ, P hΨ), S0, 0, [π, v, prob]), h)

as a side-effect returns a policy9 π which has the following properties:
• any successful execution of π leads to a situation that is most preferred among all
possible situations, i.e., the set of situations of length ≤ h which describe a legal exe-
cution trace for σ according to the action theory D and there is no situation s′ in this
set that is more preferred;
• π maximizes the expected reward according to the utility theory.

In other words, π is the best we can do with respect to satisfying the hard constraints
in the first place, generating the most qualitatively preferred plan in second place, and
finally maximizing the quantitative expected reward in third place.

5 Implementation and Application

As noted previously, we have implemented the approach reported in this paper as an
extension to Readylog [?]. We have also turned our travel agency example into a work-
ing application by creating wrappers for the flight and hotel pages of Yahoo!-Travel.
Recall the planning procedure from Section 2. The actions searchFlight(From, To,

OutDate, ReturnDate) and searchHotel(Destination, CheckinDate, CheckoutDate) realize
the querying and wrapping of the relevant Web pages10.

With respect to the quality of the results generated from our implementation, our
theoretical results and correctness of the implementation (which we do not prove) en-
sure that the travel plan generated is optimized with respect to a user’s quantitative
preferences, within the best realization of their qualitative preferences. No benchmarks
exist for the empirical evaluation of our system, nor was it our objective to optimize our
implementation. Nevertheless, as an illustration of the power of our system, we argue
that our implementation enables a level of customization of travel planning (and more
generally, agent programming), heretofore unattainable in an automated system. For

9i.e. a Golog program without any non-deterministic choices
10Technically speaking these are so-called sensing actions, but space preclude a thorough discussion of

this issue. The interested reader is referred to the literature, e.g. [?].

15

example, in the described case, for each of the 9 date combinations there are over 90
hotels with about 5 room types each and 9 flights. To gather all relevant information,
the system issues more than 800 queries to Yahoo!-Travel, considers 36450 combina-
tions, and returns the most preferred travel plan. Manually this would not be feasible
and existing systems, although allowing customization to a certain extent, cannot ac-
count for the complex preferences a customer may have. We now can! We intend to
make this application available as a service at our website.

6 Summary and Discussion

Motivated by the need to personalize agent programs to meet individual users’ prefer-
ences and constraints, we addressed the problem of integrating non-Markovian qual-
itative user preferences with quantitative decision-theoretic planning in Golog. We
approached the problem by compiling preferences into Golog programs using a notion
of multi-program synchronization which we introduced. This required the redefini-
tion of DT-Golog using a transition semantics which, as a nice side-effect, enables the
implementation of more efficient and any-time solution algorithms. We proved the
soundness and completeness of our compilation. The resulting system is able to handle
infinite state spaces and allows for an efficient programmatic restriction of planning
tasks using Golog’s procedural expressiveness. Also, this is, to the best of our knowl-
edge, the first work on integrating qualitative and quantitative preferences for temporal
reasoning. We implemented our approach, and as a demonstration of its utility devel-
oped a customizable travel planner for the Web. The results in this paper are applicable
to both symbolic and decision-theoretic agent programming systems, and may be used
not only for the personalization of agent programs, but also for the realization of de-
feasible control strategies for planning.

A Proofs

A.1 Lemmata

Lemma 1. Let S be the set of all situations in a given action theory. In the proofs we
will exploit the following property of the BDF semantics: Let ψ1, ψ2 be two BDFs and
let S1(s), S2(s) be two sets of situations such that Si(s) = {s′ ∈ S | D |= ψi[s, s

′]},
i.e. the set of all situations that, rooting in s, satisfy the BDF. Then for any situation s′

D |= (ψ1 ∧ ψ2)[s, s′] iff s′ ∈ S1(s) ∩ S2(s).

A.2 Soundness

In the following proofs we use the semantics of Golog as defined in [?]. Further we use
?h as a shorthand for the nondeterministic repetition of nondet(A) with a maximum
of h repetitions. If h is omitted, the repetition is of arbitrary length.

Intuitively, soundness states that any program execution will result in a situation
that also satisfies the BDF.

