
Using Golog for Deliberation and

Team Coordination in Robotic Soccer

Alexander Ferrein Christian Fritz Gerhard Lakemeyer

Robotic soccer provides an interesting and nontrivial testbed for many aspects of mobile robotics. From a high-level

decision making point of view, central issues are how to get the robots to choose intelligently among various possible

courses of actions and how to get them to coordinate their actions with other members of the team. In this paper we

report on our efforts to address these issues within the framework of the Golog action language.

1 Introduction

Robotic soccer [1] provides an interesting and nontrivial
testbed for many aspects of mobile robotics. From a high-
level decision making point of view, which is our main con-
cern, central issues are how to get the robots to choose
intelligently among various possible courses of actions and,
soccer being a team sport, how to get them to coordinate
their actions with other members of the team.

In this paper we report on our efforts to address these
issues within the framework of the Golog action program-
ming language, originally developed by Reiter and his col-
leagues [26]. While Golog has been applied previously to the
control of single robots, robotic soccer is particularly chal-
lenging as it not only calls for coordinated actions among
several robots but also poses hard real-time constraints in a
highly dynamic environment where uncertainty abounds. In
particular, actions often need to be selected within a fraction
of a second and the execution of a plan may fail more often
than not. To address these issues we have developed the
Golog dialect Readylog, which offers useful features such
as event-driven action initiation and probabilistic actions.
Readylog also includes a novel kind of decision-theoretic
planning. In particular, it allows to monitor at execution time
whether a plan, also called a policy, is still valid or should
be abandoned because of unforeseen circumstances. In case
the planning process does not yield a result in time, deliber-
ation is complemented with a fast reactive action selection
mechanism based on decision-tree learning as a fall-back.

The rest of the paper is organized as follows. After a brief
introduction to Golog we discuss our system architecture al-
lowing to combine reactivity with deliberation. In Section 4
we give a high-level description of Readylog and present ex-
ample programs for coordinated actions among robots. Sec-
tion 5 focuses on the decision-theoretic extensions of Ready-
log. Before we conclude, we give a brief overview of the
related work in Section 6.

2 Golog

Golog is based on Reiter’s variant of the Situation Calculus
[33, 28], a second-order language for reasoning about actions
and their effects. Changes in the world are only due to ac-
tions so that a situation is completely described by the history
of actions starting in some initial situation. Properties of the
world are described by fluents, which are situation-dependent
predicates and functions. For each fluent the user defines a
successor state axiom specifying precisely which value the
fluent takes on after performing an action. These, together
with precondition axioms for each action, axioms for the ini-
tial situation, foundational and unique names axioms, form
a so-called basic action theory [33].

Golog emerged to an expressive language over the re-
cent years. It has imperative control constructs such as
loops, conditionals [26], and recursive procedures, but also
less standard constructs like the nondeterministic choice of
actions. Extensions exist for dealing with continuous change
[19] and concurrency [10], allowing for exogenous and sens-
ing actions [11] and probabilistic projections into the fu-
ture [18], to name just a few.

A recent extension, DTGolog [6], introduces decision-
theoretic planning. DTGolog uses basic action theories
to give meaning to primitive actions and it inherits all of
Golog’s programming constructs. From MDPs DTGolog
borrows the notion of a reward, which is a real number as-
signed to situations indicating the desirability of reaching
that situation, and stochastic actions. To see what is be-
hind the latter, consider the action of intercepting a ball in
robotic soccer. Such an action routinely fails and we as-
sign a low probability such as 0.2 to its success. To model
this in DTGolog, we define a stochastic action intercept .
It is associated with two non-stochastic or deterministic ac-
tions interceptS and interceptF for a successful and failed
intercept, respectively. Instead of executing intercept di-
rectly, nature chooses to execute interceptS with probabil-
ity 0.2 and interceptF with probability 0.8. The effect of
interceptS can be as simple as setting the robot’s position
to the position of the ball. The effect of interceptF can be
to teleport the ball to some arbitrary other position and set-
ting the robot’s position to the old ball position.(While this
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model is certainly simplistic, it suffices in most real game
situations, since all that matters is that the ball is not in the
robot’s possession after a failed intercept.) These ingredi-
ents basically form the language Readylog which is suitable
to program robots in dynamic domains like robotic soccer.

