AllemaniACs 2004 Team Description

Alexander Ferrein, Christian Fritz, and Gerhard Lakemeyer

Knowledge Based Systems Group
RWTH Aachen,
Aachen, Germany
{ferrein, fritz, gerhard}@cs.rwth-aachen.de

Abstract. This paper describes the scientific goals of the ALLEMANI-
ACs 2004 MID-SIZE soccer team. We present our robot platform and
sketch out our software system. In an extended example we show some
features of the high-level robot programming language GOLOG which
we use for modeling the behavior of our robot .

1 Introduction

RoBOCUP’s MID-SIZE league has high requirements to system designers. Re-
searchers focus on the fields of sensors and actuators, computer vision, commu-
nication, and system integration, just to mention a few, under the strict real-time
constraints given. Another issue is the decision making process of a robot and
how a team of robots can be coordinated, how cooperative team-play can be
achieved. Thus, the robot should not only think about its own actions but also
take teammates into account when making plans for future actions. Therefore,
the decision module of the robot must be able to reason about actions and their
effects and project or simulate them into the future. For our decision making
module we use a variant of GOLOG, a logic-based programming language which
combines explicit agent programming as in imperative languages with the possi-
bility to reason about actions and their effects. For making optimal decisions we
use an decision-theoretic planning extension of GOLOG for the decision making
in our high-level control.

2 Robot Hardware

Regarding the experiences of other teams that “off-the-shelf” robots must be
completely re-engineered for ROBOCUP’s MID-SIZE to be competitive, we de-
cided to develop the platform on our own [1]. The intention was to develop
robots competitive in ROBOCUP which can also be used in the office domains
of service robotics applications. The platform has a size of 39 cm x 39 cm x
40 cm (Fig. 1). For power supply we have two 12 V lead-gel accumulators with
15 Ah each on-board. The battery power lasts for approximately one hour at
full charge. The robot has a differential drive, the motors have a total power of



(a) A scene from the (b) The front and rear view of an Allema-
Championships in niACs player

Padova; AllemaniACs in

the defense (right-hand

side)

Fig. 1. The AllemaniACs team

2.4 kXW. This power provides us with a top speed of 3 m/s and 1000°/s by a
total weight of approximately 50 kg.

On-board we have two Pentium IIT PC’s at 933 MHz running Linux, one
equipped with a frame-grabber for a Sony EVI-D100P camera mounted on a
pan/tilt unit. Our other sensor is a 360° laser range finder with a resolution of
0.75 degree at a frequency of 20 Hz. For communication a WLAN adapter based
on IEEE 802.11b is installed.

3 Robot Control Software

In this section we give a brief overview over the software components we use
to run our robots. We distinguish between the software running locally on each
robot and the control software on an external computer to control the whole
team.

3.1 On-board Software

For our software architecture we are using a three layered architecture consisting
of a low-level layer where sensory inputs and actuator outputs are controlled,
a mid-level where modules like collision avoidance and localization are located
and a high-level controller for making plans about future courses of actions.

Fig. 2 shows our software architecture. For the low-level control task there
exist the modules motor for motor control, laser which receives the data from
the laser scanner, camera for supplying the video stream and controlling the
pan/tilt unit, and kicker which controls the kicking device.

In the mid-level this data is used for robot control. One central module is
the collision avoidance module colli. This module uses the data provided by the



Fig. 2. AllemaniACs software system

laser scanner. With a frequency of 20 Hz colli creates an occupancy map from
the laser reading. In the occupancy grid map an A* search to a given target
point is performed calculating a collision free path to that target point. The
path-planner follows the same idea but, moreover, has world model information
like the position of the teammates on the field.

For self-localization our software provides the localize module using the 360°
laser range finder following a Monte-Carlo approach. As for ROBOCUP it is very
important to have continuity in the position updates we use robot’s odometry
between two position estimates by the localization module. The localize module
uses KLD sampling and cluster based sampling (e.g. cf. [2,3]). As for now we use
laser and odometry as sensory inputs we will incorporate information from the
vision module in RoBoCUP2004.

