Compiling Qualitative Preferencesinto Decision-Theor etic Golog Programs

Christian Fritz and Sheila Mcllraith
Department of Computer Science
University of Toronto
Toronto, Ontario. Canada.
{fritz,sheila} @cs.toronto.edu

Abstract

Personalization is becoming increasingly impor-
tant in agent programming, particularly as it re-
lates to the Web. We propose to develop under-
specified, task-specific agent programs, and to au-
tomatically personalize them to the preferences of
individual users. To this end, we propose a frame-
work for agent programming that integrates rich,
non-Markovian, qualitative user preferences with
quantitative Markovian reward functions. We be-
gin with DT-Golog, a first-order, decision-theoretic
agent programming language in the situation cal-
culus. We present an algorithm that compiles qual-
itative preferences into Golog programs and prove
it sound and complete with respect to the space of
solutions. To integrate these preferences into DT-
Golog we introduce the notion of multi-program
synchronization and restate the semantics of the
language as a transition semantics. We demonstrate
the utility of this framework with an application
to personalized travel planning over the Web. To
the best of our knowledge this is the first work to
combine qualitative and quantiative preferences for
temporal reasoning. Further, while the focus of this
paper is on the integration of qualitative and quan-
tative preferences, a side effect of this work is real-
ization of the simpler task of integrating qualitative
preferences alone into agent programming.

1 Introduction

Personalization is becoming increasingly important to agent
programming. Service-sector agent programs such as per-
sonal assistants or travel planners are often characterized by
a relatively well-defined but under-specified set of tasks that
can be realized in a variety of different ways. As with an of-
fice admin assistant or a travel agent, these high-level tasks
are commissioned by numerous different customers/users. A
good agent program, like a good office assistant or travel
planner must be able to personalize the service they provide
to meet the preferences and constraints of the individual.
Consider the oft-used example of travel planning: Fiona
would like to book a trip from Toronto, Canada to Edin-
burgh, Scotland for work. She’d like to depart between July

25 and 28, returning no sooner than August 5, but no later
than August 8. She would prefer not to connect through Lon-
don Heathrow, as she had a bad experience being stuck at
Heathrow when air traffic controllers went on strike last year.
She’ll need a hotel in Edinburgh, preferrably close to the cas-
tle but if the plane arrives late at night, she’d prefer a hotel
close to the airport. Fiona needs to economize, so she’d like
the cheapest flights and hotel accommodations possible. Nev-
ertheless, she’s willing to pay $100 more to get a direct flight.
Finally, she has to work July 29 — August 5, so she’s willing to
spend up to $200 more to maximize sightseeing days before
July 29 and/or after August 5.

This, presumably realistic setting, displays three types of
constraints or preferences that are commonplace in many
planning and agent programming application domains: hard
constraints (when to go and where), qualitative preferences
(airport and hotel preferences), and quantitative preferences
(financial restrictions).

We approach the problem of personalizable agent pro-
grams by developing task-specific, but underspecified agent
programs that have sufficient non-determinism to support per-
sonalization. Personalization is achieved by integrating these
agent programs with the three types of constraints illustrated
in our example above. The goal of this paper is to investigate
the integration of qualitative and quantitative preferences into
agent programming, and specifically into the agent program-
ming language Golog [14].

Golog is a first-order agent programming language based
on the situation calculus. Golog enables the specification
of, potentially nondeterministic, agent programs in the con-
text of a domain-specific action theory. As such, Golog
programs impose hard constraints on the possible evolution
of the domain. Decision-Theoretic Golog (DT-Golog) [5]
extends Golog with the ability to solve MDP-like planning
problems up to a given horizon and starting in a known ini-
tial situation. In so doing, DT-Golog can handle infinite state
(situation) spaces while exploiting the underlying power of
Golog to restrict the search space.

There is a large body of research on the use of quanti-
tive preferences in automated reasoning. Indeed, decision-
theoretic planning via Markov Decision processes (MDP)
[13] provides an effective means of generating task plans that
maximize a user’s expected utility. Unfortunately, prefer-
ences and constraints must be specified in terms of numeric,



Markovian reward functions. Such specifications can be dif-
ficult to elicit and don’t capture qualitative user preferences.
Bacchus et al. [1] addressed the Markovian restriction, by
enabling the use of non-Markovian rewards. They did so by
augmenting state representation with a new set of temporal
variables. Nevertheless, they did not allow for qualitative
preferences.