3 The DR-Architecture

While deliberation has many advantages for decision making
of a robot, it has the disadvantage of being slow compared to
generating actions in a reactive fashion. In [13] we proposed
a hybrid architecture which allows the combination of delib-
eration with reactivity. In this Section we give an overview
of our architecture.

Figure 1 shows the DR-Architecture. From the sensory
input we build our world model. It contains data like the
own position, or the ball. The world model integrates also
the perceptions made by the team-mates, yielding informa-
tion about the positions of the other team members, the
opponents (by classifying dynamic obstacles as opponents),
and better information about the ball position (by fusing the
local ball perception). Using a global world model improves
the quality of the available data for the robot, e.g. if it does
not see the ball by itself it still knows where it is. From
these basic information a high-level world model is calcu-
lated. It contains derived information like bestGoalCorner

which indicates the unoccupied side of the opponent goal.

Effectors

Skills

Sensors

Decision Module
Action Selection

Reactive Component Deliberative Component

World Model

Figure 1: The DR-Architecture

The decision module in the DR-Architecture is divided
into three modules. To be able to settle an action imme-
diately the Reactive Component computes the next action
to be executed based on the current game situation. It
evaluates a decision tree which was learned using Quinlan’s
C4.5 [32]. We will not go into details about the reactive com-
ponent here. For an application of C4.5 as decision module
in robotic soccer confer to [24], which describes an applica-
tion of C4.5 in RoboCup’s simulation league. We will defer
the detailed discussion of Deliberative Component until the
next section. For now it is sufficient to know that it also
provides an action to be executed next.

Having two components proposing possible actions to be
performed, one needs an Action Selection method, deciding
which action is going to be executed. Currently, our fo-
cus is on evaluating the deliberative component. Therefore,

we use the reactive component only as a kind of fall-back
system if the deliberative component could not propose an
action in time. So far, our action selection strategy is rather
trivial: whenever there is a suggestion from the deliberative
component we use it.

Having calculated an action to be performed from the
decision layer it has to executed. The action we use in
RoboCup’s Middle-size league are actions like dribbleTo,
kick, defendPosition. The module Skills implements these
complex behaviors and translates them into effector com-
mands. To be as flexible as possible the actions are executed
following a least commitment strategy. The arguments can
take qualitative arguments like dribbleTo(bestGoalCorner),
denoting the free goal corner, which are offered by the world
model. The best goal corner is evaluated at the last moment
when the action is performed. This is especially important
for goals which cannot be satisfied immediately.

4 Readylog

Readylog is an extension of Golog useful for specifying the
behavior of robots in highly dynamic real-time domains. It
offers the following control constructs:
a1; a2 sequence
a1 | a2 nondeterministic choice
solve(p, h) (offline) dt-planning
?(c) test
waitFor(c) event-interrupt
if (c, a1, a2) conditional
while(c, a1) loop
withCtrl(c, a1) condition-bounded execution
pconc(a1, a2) concurrent actions
prob(valprob, a1, a2) probabilistic actions
pproj (c, a1) probabilistic (offline) projection
proc(name(parameters), body) procedures

To illustrate the use of these constructs we give some
examples from the soccer domain. We will only hint at the
formal semantics of program execution at the end of the sec-
tion. To make the following programs more readable we use
a slightly more intuitive notation for the above constructs.