16

Theorem 4. (Soundness) Let ψ be a basic desire formula and P hψ be the corresponding
program for horizon h. Then for any situation sn = do([a1, a2, . . . , an], s)11 such that
D |= Do(P hψ , s, sn) it holds that D |= ψ[s, sn].12

Proof: The proof proceeds by double induction over the structure of basic desire for-
mulae and the length of the situation term. The base cases are as follows:

• for the structural induction:

– f ∈ F ∪ R: as we have C(f, ?(f), TRUE) thus P hψ =?(f); ?h and by
hypothesis know that D |= Do(P hψ , s, sn) we have from the definition of
Do (Golog semantics) D |= f [s] and thus D |= f [s, sn];

– occ(a): With C(occ(a),nondet([a]), TRUE) we haveP hψ = nondet([a]); ?h−1

which enforces that a1 = a and thus D |= occ(a)[s, sn];

– ¬f ∈ F ∪R: similar as above we have C(f, (¬f)?, TRUE) and by hypoth-
esis know that D |= Do(P hψ , s, sn) we have from the definition of Do that
D |= ¬f [s] and thus D |= ¬f [s, sn];

– ¬occ(a): C(¬occ(a), SC, ψ′) ≡ (SC = nondet([])∧ψ′ = STOP)∨ (SC =
nondet(A \ {a}) ∧ ψ′ = TRUE),∀a ∈ A, enforces that either n = 0, i.e.
no action happens, or a1 6= a. In both cases a does not happen and thus
D |= ¬occ(a)[s, sn];

As these cases are independent of the situation s they equally hold for all si, 0 ≤
i ≤ n.

• for the induction over the situation term we consider only the final situation sn:
As from there no more actions take place, we are only to look at the case of
horizon zero. The definition of Ξ for h = 0 has three possible cases:

Ξ(ψ, P, 0)≡(ψ = TRUE ∧ P = (nondet(A))∗)

∨ (ψ = STOP ∧ P = nil)

∨ (∃x.C(ψ, P, x) ∧ ∃ϕ.P =?(ϕ))

– For ψ = TRUE we have trivially D |= TRUE[s, s].

– For ψ = STOP =6 ∃a.occ(a) we have as a tautology D |=6 ∃a.occ(a)[s, s].

– The third case follows from the base case of the structural induction.

For the induction step we assume the theorem holds for f, occ(a),¬f, and ¬occ(a) for
any situation si, 0 ≤ i ≤ n, as well as over all situations sm, j ≤ m ≤ n, for a certain
j, 0 < j ≤ n. We show the step from atomic formulae (only comprised of f ∈ F ∪R
and occ(a) and their negation) to general BDFs and from situation sj to sj−1.

For a BDF ψ let SCψ be the situation constraint and ψ′ the remaining formula as
defined by C(ψ, SCψ, ψ′). Then the induction step

11We use the notation do([a1, a2, . . . , an], s) as a shorthand for
do(an, do(. . . , do(a2, do(a1, s)) . . .)).

12Which includes the special case s = s0.

17

• ψ = final(f): then SCψ = (f?,nondet([]))∧ψ′ = STOP or SCψ = nondet(A)∧
ψ′ = final(f)). As Do(nondet([]), s, sn) holds only for s = sn this can only be
the case for j− 1 = n for which the proposition immediately holds by induction
hypothesis. In the second case, no situation constraints are raised for sj−1 and
ψ′ holds on [sj , sn] by induction hypothesis.

• ψ = ψ1 ∧ ψ2: then SCψ = χ(SCψ1
, SCψ2

) and by construction of χ and by
induction hypothesis it follows that D |= ψ1[sj−1, sn] and D |= ψ2[sj−1, sn]
and with Lemma 1 also D |= ψ[sj−1, sn].

• ψ = ψ1 ∨ ψ2: then SCψ = SCψ1
or SCψ = SCψ2

. By induction hypothesis it
follows that D |= ψ1[sj−1, sn] or D |= ψ2[sj−1, sn] and thus the proposition.