The module objects provides us with information about the objects on the
field. The object recognition is done by the laser scanner. The localize module
classifies dynamic objects. This information is used by the object recognition
module to calculate the position of dynamic objects by clustering the appropriate
laser beams. The disadvantage with this method is that it is not possible to
estimate the orientation of the dynamic objects. In the future, the scan matching
method will be used for providing also information about the orientation.

The ball, goals and flagposts are localised with the vision module using color
segmentation and knowledge about the objects’ shape. Colour segmentation is
inexpensive, but the mapping between single objects and their colours or chromi-
nances, if reduced to two dimensions, must be known. For each shape detected
object, we compute the chrominance histogram. The histograms are combined
based on the Bayes Theorem to obtain a lookup table [4], which is used for colour
segmentation. To profit from the speed of colour segmentation, shape detection
is only applied to regions containing the interesting object’s colour. The circular
ball is detected by a randomized hough transform. The goals and flagposts are
modelled as quadrilaterals, which are bordered by straigt lines. Object detection
takes about 50 ms on a Pentium III with 933 MHz. The entire vision system,
including a segmentation and colour recalibration step, runs in 10 Hz.



(a) Software Control Window (b) Game State Window

Fig. 3. The RoboCup Control Center

The skill module encapsulates the robot behavior system. Here the basic
behaviors like kicking and dribbling are implemented. This module has access to
the modules which activate the actuators needed to perform the soccer behaviors
as well as to the relevant world model information.

The world model consists of information like the ball and player position as
well as some other internal state information. We provide two kinds of world
model, a local one which is constructed from the own perception and a global
one which is the result of a world model fusion on an external computer. The
global world model is subject of the next section.

For interprocess communication we use a blackboard communicating via
shared memory internally. For communication between different computers the
blackboard uses UDP.

HLI stands for high-level interface and builds the interface between our high-
level control and the rest of the software system. The name comes from the well-
known Rhino software system [5] and we use this name for historical reasons.
As our high-level control is implemented in Prolog the interface wraps the most
important functions to the rest of the system which is implemented in C++.

3.2 External Control Software

As mentioned in the previous section we use some modules running on an exter-
nal computer for controlling the robot team and calculating parts of the global
world model we use.

For controlling our team we implemented the RoboCup Control Center (recc).
This module runs on an external computer and is connected to the robots via
WLAN. With this module we are able to control our software and get information
about the game state. Fig. 3 shows a screen shot of the rece. Fig. 3(a) shows the
software control window. Here, every module on each robot can be started or
stopped. Moreover, we get information about the status of particular module,



(a) Ball fusion (b) Robot Tracking

Fig. 4. World Model Fusion

e.g. if it is running or if it crashed for some reasons. The GUI is configurable
via an XML file for being able to easily integrate new modules to the software
control. Fig. 3(b) shows the game state window. For indicating the robot the
current game state we can choose between different play modes like play on
or kick off left (right-hand side of Fig.3(b)). For getting information about the
robot’s internal state we visualized the robot’s pose estimate and the opponent’s
pose estimates as well as the current action the robot is performing.

For enhancing our global world model, we provide modules for fusing the
robot’s perceptions of the ball and tracking opponent players. Fig. 4(a) shows
the ball fusion module. The perceptions from each robot can be fused using
several methods like Kalman Filter or Monte Carlo. The figure shows a scene
from a log file from a test match against the Philips team. Note, that the camera
picture was supplementary added to the log to verify the accuracy of the applied
methods. Fig. 4(b) shows the opponent tracking module. we use an implementa-
tion of Multiple Hypothesis Tracking from [6,7] for keeping tracks of opponents
recognized by the object recognition module over time.

4 Decision Making and High-level Control

Our research topic is the decision making of intelligent agents. For us, this means
that the robot should be able to make plans about future courses of actions
instead of deciding what to do based only on the current situation. For this
purpose we use an extension of the logic-based robot control language GOLOG.
As planning is in general costly and in robotic soccer making a sub-optimal
decision is better than making no decision about which action to take, we believe
that some form of reactive control is still needed in order to keep reactivity. Our
aim is therefore to combine planning with reactive action selection to get the
best performance for the high-level control of the robot.