The control loop of our robots can be specified using
concurrency and condition-bounded execution. To control
different phases of the game special signals like beforeKick-
Off or KickOffLeft are sent from an external computer by
the referee. According to the signal a particular procedure
is executed by the robot. The withCtrl statement is used
for this purpose. Intuitively it means that as long as the
condition holds, i.e. the referee’s signal in this example, the
particular procedure is executed:

proc mainloop
while gameRunning do

pconc(withCtrl(beforeKickOff, positionOnField),
withCtrl(gameOn, playSoccer), . . .

endwhile

endproc

The following programs are examples of how robots can be
coordinated in our framework. In particular, we show the
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coordination of a double pass between two robots making
use of probabilistic projections in order to evaluate possible
pass partners.1

At some point in the high-level program the robot comes
to evaluate the possibility to play a double-pass. In this
particular situation, suppose an opponent staying right in
front of the player with the ball is to be outplayed with a
double pass.

First, the robot tries to find possible pass partners which
are provided by the world model. For each pass partner it
projects the program tryDoublePass with the current can-
didate partner. If the probability of success for the pass with
the respective partner is above 0.9 it tries to play the pass
by executing the playPass program.

proc DoublePass(Own)
getNextPassPartner(Own);
while ∃p.passPartner(p) do

if pproj (hasBall(Own), TryDoublePass(Own, p))
≥ 0.9 then playPass(Own, p)
endif

endwhile
endproc

The procedure tryDoublePass(Own, T eammate) first tries
to find a free space behind an opponent staying right in
front of the player with ball. The action lookForFreeSpace
alters the value of the fluent freePosition to an unoccupied
position in that free region of the field. The player with
the ball (Own) passes the ball to his free teammate and
starts running to the free position in order to receive the
second pass. In the meantime, the teammate tries to receive
the first pass taking also the possibility into account that the
opponent which is going to be outplayed tries to intercept the
ball. Therefore, the teammate has to check if the reception
of the pass was successful, i.e. if the ball is kickable for
itself after the reception of the pass. If this does not hold in
the simulation the whole procedure fails meaning that with
the current pass partner a safe double pass cannot be tried.
Otherwise the double pass is executed.

proc tryDoublePass(Own,Teammate)
lookForFreeSpace(Own,Teammate);
directPass(Own,Teammate);
pconc(receivePass(Teammate),

interceptPass(closestOpponent(Teammate),
if ballIsKickable(Teammate)
then passTo(Teammate, freePosition);

interceptPass(closesOpponent(Own))
endif

moveToPos(Own, freePosition);
receivePass(Own)

) % endpconc

endproc

Note that we do not use explicit communication in this ex-
ample. Under the assumption that the perception of agents
does not differ too much, as is the case in the Simulation
league, this form of coordination can be applied.

1Note that the example is intended for and has successfully

been tested in our Simulation league team. In the Middle-size

league, such complicated maneuvers are yet too challenging.

In addition to programs like the above, the user needs to
specify the underlying basic action theory to give meaning to
primitive actions and to specify an initial situation. Note also
that the actions directPass and interceptPass used above
are probabilistic. The respective probabilities were derived
empirically. For a complete axiomatization of the double
pass scenario we refer to [14].

The formal semantics of Readylog is an adaptation of
the transition semantics proposed for ConGolog [10]. We
will not go over the details and only hint at the main ideas.
To define the meaning of a program, a special predicate
Trans(δ, s, δ′, s′) is introduced denoting a transition from
configuration 〈δ, s〉, i.e. a program δ in a situation s, to
configuration 〈δ′, s′〉. All language constructs are defined in
terms of the predicate Trans. To illustrate the transforma-
tion of a program, consider the definition of a while-loop
from [10]:

Trans(while(ϕ, p), s, δ′

, s
′) ≡

∃δ
′′

.Trans(p, s, δ
′′

, s
′) ∧ ϕ[s] ∧ δ

′ = δ
′′;while(ϕ, p)2

Intuitively, the while construct with ϕ as the loop condition
and p as the loop body is transformed into the program
p with the while construct concatenated, if there exists a
legal transformation to program p in the case where ϕ holds.
Thus, the while loop is executed as long as the condition
holds or there does not exist a transformation for program
p.