Unfortunately, there has been little work on the incorpo-
ration of qualitative preferences into planning, save recent
work by [3; 16; 7]. These approaches are able to repre-
sent qualitative non-Markovian user preferences, while [3;
16] also propose a means of planning with such preferences.

In [9] Domshlak et al. integrate quantitative soft con-
straints and qualitative preferences expressed using the CP-
nets formalism [4]. They approach the problem by approxi-
mating the CP-net with soft constraints expressed in a semi-
ring formalism. Nevertheless, their focus is on reasoning
about preferences, i.e. deciding on an ordering of possible
world states, and it is not obvious how their approach ap-
plies to planning or agent programming. In particular, the
language they use for specifying preferences does not enable
the expression of temporally extended preferences, which we
believe are essential to the task at hand.

In this paper we address the problem of combining non-
Markovian qualitative preferences, expressed in first-order
temporal logic, with quantitative decision-theoretic reward
functions and hard symbolic constraints. We do so by compil-
ing non-Markovian qualitative preferences into a DT-Golog
program, integrating the potentially competing preferences
through a multi-program synchronization. The resultant DT-
Golog program, maximizes the users expected utility within
the most qualitatively preferred plans. We prove the sound-
ness and completeness of our compilation algorithm. To the
best of our knowledge, this is the first work to combine qual-
itative and quantitative preferences for temporal reasoning.

Our work is related to that of Gabaldon [12] who, follow-
ing previous work by Bacchus and Kabanza [2] and Doherty
and Kvarnstrom [8], compiles temporal logic formulae into
preconditions of actions in the situation calculus. There, the
temporal formulae are hard constraints that serve to reduce
the search space. In contrast, we are unable to eliminate any
of the search space, since qualitatively less preferred situa-
tions may vyield the best final solution. Also related is the
work of Sardina and Shapiro [15] who integrate qualitative
prioritized goals into the IndiGolog programming language.
Our approach differs from theirs in serveral ways: our quali-
tative preference language is richer than their specification of
prioritized goals; we compile preferences into a Golog pro-
gram which is more efficient from a computational perspec-
tive; and we enable the integration of both qualitative and
quantitative constraints.

In Section 2 we review the situation calculus and Golog.
In Section 3 we propose a first-order language for specifying
non-Markovian qualitative user preferences. The semantics
of the language is described in the situation calculus. Sec-
tion 4 describes our approach to integrating preferences. It
comprises three steps: compilation of non-Markovian quali-
tative preferences into a Golog program; multi-program syn-
chronization of the resulting Golog program with an existing

Golog program; and given this newly synchronized program,
a means of defining preferences over different possible sub-
programs. Included are a soundness and completeness result
relating to our compilation, and a new transition semantics for
DT-Golog. We have implemented our approach as an exten-
sion to Readylog [10], an existing on-line decision-theoretic
Golog interpreter. We demonstrate its utility with an appli-
cation to personalized travel planning over the Web, as dis-
cussed in Section 5. We summarize our contributions in Sec-
tion 6.

2 Situation Calculusand Golog

The situation calculus is a logical language for specifying and
reasoning about dynamical systems [14]. In the situation cal-
culus, the state of the world is expressed in terms of functions
and relations (fluents) relativized to a particular situation s,
e.g., F(&,s). In this paper, we distinguish between the set
of fluent predicates, F, and the set of non-fluent predicates,
R, representing properties that do not change over time. A
situation s is a history of the primitive actions, a € A, per-
formed from a distinguished initial situation S,. The function
do(a, s) maps a situation and an action into a new situation.
The theory induces a tree of situations, rooted at Sp.

A basic action theory in the situation calculus, D, com-
prises four domain-independent foundational axioms, and a
set of domain-dependent axioms. The foundational axioms %
define the situations, their branching structure and the situa-
tion predecessor relation . s ' states that situation s pre-
cedes situation s’ in the situation tree. X includes a second-
order induction axiom. The domain-dependent axioms are
strictly first-order. Details of the form of these axioms can
be found in [14]. Following convention we will generally re-
fer to fluents in situation-suppressed form, e.g., at(toronto)
rather than at(toronto, s).