Basic Worldmodel

Sit. Classification

Group-level tactics

Team-level tactics

[ Reactive Component ] [Deliberative Component]

Action Selection

Abilities

Fig. 5. DR-Architecture

In the following we will sketch our architecture for the high-level control
before giving an introduction to the robot control language GOLOG. We then
give a detailed example of the kind of planning we use for high-level control by
a situation from the world championships 2003 in Padova.

4.1 The DR-Architecture

While deliberation has many advantages for decision making of an agent, it has
the disadvantage of being slow compared to generating actions in a reactive
fashion. In [8] we proposed a hybrid architecture which allows the combination
of deliberation with reactivity. Here, we give a brief overview of our architecture.
For more information we refer to [8].

Figure 5 shows the DR-Architecture. From the sensory input we build our
world model (gray box in Figure 5). It contains data like the positions of team-
mates, opponents, or the ball (Basic World Model), classification data about the
current situation, e.g. good possible pass partners (Situation Classification) and
group resp. team-level information, e.g. the basic formation of the team ( Group-
and Team-level tactics).

The decision module in the DR-Architecture is divided into three modules.
To be able to settle an action immediately the Reactive Component computes
the next action to be executed based on the current game situation. The Delib-
erative Component calculates a plan projecting into the future choosing among
the possible action sequences. Section 4.2 covers this in greater detail. Having
an immediate action and a plan concurring for executing one needs to decide
which of both to use. A simple strategy for the Action Selection is to use the
plan whenever there exists one or execute the action provided by the Reactive
Component otherwise. More complex approaches have been tested in [9] and are
under further research.



For the Reactive Component we made some good experiences with the C4.5
decision tree learning method [10] in our Simulation league team [11]. One goal
is to apply C4.5 also for our middle size team.

Abilities are the basic actions the agent can perform in the world. These are
defined in the skill module (cf. Section 3.1).

4.2 The agent specification language GOLOG

For specifying our high-level control we use a variant of the logic-based high-level
agent programming language GOLOG [12]. GOLOG is a language based on the
situation calculus [13]. Over the past years many extensions like dealing with
concurrency, exogenous and sensing action, a continuous changing world and
probabilistic projections (simulation) [14,15,16] made GOLOG an expressive
robot programming language. We integrated those features in our ICPGoLoG
interpreter [17]. For the decision making, we further integrated a planning mod-
ule into GOLOG which chooses the best action to perform by solving a Markov
Decision Process (MDP) (we refer to [18] for reading on MDP and to [19] on
integrating MDPs into GOLOG).

In the following we give an overview of some of the features of ICPGoLoG
not going into details. For an extended example of how a multi-agent plan for
a double pass can be modeled and executed in the SIMULATION league in ICP-
GoLoG we refer to [17]. The ICPGoOLOG language features are:

— Sequence: a1, a2

— Nondeterministic Choice: ai; a2

— Solve an MDP: solve(p, h), where p is a GOLOG program and h is the horizon up
to which the MDP is solved

— Test: ?(c)

— Event-Interrupt: waitFor(c)

— If-then-else: if(c,a1,a2)

— While-loops: while(c, a1)

— Condition-bounded execution: withCtrl(c,a1)

— Concurrent actions: pconc(ai, a2)

— Probabilistic actions: prob(valyros, a1, a2)

— Probabilistic (offline) projection: pproj(c, a1)

— Procedures: proc(name(parameters),body)

For modeling our high-level agent we have to specify the primitive actions
the robot can perform together with their preconditions and effects. These are
actions like goto(z, y,0), intercept_ball, or dribble_to(x,y). Besides primitive ac-
tion there are exogenous and sensing actions. With exogenous actions external
events, e.g. a game restart, can be modeled. With the pconc-statement programs
can be executed concurrently, the pproj-statement starts a simulation of a ICP-
GoLoaG program. The robot can simulate several different alternatives which
actions to perform and then choose the most promising. Another important fea-
ture is the possibility to model uncertainty by the prob-statement. It is possible
to model for example the success of a goto action or even build a model for the
behavior of the opponent goal-keeper. The solve statement initiates the solving



of the MDP formulated by the program p up to a fixed horizon h. It returns a
policy, i.e. an optimal course of action given p the robot can perform regarding
the current game situation.

