
Extending DTGOLOG with Options
�

A. Ferrein, Ch. Fritz, and G. Lakemeyer
Department of Computer Science

RWTH Aachen�
ferrein, fritz, gerhard � @cs.rwth-aachen.de

1 Introduction
Recently Boutilier et al. (2000) proposed the language DT-
GOLOG which combines explicit agent programming with
decision theory. The motivation is that a user often has some
idea about how to go about solving a particular problem yet at
the same time does not want to or cannot commit in advance
to an exact course of action. Instead, certain choices are left
to the agent running the program and determining an optimal
action selection policy involves solving a Markov Decision
Process (MDP) [Puterman, 1994]. In a sense, a DTGOLOG
program can be thought of as a factored representation of an
MDP. As an example, Boutilier et al. consider a mail-delivery
scenario where the task of delivering mail to a particular per-
son is hand-coded and fixed, while the agent chooses the or-
der in which the various people are served according to some
reward function. They note that this approach allows solving
problems which are much larger than those solvable using the
traditional dynamic-programming approach for MDPs.

Nevertheless, it is not very difficult to find examples
where DTGOLOG also shows poor computational behavior.
Roughly, the complexity is determined by the number of
choices the agent needs to consider when computing a pol-
icy and the number of actions with uncertain outcomes (na-
ture’s choices) that need to be considered along the way.
To better control this potential blow-up we were inspired by
work on so-called macro actions or options previously de-
veloped in the MDP framework [Hauskrecht et al., 1998;
Sutton et al., 1999]. The idea is that the policies for cer-
tain subtasks like leaving a room are pre-computed and then
simply used when working on the global policy.

This is, roughly, what we propose: for a given domain
identify subtasks and compute local policies using standard
MDP techniques like value iteration. From those local
policies generate two representations: (1) a (deterministic)
DTGOLOG program directly encoding the local policy in
terms of what action to take while the local policy is ap-
plicable and (2) so-called abstract stochastic actions which
only address the expected outcome of a local policy. It turns
out that, while both representations can be used to compute
a global policy, the use of abstract stochastic actions may
result in an exponential speed-up.— In the next section we�

This work was partly supported by the German Science Foun-
dation (DFG), Grant No. LA 747/9-1, and a grant by the NRW Min-
istry of Education and Research (MSWF).

briefly introduce MDPs and DTGOLOG. Section 3 describes
options in more detail and how to map them into DTGOLOG.
We end with a discussion of experimental results.

2 Decision Theory and GOLOG
A fully observable MDP is represented as a tuple � ����
	��
	�����	����

, where
�

is a finite set of states,
�

is a finite set
of actions,

���
is a probability distribution

���������������! " #$	&%&'
(
���&(*),+.- /0	�)�132

denotes the probability of the agent end-
ing up in state

)&+
after performing action

/
in state

)41
, and�5���6 87 9

is a bounded reward function. The objective
is then to construct a policy : �;�� <�

that maximizes the
expected total reward over some horizon. A simple algorithm
for constructing optimal policies is value iteration (cf. [Put-
erman, 1994]).

DTGOLOG [Boutilier et al., 2000] can be thought of,
roughly, as a programming language which allows a user
to combine pre-defined primitive actions into complex pro-
grams using the usual constructs like sequence, if-then-else,
while, and recursive procedures. In addition there are nonde-
terministic actions to model that an agent can choose among
alternatives. The semantics is based on the situation calcu-
lus and, in particular, the so-called basic action theories de-
scribed in [Reiter, 2001], which define when primitive ac-
tions are executable and how they change and do not change
what is true in the world. As a special form of primitive ac-
tion DTGOLOG allows so-called stochastic actions, which
have probabilistic outcomes, just as in MDPs. For example,
it is possible to define an action = (move to the right), after
which a robot has moved one step to the right with probabil-
ity 0.9, but has moved to the left, up, or down with probability
0.1. MDP-style reward and cost functions are incorporated as
well. Given a DTGOLOG program, the idea is then to com-
pute a policy in the sense that each nondeterministic choice
is resolved in a decision theoretic manner, that is, by choos-
ing the action with maximal expected reward. Assuming that
there are not too many nondeterministic or stochastic actions,
a policy can be computed even in cases where an MDP repre-
sentation seems infeasible due to the size of the state space.

3 Mapping Options into DTGOLOG

As in [Sutton et al., 1999], we define options as triples�?>@	 : 	�AB� , where
>

is the set of initial states, : is a policy, andA
is the set of terminating states. To illustrate options con-

sider the example in Figure 1 from [Hauskrecht et al., 1998].

G

S

Figure 1: Maze66 from [Hauskrecht et al., 1998].

The task is to find an optimal policy to get from position �
to position � . Performing an action has cost 1, the goal po-
sition has a high positive reward. The agent can perform the
stochastic basic or primitive actions = 	���	��B	�� succeeding with
probability 0.9. With probability 0.1 it will be in any other ad-
jacent position. For each room options are defined to leave the
room through a certain door (one for each room/door combi-
nation). The gray dots correspond to the termination positions
of these options. For the left lower room in Figure 1 there are
two options �	� and �	
 (leave through the east or north door,
respectively) with

> ����� (�
 	��$2 - #���
����$	�#����������
andA � ��� (��$	��.2 	 (�� 	 � 2 � , and similarly for �
 . (In order to

mark state (4,2) in
A � as success and (2,4) as failure, they are

assigned positive and negative reward, respectively.)
Applying standard value iteration techniques, the follow-

ing can be computed for an option � :
1. the optimal policy : , that is, the most appropriate action/ 1
for each

) 1"! >
;

2. for each
) 1#! >

and
) +$! A

, the probability to terminate
the option with the outcome

)&+
when starting in

)�1
.