Besides Trans, the semantics also makes use of a special
predicate Final(p, s) which is true just in case the program p

can legally terminate in situation s. For example, the empty
program nil is always final and a primitive action never is. If
Final(p, s) is true, 〈p, s〉 is called a final configuration. The
meaning of a successful execution of a program starting in
some initial situation can then be defined as a sequence of
transitions leading to a final configuration.

5 Decision-theoretic Planning

In the previous section we showed the use of several impor-
tant Readylog features needed to control and to coordinate
the robots. In this section we concentrate on how to evalu-
ate candidate plans in order to execute the most promising
one. For this purpose we integrated decision-theoretic plan-
ning into Readylog based on the work of [6]. As pointed out
in the introduction DTGolog calculates a policy maximizing
the expected cumulated reward. The search for a policy can
be restricted by a DTGolog program. The output is a con-
ditional DTGolog program which for each state the system
is in provides an optimal action to perform.

In DTGolog planning is undertaken by means of non-
deterministic choice of actions. The best action according
to the optimization theory is selected. When an action is
stochastic the robot does not know which of the possible

2
ϕ[s] denotes the situation calculus formula obtained from ϕ by

restoring situation variable s as the suppressed situation argument

for all fluent names mentioned in ϕ. Also note that free within

formulas are implicitly universally quantified.
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effects occurs in the real word. Therefore, the resulting pol-
icy must provide a branch for each possible outcome of an
action. DTGolog represents this tree as a Golog program.

To illustrate how a policy is calculated we show the def-
inition of a nondeterministic choice of action (p1|p2) taken
from [6].

BestDo((p1|p2); p, s, h, π, v, pr)
def
=

∃π1, v1, pr1
.BestDo(p1; p, s, h, π1, v1, pr1

) ∧
∃π2, v2, pr2

.BestDo(p2; p, s, h, π2, v2, pr2
) ∧

((v1, p1) ≥ (v2, p2) ∧ π = π1 ∧ pr = pr
1
∧ v = v1) ∨

(v1, p1) < (v2, p2) ∧ π = π2 ∧ pr = pr
2
∧ v = v2)

The semantics of DTGolog is defined in terms of the macro
BestDo. For both choices a policy is constructed. The best
one is selected by optimizing the value and success probabil-
ity. For how the preference of (v, p) can be defined we refer
again to [6].

As DTGolog is an offline interpreter, i.e. a policy is
calculated up to a given horizon before it is executed, it is
not suitable for highly dynamic domains. The reason is that
the world may have changed too much before a policy is
executed and becomes inapplicable soon. What is needed
is a so-called on-line version of DTGolog. On-line means
that an actions is executed immediately after it has been
calculated.

Soutchanski [35] proposed an on-line version of DT-
Golog which overcomes the problem of planning too far
ahead before executing the first action by interleaving plan-
ning with plan execution. The problem in his interpreter
is, though, that he assumes active sensing to update world
model information. Active sensing means, roughly, that sens-
ing is initiated explicitly by special actions in the control
program. As the outcome of sensing is unknown at planning
time, it is in general not possible to calculate a policy beyond
sensing actions. As sensing in highly dynamic domains such
as ours is ubiquitous and happens many times a second, the
use of active sensing and hence Soutchanski’s approach is
not feasible.

To overcome this problem, Readylog uses passive sens-
ing as proposed by Grosskreutz and Lakemeyer in [19]. The
idea is that sensor values are updated “in the background”
by exogenous actions, which are not part of the program con-
trolling the robot’s behavior. To be able to project into the
future or to plan when using this form of sensing one needs
to build models of the actions which are used for planning. A
simple example are computed trajectories of a robot’s move-
ments.