4.3 Decision Making at RoboCup 2003

The offense’s behavior of the AllemaniACs robots was totally determined by the
MDP-like planning of our GOLOG dialect. The robot made plans of length four
including teammate’s and opponent’s behavior.

3 cicero_rc

Fig. 6. A situation that occurred during a match against ISePorto: One of our robots
(Cicero) has the ball and the supporter (Caesar) is at its place.

In the following we present an example of such decision making in depth.
The used data was taken from log files recorded during a match against Ise-
Porto. Figure 6 shows the view of the world in the example situation as logged
during the game. This means, the positions of the ball (in the upper right), our
robots (in white), and the opponents (red) are estimated based on the fused in-
formation from all of our robots.! In this situation most of the dribbling actions
are considered impossible: The robot has only limited control over the ball. In
particular, it is not possible to drive in circles with low radius without loosing
the ball. Thus, we set the precondition for dribbling as depending on the angle

! We remark that these positions in general are quite erratic due to time lags in
the remote connections and due to sensor inaccuracies. This is another source of
difficulties for decision making.



to the target point. In this situation the attacker (Cicero) considered, among
others, the following alternatives, which are illustrated in Figure 72:

3 E[C_ Br0_IC

3 cicero_rc 3 cicero_rc

(a) (b) (c)

Fig. 7. (a) a straight kick (b) a move-kick towards the empty opponents goal corner
(c) team-play

— a straight kick
(Figure 7 (a)) Kicking in this situation would shoot the ball out of bounds.
The associated reward is based on the intersection with the goal line and is
computed as 9250.3

— a move-kick to the goal
(Figure 7 (b)) The best corner to shoot at is obviously the right one. However,
the model describes a move-kick by driving one meter to the front and then
accelerating the ball towards the target.* Again the ball would go out of
bounds, achieving a similar reward as the kick (9403).

— team-play
(Figure 7 (c)) The action eventually taken was to turn with the ball, pushing
it in front of the supporter.

Let us see what lead to this decision. For readability we only use integer values.
The initial situation has a reward of 4557 and turning with the ball will certainly
(probability = 1.0) lead to a situation with reward 4169 (see Figure 8 (a)). Next,
the supporter (Caesar) is assumed to intercept the ball. This is only successful

2 All presented data is taken from log-files that were recorded during the game.

3 We only use integer numbers here, to improve readability.

4 Of course, this model again is very heuristic and is based solely on observations
during testing.



with probability 0.2. The reward for the new situation is unchanged, since the
ball is not moved — in this model (see Figure 8 (b)). However, the intercept
has negative costs, as the ball is not far for the supporter and it is in front of
the opponents goal, where an intercept always seems a good idea. Alternatively,
interception by the attacker is considered. But since that player is farer away
from the ball, the costs for that are higher (see Figure 9). Finally, the supporter
now having the ball is assumed to score a goal by performing the move-kick skill
(see Figure 8 (c)). The resulting situation, with the ball in the opponents goal,
gets a reward of 10000. The move-kick also has negative costs of 70. This is to
encourage the robot to generally shoot more often. Overall an expected reward
of 14922 is computed for this policy. Figure 9 shows the resulting decision tree

3 cicero_rc 3 cicero_rc

(a) (b) (c)

Fig. 8. Team-play

for the three described alternatives. The optimal policy is marked by a thick
line. The real decision tree was much larger (about factor 4). We pruned it due
to space reasons.Overall decision making in this situation took 0.61 seconds.

In general, the time the attacker spent on projection depended highly on
the number of alternatives that were possible. The most significant difference it
made whether the ball was kickable or not (all times in seconds):

examples| min avg max
without ball| 698 0.0 0.094 0.450
with ball| 117 ]0.170 0.536 2.110

From experience we can say that nearly all the time is spent for determining suc-
cessor situations, that is, doing projection, and reward calculation. Nevertheless,
the presented amounts of time are still small enough for the Mid-Size League as
this league is not yet as dynamic as the simulation.



AT76 Q natures choices
D agent choices

move_kick
costs: =70

kick ™ 623
costs: ~70\__/

turn

move_kick”™ ™\ 1000%
costs: =70 \/

intercept(me)
costs: =7

intercept(TM)
costs: —12

move_kick”™
costs: =70 \__/ 1000%

Fig. 9. The decision tree traversed by the optimization mechanism in this situation.