• ψ = next(ϕ): SCψ = nondet(A) and ψ′ = next(ϕ). The proposition follows
by induction hypothesis.

• ψ = always(ϕ): then either C(ϕ, SC, ψ′′)∧ψ′=STOP∧ (ψ′′=STOP∨ψ′′=TRUE)
or
C(ϕ∧next(always(ϕ)), SC, ψ′). In the former case we know from C(ϕ, SC, ψ′′)
together with induction hypothesis thatD |= ϕ[sj−1, sj] and from ψ′=STOP that
j = n. Thus it follows that D |= ψ[sj−1, sn]. In the latter case by induction
hypothesis we have D |= ϕ[sj−1, sn] and D |= always(ϕ)[sj , sn]. It follows
D |= (∀s1 : sj−1 v s1 v sn)ϕ[s1, sn].

• ψ = eventually(ϕ): from C(ϕ∨next(eventually(ϕ)), SC, ψ′) we have together
with induction hypothesis that eitherD |= ϕ[sj−1, sn] orD |= eventually(ϕ)[sj , sn].
In either case we have D |= (∃s1 : sj−1 v s1 v sn)ϕ[s1, sn]

• ψ = until(ψ1, ψ2): thus either C(ψ2, SC, ψ
′) or C(ψ1∧next(until(ψ1, ψ2)), SC, ψ′).

In the former case we know from induction hypothesis that D |= ψ2[sj−1, sn]
and thus D |= (∃s2 : sj−1 v s2 v sn){ψ[s2, sn] ∧ (∀s1 : sj−1 v s1 @
s2)ϕ[s1, sn]} holds with s2 = sj−1. In the latter case we get D |= ψ1[sj−1, sn]
and by induction hypothesis D |= until(ψ1, ψ2)[sj , sn]. Thus it follows that
D |= (∃s2 : s v s2 v s′){ψ[s2, s

′] ∧ (∀s1 : s v s1 @ s2)ϕ[s1, s]}.

Quantifiers and conditional are macros, defined based on the above constructs. For
these the theorem follows from the equivalence in their definition in the preference
semantics.

2

A.3 Completeness

Intuitively completeness says that the generated program minimally restricts the set of
situations, i.e. no situation that satisfies the BDF is ruled out.

Theorem 5. (Completeness) Let ψ be a basic desire formula and P hψ be the corre-
sponding program for horizon h. Then for any situation sn = do([a1, a2, . . . , an], s)

with n ≤ h such that D |= ψ[s, sn] it holds that D |= Do(P hψ , s, sn).

18

Proof: The proof again is established by induction over the structure of BDFs. First
note that D |= Do(?, s, sn) holds for any situation sn = do([a1, a2, . . . , an], s), n ≥ 0
of arbitrary actions ai, where for n = 0 we understand s0 = s. The base cases for the
induction are:

• f ∈ F ∪ R: By assumption we have D |= f [s, sn] and thus by definition
D |= f [s]. Also by definition of Ξ and C we have P hψ = f?; ?. Further

Do(f?; ?, s, s′)
def
= ∃s∗.Do(f?, s, s∗) ∧ Do(?, s∗, s′) is satisfied with s∗ = s

and s′ = sn.

• occ(a): The assumption together with the definition of the semantics of BDFs
entail do(a, s) v sn ∧ Poss(a[s], s) and from compilation P hψ = nondet(a); ?

which is equivalent to P hψ = a; ?. Again

Do(a; ?, s, s′)
def
= ∃s∗.Do(a, s, s∗) ∧ Do(?, s∗, s′) is satisfied with s∗ = s1 =

do(a, s) and s′ = sn.

• ¬f ∈ F ∪ R: similar as above we have by assumption D |= ¬f [s, sn] and
by definition D |= ¬f [s]. Also by definition of Ξ and C we have P hψ = ¬f?; ?.

FurtherDo(¬f?; ?, s, s′)
def
= ∃s∗.Do(¬f?, s, s∗)∧Do(?, s∗, s′) is satisfied with

s∗ = s and s′ = sn.