Golog (e.g., [14]) is a high-level logic programming lan-
guage for the specification and execution of complex actions
in dynamical domains. It builds on top of the situation cal-
culus by providing Algol-inspired extralogical constructs for
assembling primitive situation calculus actions into complex
actions 6. Constructs include the following:

a — primitive actions

d1; 02 — sequences

¢? — tests

(mz)d(z) — nondeterministic choice of arguments

&* — nondeterministic iteration

nondet(L) — nondeterministic choice of (complex) action in list, L
if ¢ then &; else §» endIf - conditionals

proc P(¥) & endProc — procedure

These constructs can be used to write programs in the lan-
guage of a domain theory, e.g.,
buyAirTicket(Z);
if far then rentCar(y) else bookTaxi(z) endIf.

There are two popular semantics for Golog programs: the
original evaluation semantics [14] and a related single-step
transition semantics that was proposed for on-line execution
[6]. Following the evaluation semantics, complex actions are



macros that expand to situation calculus formulae. The abbre-
viation Do(4, So, do(a, So)) denotes that the Golog program
d, starting execution in So will legally terminate in situation
do(a1,do(as, . ..,do(an, So))) 1. The following are some ex-
ample macro expansions.

Do(a, s, s") def Poss(as],s) As' = do(a[s], s)?

Do(?(¢),s,5') = gls] As =5,

Do(nondet([o15], s, s') &'

Do(a1,s,s') V Do(nondet(c), s, s')3

Do(nondet([o1], s, 8") def Do(o1,5,5")

Given a domain theory, D and Golog program §, program
execution must find a sequence of actions @ such that: D |
Do(6, So,do(@, So)). Recall that D induces a tree of situations
rooted at So. Requiring that D entails Do(4, So, do(a, So))
serves to constrain the situations in the tree to only those sit-
uations that are consistent with the expansion of 4.

These hard constraints can reduce the problem size by or-
ders of magnitude. Consider the following estimate of our
travel planning example. The full grounded search space in-
volves 3652 date combinations and 1901 airports. Assum-
ing 10 available flights for every combination, there are more
than 4.8 - 10'2 flights. Optimistically assuming that at each
destination there are only 10 hotels with 5 room types each,
the total number of possible action combinations increases to
6.2 - 102!, Using a DT-Golog procedure such as the one that
follows reduces the number of alternatives to approximately
3-3-10-50 = 4500 cases that are relevant to Fiona. Such re-
ductions are of particular importance for agent programming
on the Web, where the vastness of information creates enor-
mous search spaces.

In this paper we exploit a decision-theoretic variant of
Golog called DT-Golog [5], which extends Golog to deal
with uncertainty in action outcomes and general reward func-
tions. DT-Golog can be viewed alternatively as an exten-
sion to Golog, or as a means to give “advice” to a decision-
theoretic planner that maximizes expected utility.

For example, our travel planning problem could be de-
scribed by the following DT-Golog procedure:

proc( travel _pl anner,
[ pickBest( depart_dt, [726..728],
pi ckBest ( return_dt, [805..807],
[ searchFlight("YYZ", "EDI", depart_dt, return_dt),
searchHotel ("EDI ", depart_dt, return_dt),
pi ckBest( bestFlight, allFlights,
[ reserveFlight(bestFlight),
if(not(error), payFlight(bestFlight))]),
?(and([not (outflight = none),not(inflight = none)])),
pi ckBest ( bestHotel, allHotels,
[ reserveHotel (bestHotel),
if(not(error), payHotel (bestHotel))]),
?(not (hotel = none)) 1))1).

Note the extensive use of the DT-Golog construct pi ckBest (
val ue, Range, Program Which picks the best value for program
from the range of possibilities. E.g., our program picks the
best departure and return dates from the specified ranges (726
denotes July 26, etc.), and so on. In this framework the utility
theory is specified by action costs (e.g., the cost of purchasing

which we abbreviate to do(, So) or do([a1, . . - , an], So).
24[s] denotes the re-insertion of s into fluent arguments of a.
%[a|r] denotes a list with first element a, and rest of list .

an airline ticket) and Markovian reward functions assigning
real-valued rewards to situations. E.g.,
reward(v, s) =
(at(EDI, s) A date(s) < 729 V date(s) > 805) A v = 200) V
(- (at(EDI, s) A (date(s) < 729 V date(s) > 805)) Av =0)

This says that the reward, v is 200 if we are in Edinburgh
before July 29 or after August 5, and v is 0 otherwise.

But Fiona cannot easily specify all her preferences as nu-
meric Markovian rewards. A rich qualitative preference lan-
guage that exploits temporal logic should help!

3 Preference Language

To personalize agent programs, we use a subset of a rich
first-order language for expressing non-Markovian user pref-
erences recently proposed in [3]. The semantics of this lan-
guage is defined in the situation calculus.