In Readylog we combine the model-based passive sens-
ing approach with DTGolog. The models used in Readylog
for the soccer domain are as simple as the example of inter-
cepting a ball given in the introduction. The planning then
works as follows. The interpreter is switched into an off-line
mode, where the policy is calculated. Afterwards, the inter-
preter is turned on-line again to execute the policy. For this
purpose we introduced the operator solve, taking a program
and a horizon up to which depth the policy should be created

as arguments.

Trans(solve(p, h), s, δ′

, s
′) ≡

∃π, v, pr .BestDo(p, s, h, π, v, pr)
∧ δ

′ = applyPol(π) ∧ s
′ = s.

The predicate BestDo(p, s, h, π, v, pr) evaluates a policy for
program p in situation s up to a fixed horizon h, in a way
very similar to [6]. The policy is denoted by π, the value of
π is v, and pr stands for the probability of success. A com-
plete definition of BestDo for all constructs of DTGolog
is given in [6]. After the policy is calculated it is executed
using a special applyPol transition. This special transition
is needed because of the way we represent the policy. Using
abstract models of the world also means to make assump-
tions of how the world might evolve. To check the validity
of a policy when executing it against the assumptions made
during planning we must keep track of all assumptions made
along the way. Consider the case where the robot first tries
to intercept the ball before it tries to shoot a goal. Accord-
ing to the model used in the planning phase for the intercept
action the robot is in ball possession afterwards. Only then
is the shoot action possible. Sadly, during actual execution
things often go wrong, invalidating the current policy. For
instance, the intercept action can fail for numerous reasons
such as an opponent capturing the ball.

In order to be able to monitor whether a policy becomes
invalid due to unanticipated changes in the world, we insert
special markers M(ϕ, v) into the policy, where ϕ is a condi-
tion and v its respective truth value at planning time. For
instance, a conditional in Readylog is then defined as

BestDo(if (ϕ, p1, p2); p,s, h, π, v, pr)
def
=

ϕ[s] ∧ ∃π1.BestDo(p1; p, s, h, π1, pr) ∧ π = M(ϕ,>); π1∨
¬ϕ[s] ∧ ∃π2.BestDo(p2; p, s, h, π2, v, pr) ∧ π = M(ϕ,⊥); π2

In the case where ϕ holds (in our model) a policy for program
p1 is calculated otherwise the policy is created for p2. In both
cases we prefix the policy with the marker stating whether ϕ

holds or not. Note that except for the marker the definition
of the BestDo predicate is the same as in DTGolog.

When executing a policy we must treat the marker in
a special way. The condition is evaluated again (denoted
by ϕ[s]) and compared with the value stored at planning
time. If they have the same truth value, the policy is further
executed, otherwise we know that some assumption made
during planning is not valid in the real world any more ren-
dering execution of the policy impossible. In the case where
ϕ[s] and v mismatch, the policy is discarded. Please note
that the situations s in the definition of the conditional above
and in the following definition of the Trans predicate are not
the same.

Trans(applyPol(M(ϕ, v); π), s, δ′

, s
′) ≡ s = s

′∧
((v = > ∧ ϕ[s] ∨ v = ⊥ ∧ ¬ϕ[s]) ∧ δ

′ = applyPol(π) ∨
(v = > ∧ ¬ϕ[s] ∨ v = ⊥ ∧ ϕ[s]) ∧ δ

′ = nil)

In addition, we must take care of primitive and stochastic
as well as conditionals in the monitoring process. The details
of how to treat those are given in [16].