• ¬occ(a): By definition we have do(a, s) 6v sn ∨ ¬Poss(a[s], s) and either
Phψ = nondet(A \ {a}); ? or P hψ = nondet([]);nil. For the former case

Do(nondet(A\{a}); ?, s, s′) def
= ∃s∗.Do(nondet(A\{a}), s, s∗)∧Do(?, s∗, s′)

is satisfied for any s∗ = s1 = do(b, s) with b 6= a and s′ = sn. The latter case is
true for n = 0.

The induction step is as follows:

• ψ = final(f): The program as described by compilation is of the form:

Phψ = nondet([[f?; nondet([])],

[nondet(A); nondet([[f?; nondet([])],
[nondet(A); . . .]])]])

which is a compact representation of:

nondet([[f?; nondet([])],

[nondet(A); f?; nondet([])],

[nondet(A); nondet(A); f?; nondet([])],

...

[nondet(A); . . . ; nondet(A)︸ ︷︷ ︸
h

; f?; nondet([])]])

19

By assumption we know that D |= f [sn] and from above we have that for any
n ≤ h there is an alternative σn = [nondet(A); . . . ; nondet(A)︸ ︷︷ ︸

n

; f?; nondet([])].

In combination this implies D |= Do(σn, s, sn) and further, by definition of
Do(nondet(. . .), s, s′), D |= Do(P hψ , s, sn).

• ψ = ψ1 ∧ ψ2: From induction hypothesis we know the proposition holds for ψ1

and ψ2, i.e. for any situation sn as above such that D |= ψi[s, sn] it also holds
that for the corresponding program P hψi we have D |= Do(P hψi , s, sn). We can
think of a program generated from our compilation as a tree whose nodes are
situation constraints and any successful execution of the program is a path from
the root to one of the leaves and describes a situation. Following Lemma 1, we
are interested in the intersection of the sets of situations that describe successful
executions of the individual programs P hψ1

, Phψ2
. This set can be desccribed by

the conjunction of above mentioned trees. That is, starting at the root, we com-
bine the situation constraints of the individual programs in all possible ways,
thus creating a new tree. Any path from the root to one of the leaves in the new
tree, will describe a situation which satisfies the cunjunction of the two BDFs
ψ1, ψ2.

Using Lemma 1 and induction hypothesis it is sufficient to show that any sit-
uation sn that is a successful execution of both programs P hψ1

, Phψ2
is also a

successful execution of the combined program P hψ . The axiom for compiling
conjunction combines the situation constraints SC1, SC2 raised by compiling
the two subformulas using the function χ and conjoining the remaining BDFs
ψ′1, ψ

′
2. By case distinction, we show that if sn satisfies the individual situation

contrains, i.e. D |= ∃s′.Do(SCi, s, s′)∧s′ v sn, i ∈ {1, 2}, then it also satisfies
the combined one:

– χ(ψ1?, ψ2?) = (ψ1∧ψ2)?: By assumption we haveD |= ∃s′.Do(ψ1?, s, s′)∧
s′ v sn and D |= ∃s′.Do(ψ2?, s, s′) ∧ s′ v sn. In both cases, by defi-
nition of Do, s′ = s, which as a whole entails D |= ∃s′.Do(ψ1?, s, s′) ∧
Do(ψ2?, s, s′)∧s′ v sn and thus again by definition ofDo: D |= ∃s′.Do((ψ1∧
ψ2)?, s, s′) ∧ s′ v sn.

– χ(ψ?,nondet(L)) = (ψ?; nondet(L)): By assumption we know D |=
∃s′.Do(ψ?, s, s′)∧s′ v sn andD |= ∃s′′.Do(nondet(L), s, s′′)∧s′′ v sn.
From the definition of Do we know that s′ = s. Thus D |= Do(ψ?, s, s) ∧
∃s′′.Do(nondet(L), s, s′′)∧s′′ v sn ≡ ∃s′′.Do([ψ?; nondet(L)], s, s′′)∧
s′′ v sn, the proposition.