3.1 Syntax

In this section we present the syntax of a first-order language
for expressing qualitative, non-Markovian user preferences.
Our language is a subset of the preference language we pro-
posed in [3], which is a modification and extension of Son
and Pontelli’s PP language [16]. Constraints on the prop-
erties of situations are expressed by Basic Desire Formulae
(BDF). BDFs are combined into Qualitative Preference For-
mulae?, using a preference ordering, &.

Definition 1 (Basic Desire Formula (BDF)). A basic desire
formula is a sentence drawn from the smallest set B where:

1. FUR C B, where F is the set of fluents and R is the set of
non-fluent relations;

2. Ifa € A, the set of primitive actions, then occ(a) € B, stating
that action a occurs;

3. If f € F,thenfinal(f) € B;

4. If 1), 11,12 are in B, then so are 1, ¥1 Apa, 11 V1ba, condi-
tional 41 : ¥2 (equivalent to (v1 Ap2) V—h1), (39, (V)oh,
next(y), always(t)), eventually(z)), and until(z)1, 12).

BDFs establish desired properties of situations. The first three
BDF forms are evaluated with respect to the initial situation
unless embedded in a temporal connective. By combining
BDFs using boolean and temporal connectives, we are able
to express a variety of properties of situations. In our travel
example:

always[(Jy, z) (bookedflight(y) A arrivesLate(y)A
—closeToAirport(z) : —occ(bookhotel(2)))] 1)
always(— at(LHR)) 2

Again, BDFs enable a user to define preferred situations. To
express preferences among alternatives, we define the notion
of qualitative preference formulae.

Definition 2 (Qualitative Preference Formula). ® isaqual-
itative preference formula if one of the following holds:

e & is a basic desire formula

o« & =1, 8_2\1!2, with ¥, 5 qualitative preference formu-
lae.

4Subsequently referred to as preference formulae.



& is an Ordered And preference. We wish to satisfy both
¥, and ¥, but if that is not possible, we prefer to satisfy ¥,
over ¥,. Note that this is enough to also express conditional
preferences of the form “if a then | prefer b over ¢”, as this can
be transformed to (a : b) & ¢ which has the same semantics:
if a holds, then | want to satisfy both b and ¢ with a preference
for b. If a does not hold, a : b is immediately satisfied and
it only remains to satisfy c¢. Qualitative preference formulae
may be arbitrarily long.

3.2 Semantics
Following our recent work [3], preference formulae are inter-
preted as situation calculus formulae and are evaluated rela-
tive to an action theory D. Since BDFs may refer to proper-
ties that hold over fragments of a situation history, we use the
notation ¢[s, '], proposed in [12], to explicitly denote that ¢
holds in the sequence of situations originating in s and termi-
nating in s’ = do(a, s). BDFs are interpreted in the situation
calculus as follows:

o € F,ols,s'1 < ols]

]
!

%)
def
pER¢ls,s'1= ¢

final(¢)[s, 1= [s'
occ(a)[s, s'] et do(a,s) C s’ A Poss(a[s], s)
eventually(y)[s, '] def (3s1:sC s1 Cs)pfs1, s

always(y)[s, s'] def (Vs1: s C 51 C s')g[s1,5]

next()[s, s'1 ¥ (3a).do(a, s) T s A p[do(a, s), s']

until(p, 4)[s, 8'] % (Isz : s T 82 T 8'){[s2,8'] A
(Vs1: s Cs1C s2)p[s1,5]}

The boolean connectives are already defined in the situation
calculus. Since each BDF is shorthand for a situation calculus
expression, a simple model-theoretic semantics follows.

Definition 3. Let D be an action theory, and let s and s’ be
two situations such that s C s’. A basic desire formula ¢ is
satisfied by the situation beginning in s and terminating in s’
just in the case that D = ¢[s, s'].

Intuitively a qualitative preference formula @ = ¥, &v,
partitions the space of situations into four equivalence classes
of preferred situations, in decreasing order of preference: (1)
those satisfying both ¥, and ¥, (2) those only satisfying ¥,
(3) those only satisfying ¥,, and (4) those satisfying neither.
The semantics of qualitative preference formulae are defined
in a subsequent section using Golog constructs. Their seman-
tics follows from the semantics of Golog.