In the following we give an example from our Middle-
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solve(nondet(
[kick(ownNumber , 40),
dribble_or_move_kick(ownNumber ),
dribble_to_points(ownNumber ),

5 if(isKickable(ownNumber ),
pickBest(var_turnAngle , [-3.1, -2.3, 2.3, 3.1],

[turn_relative(ownNumber , var_turnAngle , 2),
nondet ([[ intercept_ball(ownNumber , 1),

dribble_or_move_kick(ownNumber )],
10 [intercept_ball(no_ByRole(supporter ), 1),

dribble_or_move_kick(no_ByRole(supp .))]])]),
nondet ([[ intercept_ball(ownNumber , 1),

dribble_or_move_kick(ownNumber )],
intercept_ball(ownNumber , 0.0, 1)]) ) ]), 4)

Figure 2: The bestInterceptor program performed by an of-
fensive player. Here, nondet(. . .) refers to the nondetermin-
istic choice of actions.

size league team. The robot can choose between alterna-
tive plans by using the nondeterministic choice of actions.
Fig. 2 shows a part of our attacker program we used for our
RoboCup Middle Size robot team at the world champi-
onships 2003 in Padova, Italy, 2004 in Lisbon, Portugal, and
at the German Open 2004 in Paderborn.

The robot selects between kicking the ball directly (if
possible), and dribbling the ball. In the case that the ball is
in the kicking device (isKickable, line 5) it moreover eval-
uates if it can pass the ball aside so that its teammate can
overtake the ball (l. 10). This is modeled by a turn movement
where the ball rolls to the side of the supporting teammate.
The pickBest construct chooses the optimal angle for the
turn movement. In this case the robot also evaluates if the
supporting player has a good opportunity to dribble the ball
towards the opponent goal (l. 11). Here, the coordination is
similar to the double pass example. The robot plans from the
view of the supporting player. This is again possible because
the global world model yields the needed information.

Fig. 3 depicts the policy for the case where the robot
plays the pass to its supporting teammate.

intercept(TM)
costs: −12

move_kick
costs: −70 10000

 4169

 4169

10000move_kick
costs: −70 4169

 4169

natures choices

agent choices

intercept(me)
costs: −7

kick
costs: −70 4557 4623

4776

   move_kick
costs: −70

turn

 4169

0.2

0.8

0.2

0.8

Figure 3: A (pruned) example decision tree for the bestIn-
terceptor program.

For readability we pruned some similar branches. The
root node stands for the situation were the agent switched
to off-line mode, i.e., the current situation. The boxes de-
note agent choices, i.e. the agent can decide which of the
alternatives to take. The circles are nature’s choices, denot-
ing the possible outcomes of stochastic actions. Numbers
of outgoing edges in these nodes are the probabilities for
the possible outcomes. The numbers in the boxes are the
rewards for the corresponding situation. The best policy in
the situation of the example is marked by a thick line.

The reward function we used here is a rather simple one.

We took into account the velocity, position and distance of
the ball towards the opponent goal, giving a high positive
reward for position in front of the opponent goal and high
negative reward in front of the own goal.

The time needed to evaluate the plans depends on the
number of choices the agent has to take into account. In the
presented example of the multi-agent plan presented above
the agent spent much more time for calculating the pol-
icy. The computation times spent for deliberating differed
on wheter the robot was in ball possession or not. The min-
imum time the robot needed to decide what to do without
the ball amounts to 0.01 seconds, the maximal time about
0.450 seconds. On average the robot spent 0.094 seconds
computing the policy in 694 examples. With ball the min-
imal time was 0.170, the maximal 2.11, on average 0.536
seconds, taking 117 examples into account.

The hardware used was an on-board Pentium III-933.
With the described decision making method we shot 13 goals
at the world championships and missed the final round in
both world championships. At the recent GermanOpen 2004
Championships we were able to advance to the quarter finals.