A key insight of the soccer experience with the interpreter is that the action
models and the reward function are very crucial. The user is recommended to
take great care designing them. Figure 8 (a), for instance, reveals a “mistake”
in the used reward function: Here it appears much better to have the ball on
the penalty area line in front of the opponents goal than at the touch line.
Unluckily, this opinion had not been modeled into the reward function, such that
the touch line position is evaluated higher for being farer into the opponents half.
The agent, which is almost exclusively guided by the reward function, is very
sensitive to such mistakes. They can easily lead to unintended behavior. All the
more, sound approaches to creating reward functions, for example by learning,
could be beneficial and investigated as future work.

References

1. Wunderlich, J.: Technical description of the AllemaniACs soccer robots. Technical
report, LTI / KBSG, Aachen University, Germany (2002) in German.

2. Fox, D.: Kld-sampling: Adaptive particle filters. In: Advances in Neural Informa-
tion Processing Systems 14, MIT Press (2001)

3. Milstein, A., Sanchez, J.N., Williamson, E.: Robust Global Localization Using
Clustered Particle Filtering. In: Proc. of the National Conference on Artificial
Intelligence (AAAT). (2002) 581-586

4. Gonner, C., Rous, M., Kraiss, K.F.: Robust color based picture segmentation
for mobile robots. In: Autonome Mobile Systeme, Karlsruhe, Germany, Springer
(2003) 64-74 (in German).

5. Burgard, W., Cremers, A., Fox, D., Hihnel, D., Lakemeyer, G., Schulz, D., Steiner,
W., Thrun, S.: The interactive museum tour-guide robot. In: Proceedings of the
AAAT 15th National Conference on Artificial Intelligence. (1998)



10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

Reid, D.B.: An algorithm for tracking multiple targets. IEEE Transactions on
Automatic Control AC-24 No.6 (1979)

Cox, I.J., Hingorani, S.L.: An efficient Implementation of Reid “s Multiple Hypoth-
esis Tracking Algorithm and its Evaluation for the Purpose of Visual Tracking.
IEEE Transactions on PAMI 18/2 (1986) 138-150

Dylla, F., Ferrein, A., Lakemeyer, G.: Acting and Deliberating using Golog in
Robotic Soccer — A Hybrid Approach. In: Proc. 3rd International Cognitive
Robotics Workshop (CogRob 2002), AAAI Press (2002)

Riedel, B.: Die Entwicklung von dhnlichkeitsmaflen fiir den Vergleich von Spielsitu-
ationen im RoboCup. Master Theses, in progress, in german, Lehr- und Forschungs-
gebiet Informatik V, RWTH Aachen, Aachen, Germany (2003)

Quinlan, J.: C4.5 Programs for Machine Learning. Morgan Kauffmann (1993)
Konur, S.: Applying decision tree learning to the reactive component of robotic
soccer agents. Master’s thesis, Knowledge-based Systems Group, Computer Science
V, RWTH Aachen, Aachen, Germany (2004)

Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming 31
(1997) 59-83

Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

Giacomo, G.D., Lésperance, Y., Levesque, H.J.: ConGolog, A concurrent pro-
gramming language based on situation calculus. Artificial Intelligence 121 (2000)
109-169

Grosskreutz, H., Lakemeyer, G.: cc-Golog: Towards more realistic logic-based robot
controllers. In: Proceedings of the 7th Conference on Artificial Intelligence (AAAI-
00) and of the 12th Conference on Innovative Applications of Artificial Intelligence
(TAAI-00), Menlo Park, CA, AAAT Press (2000) 476-482

Grosskreutz, H.: Probabilistic projection and belief update in the pGolog frame-
work. In: Second International Cognitive Robotics Workshop. (2000)

Dylla, F., Ferrein, A., Lakemeyer, G.: Specifying multirobot coordination in ICP-
Golog - from simulation towards real robots. In: Proc. of the Workshop on Issues
in Designing Physical Agents for Dynamic Real-Time Environments: World mod-
eling, planning, learning, and communicating (IJCAI 03). (2003)

Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley (1994)

Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level
agent programming in the situation calculus. In: AAAT’2000. (2000)