– χ(nondet(L1),nondet(L2)) = nondet(L1 ∩ L2): By assumption D |=
∃s′.Do(nondet(L1), s, s′)∧s′ v sn andD |= ∃s′′.Do(nondet(L2), s, s′′)∧
s′′ v sn. Notice that there is only one s′ = do(a, s) such that s′ v sn.
Thus s′ and s′′ have to be identical and further a has to be in both L1 and
L2. Thus we have that D |= ∃s′.Do(nondet(L1 ∩ L2), s, s′) ∧ s′ v sn.

– χ((ψ1?; nondet(L1)), (ψ2?; nondet(L2))) = ((ψ1 ∧ ψ2)?; nondet(L1 ∩
L2)): See last item.

20

As we know sn is a path in both trees, for P hψ1
and P hψ2

, we can take the cor-
responding situation constraints along these paths and combine them as above.
The combination will, as shown above, be satisfied by sn and will be a path in
the combined tree. It follows the proposition: D |= Do(P hψ , s, sn).

• ψ = ψ1∨ψ2: By induction hypothesis we know that eitherD |= Do(P hψ1
, s, sn)

or D |= Do(P hψ2
, s, sn). Thus

D |= Do(P hψ1
, s, sn) ∨Do(P hψ2

, s, sn) ≡ Do(nondet([P hψ1
, Phψ2

]), s, sn)

With nondet([P hψ1
, Phψ2

]) being the compilation of ψ we get the proposition.

• ψ = next(ϕ): By assumption we have that D |= next(ϕ)[s, sn]. From the se-

mantics of next we further know: next(ϕ)[s, sn]
def
= (∃a ∈ A).do(a, s) v sn ∧

ϕ[do(a, s), sn]. By induction hypothesis we can assumeD |= Do(P h−1
ϕ , do(a, s), sn).

The compilation of ψ is defined as P hψ = [nondet(A);P h−1
ϕ]. Clearly D |=

Do(nondet(A), s, do(a, s)) for any action a ∈ A. We thus get the proposition:

D |= ∃a ∈ A.Do(nondet(A), s, do(a, s)) ∧Do(P h−1
ϕ , do(a, s), sn)

≡ Do([nondet(A);P h−1
ϕ], s, sn)

≡ Do(P hψ , s, sn).

• ψ = always(ϕ): By assumption we know always(ϕ)[s, sn]
def
= (∀s′ : s v s′ v

sn)ϕ[s′, sn]. This is equivalent to ϕ[s, sn] ∧ ϕ[s1, sn] ∧ · · · ∧ ϕ[sn, sn] with
si v sn. This in turn is equivalent to (ϕ[s, sn] ∧ next(always(ϕ))[s, sn]) ∨
(ϕ[s, s] ∧ ¬∃a.occ(a)[s, sn]), where in the latter disjunct we have as a conse-
quence s = sn. The compilation is defined as P hψ = nondet([P h1 , P

h
2]) with P h1

the compilation of ϕ[s, sn] ∧ next(always(ϕ))[s, sn] and P h2 the compilation of
ϕ[s, s] ∧ ¬∃a.occ(a)[s, sn]. The proposition follows by induction hypothesis.

• ψ = eventually(ϕ): By assumption we have

D |= eventually(ϕ)[s, sn]
def
= (∃s1 : s v s1 v sn)ϕ[s1, sn]

≡ ϕ[s, sn] ∨ next(eventually(ϕ))[s, sn].

The compilation of eventually(ϕ) is defined as the compilation ofϕ∨next(eventually(ϕ)).
The proposition follows by induction hypothesis.

• ψ = until(ψ1, ψ2): By assumption we have D |= until(ψ1, ψ2)[s, sn] and by
definition

until(ψ1, ψ2)[s, sn]
def
= (∃s2 : s v s2 v sn){ψ2[s2, sn] ∧ (∀s1 : s v s1 @ s2)ψ1[s1, s]}
≡ ψ2[s, sn] ∨ (ψ1[s, sn] ∧ next(until(ψ1, ψ2))[s, sn]).

The compilation of until(ψ1, ψ2) is defined as the compilation of ψ2 ∨ (ψ1 ∧
next(until(ψ1, ψ2))). The proposition follows by induction hypothesis.

21

This completes our proof of completeness.
2

22