6 Related Work

Approaches to high-level robot programming can roughly be
classified into those making use of some form of deliberation
and those which do not. These systems are embedded into
system architectures ranging from reactive to deliberative.
Examples for Reactive architectures following Brooks [8] are
the Situated-Agents [2], the Dual-Dynamics approach by
Jäger and Christaller [22], or UML-Statecharts [3]. These
kinds of systems are based on an immediate assignment be-
tween perception and action without an explicit description
of how a goal can be reached [27]. BDI architectures are
based on the work of Bratman on practical reasoning [7].
Following Bratman the internal state of an agent is deter-
mined by its knowledge about the environment (beliefs), the
action facilities the agent is able to choose from (desires)
and the current goals (intentions). Representatives for this
approach are PRS by Georgeff and Lansky [17] and the re-
cent Double-Pass Architecture based on mental models [9].
Logic-based architectures try to obtain a goal-directed plan
(sequence of actions) by using a symbolic description and a
theorem prover. This manipulation of symbolic data is also
called deliberation. One of the most influencing approaches
is McCarthy’s Situation Calculus [28]. Because deliberation
is a complex, time consuming process, an optimal plan is
only obtained for the situation where planning started, but
not necessarily for the current situation. Another system
based on Plan Description Languages is introduced in [21].
Systems following the hybrid approach try to combine the
advantages of reactive and goal-directed aspects of other
architectures. Layers found in most of these models are a
reactive layer, a deliberative layer and a modeling layer. Due
to using separate modules a coherence problem arises, i.e.
there has to be a module making them work together rea-
sonably. Examples are Touringmachines [15] or InterRAP
[30]. Our own DR-Architecture [13] belongs to this class.
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Examples are [4, 12, 23].
In [4] Beetz describes structured reactive controllers

based on the language RPL [29]. It supports to synchro-
nize concurrent reactive behavior with high-level control pro-
grams and gains adaptivity by applying plan revision tech-
niques. It was tested and applied for office delivery tasks
in indoor environments. Another example where reactivity
was successfully combined with deliberation is described in
the WITAS project [12]. Here the control rests strictly with
the reactive component, which is understandable given the
unmanned aerial vehicle scenario. The deliberative compo-
nent, which includes a planner, among other things, is only
activated on demand when the reactive controller cannot
achieve a goal. This is different from our architecture, since
we never rely on the deliberative component producing a
plan, mainly because the environment of a soccer playing
robot requires constant vigilance on the part of the robot.
Jensen and Veloso describe an hybrid approach in [23], an
example from the Robocup domain. Here, the simulation-
league soccer agents also mix reactive and deliberative deci-
sion making. Among other things, the authors propose that
an agent switches from deliberation to reactive control when
an opponent moves too close to the agent. This fits well with
our notion of dropping the deliberative plan once the world
changes too much compared to the world model used by
Golog. Despite these similarities, there are significant differ-
ences as well. For one, Jensen and Veloso use Prodigy [36],
a nonlinear planner, which runs as a central deliberative ser-
vice and which derives a multi-agent plan for the whole team
and then sends each agent its corresponding sub-plan. To
make this work, severe restrictions in the expressiveness of
the plan language are necessary. For example, it is assumed
that every action takes the same unit of time, which seems
to limit the usefulness of the plans derived. Besides, employ-
ing a full-scale planner like Prodigy imposes a heavy burden
computationally.

There are some approaches which also integrate decision-
theoretic planning into their language. Poole [31] incor-
porates a form of decision-theoretic planning into his inde-
pendent choice logic distinguishing also between active and
passive sensing. This issue is, though, not regarded in the
context of decision-theoretic planning. Other action logics
addressing uncertainty include [34], where abduction is the
focus, and [20], which addresses symbolic dynamic program-
ming and which itself is based on [5]. Finally, [25] also dis-
cuss ways of replacing sensing by models of the environment
during deliberation.

7 Conclusion

In this paper we gave a brief overview of our efforts in devel-
oping Readylog, a dialect of Golog suitable for the high-level
decision making component of robotic soccer agents. The
highly dynamic nature of this application and a high degree
of uncertainty are among the main challenges we had to face.
While this work is still ongoing we feel that we already suc-
ceeded in showing that logic-based reasoning methods can
play an important role even in time-critical environments like

soccer.
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