These results can now be translated into a form suitable for
DTGOLOG. Given

> �%�)'&4)()(*(,	�),+-� , suppose that each
) 1

can be uniquely characterized by a logical formula . 1 . (In our
example, . 1 simply expresses the coordinates of the location
of
) 1

.) Then the policy : can be translated in a straightfor-
ward fashion into the following DTGOLOG program:/)0*12/*0'3)465*4'087 9;:�<=,>2?,@,0A7�BDCE:?EF"BHG84,>'0*1#IJG80'@'/*0#?EFLK�KMKN0'@O/*0#?)F#BDP#4,>60)1#I;P ;/)0*12/*0'3)465*4'087 9;:�<0)1'Q,=O>2?*@,0
where ."R��TSU. 1 and VXWXYDV6WAZ2[�\2[8W ()] 2 is a so-called sens-
ing action. Roughly, executing VXW6YDVXWAZ2[8\2[�W (E] 2 establishes
the truth values of the . 1 so that they can be tested in the
following while and if conditions. (The sensing actions are
necessary to account for the MDP assumption of full observ-
ability.) All in all, the program simply prescribes that the
optimal action (according to :) should be executed as long as
the agent is in one of the initial states of � .

Given (2.) above we can also generate for each
) 1^! >

an abstract stochastic action _ (3) 1 2 . For example, for the
option �	� and state

) & � (�� 	 � 2
we would define an ab-

stract stochastic action _X` (*)O& 2 with nature’s choices _ `` (3)'& 2
and _

+
` (3) & 2 for leaving through the east or north door, respec-

tively, together with the probabilities of these actually occur-
ring as computed in (2.) (

����aXb (_ `` (3) & 2 - _ ` (*) & 2 2 � #c(d2dXe2dXe
,����aXb (_ + ` (3) & 2 - _ ` (*) & 2 2 � #�(# # % #f�).

Just as options in the MDP framework can be treated like
primitive actions in MDPs that use these options, the transla-
tion into abstract stochastic actions in the DTGOLOG frame-
work has the same effect, that is, we can now write DT-
GOLOG programs treating abstract stochastic actions just like
any other primitive actions. A global policy computed by DT-
GOLOG for such a program usually mentions abstract actions.
These are not readily executable (leaving a room through the

east door is not a primitive action). Hence, in a final step we
need to replace the abstract actions by the programs which we
derived above.

4 Experimental results
Using our running example we conducted a number of exper-
iments, the goal being at different distances from the initial
position (Fig.1 shows the special case of distance 8). The re-
sults are given in Figure 2. The

-axis depicts the initial dis-

tance to the goal, the
�

-axis the running time. We compared
three different approaches: (A) calculating the optimal policy
in DTGOLOG nondeterministically choosing only from the
primitive actions, (B) using a set of procedures like the one in
the previous section for leaving each room towards a certain
neighboring room, choosing from primitive actions only in
the goal room, and (C) using options in the form of abstract
stochastic actions, choosing from primitive actions only in the
goal room.

PSfrag
replacem

ents

0.02

10596.50

2396.72

276.97

0.31

0.05

3.76

53.60

769.08

1.10

11.40

3 4 5 6 7 8 9 10 11

A
B
C

se
co

nd
s

Manhattan distance from start to goal

Figure 2: Runtimes of the three test programs in the maze.

Note that the
�

-axis of the diagram has a logarithmic scale.
The speed-up from (A) to (B) shows the benefit using DT-
GOLOG to constrain the search space by providing fixed pro-
grams for certain subtasks. Interestingly, (C), that is, using
abstract actions, clearly outperforms (B). Roughly, this is be-
cause each abstract action has only two outcomes, whereas
the corresponding program provides a very fine-grained view
with a huge number of outcomes that need to be considered.

Taking the time of calculation of all options into account
(here: 10.51 seconds) the use of options pays off at horizons
greater than 5. Also, calculating options can be done off-line
and can be neglected in case of frequent reuse.

We remark that while method (A) guarantees optimality,
this is not necessarily so for (B) and (C), for essentially the
same reasons as in [Hauskrecht et al., 1998]. Certainly in
the case of (C), this price seems worth the computational
gain. Finally, while we currently assume options as given,
Hauskrecht et al. (1998) discuss ways of automatically
generating options with good solution qualities, an issue we
intend to investigate in the future as well.

References
[Boutilier et al., 2000] C. Boutilier, R. Reiter, M. Soutchanski, and

S. Thrun. Decision-theoretic, high-level agent programming in
the situation calculus. In Proc. AAAI-2000, 2000.

[Hauskrecht et al., 1998] M. Hauskrecht, N. Meuleau, L. Kael-
bling, T. Dean, and C. Boutilier. Hierarchical solutions of MDPs
using macro-actions. In Proc. UAI 98, 1998.

[Puterman, 1994] M. Puterman. Markov Decision Processes: Dis-
crete Dynamic Programming. Wiley, New York, 1994.

[Reiter, 2001] R. Reiter. Knowledge in Action. MIT Press, 2001.
[Sutton et al., 1999] R. Sutton, D. Precup, and S. Singh. Between

MDPs and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Journal of Artificial Intelligence, 1999.