4 Adding Preferencesto DT-Golog

BDFs are the building blocks of our qualitative preference
formulae. Like Golog programs, BDFs impose constraints
on situations. As such, it is natural to integrate BDFs into
Golog by translating them into (generally non-deterministic)

5Temporal formulae follow [12], using the abbreviations:
(3s1 : sEs1 C §')® = (Fs1){sC s1Asit Es A®}and
(Vs1:8CEs1 C8')®=(Vs1){[sCs1 Asi Cs]D®}

Golog programs. Preference over the enforcement of BDFs is
expressed by qualitative preference formulae. These prefer-
ences can be realized in Golog by the multi-program synchro-
nization of BDF-induced Golog programs with the original
agent program, and by prioritized execution of the resultant
nondeterministic programs in a manner consistent with the
defined preferences.

Synchronization of BDF-induced Golog programs with
DT-Golog programs [5] results in a natural integration of
agent programming under both qualitative preferences and
quantitative utility theory. Since qualitative and quantitative
expressions of preference are not immediately comparable,
one has to decide how to rank them in case they are con-
tradictory, i.e. favour different plans. In this paper we rank
qualitative preferences over quantitative ones. As a result, we
first try to find the quantitatively best plan within the set of
most preferred plans, and only if no such plan exists, broaden
our scope to less qualitatively preferred plans. Nevertheless,
a different ordering or even several ’layers’ would be easy to
realize in the presented framework.

The outline of our approach is as follows: (1) compile
BDFs into Golog programs such that any successful execu-
tion of that program will result in a situation that satisfies the
BDF, (2) define multi-program synchronization to couple the
execution of two programs so as to combine a given agent
program with the compilation result, (3) based on this, define
preferences over different subprograms.

4.1 Compilation

This section describes how we compile BDFs into Golog pro-
grams. The compilation works by progression up to a given
horizon. At each progression step, the mechanism produces
a set whose elements consist of a possible program step that
can be performed without violating the BDF, and a possibly
modified BDF that remains to be satisfied. Recursively these
remaining BDFs are processed. As a progression step may re-
turn more than one branch ( program-step/remaining-formula
combination), compilation produces a tree, where branches
are linked using nondeterministic choice. This tree describes
the set of all possible program traces, i.e. situations of the
situation calculus, that satisfy the BDF.

Example 1. Consider the following BDF: always(happy) A
final(rich) and assume A is a list of all primitive actions in
our domain theory. Then the following program describes all
possible sequences of length < 2 that satisfy this BDF:

nondet([(happy A rich)?,
[happy?; nondet(.A); nondet([(happy A rich)?,
[happy?; nondet(.A); (happy A rich)?] ]) ]])

That is, either | am happy and rich already, or | am happy,
take some action and then am happy and rich, or again | am
happy and take another step. In the end I always have to be
happy and rich. Any successful execution of this Golog pro-
gram will satisfy the BDF.

Again, BDFs define desired properties of situations. As
such, the maintenance of BDFs restricts the set of actions that
may be taken in a situation. This insight is key to our com-
pilation approach. We call the constraints required to enforce



our BDFs situation constraints. We express a situation con-
straint in Golog by a test 7 that enforces a fluent/nonfluent
and/or a nondeterministic choice of the actions available in
the current situation. In many cases, this is all actions, A.

Recall that in Golog ¢? states that the formula ¢ has to
hold in the current situation and that nondet(L) is the non-
deterministic choice among the elements of the list L. For
example, the only possible next steps for nondet([a, b]) are
taking action a or taking action b. Thus, assuming the cur-
rent situation is s, the set of possible successor situations are
restricted to {do(a, s), do(b, s)}. The scope of situation con-
straints can be expanded over several situations by using tem-
poral expressions. In the example, the constraint of being
happy is extended over all situations using always. Observe
that several BDFs are contributing situation constraints to the
same situation. To combine several situation constraints we
define the function x. Note that the BDFs 1) are treated as
syntactic entities in the context of our compilation and are
syntactically manipulated accordingly.

X(W17,927) = (1 A¢p2)?
x(¥?, nondet(L)) = (¥?; nondet(L))
x(nondet(L1), nondet(L>)) = nondet(L; N Ly)

x((x17; nondet(L1)), (12 7; nondet(L>)))
= (('l/)l A ’(/)2)?; nondet(L1 n L2))

plus its reflexive completion, where the v’s are formulae of
the situation calculus and the L’s are lists of actions. In our
example, the temporal extent of always and final overlap. In
these situations, the situation constraints imposed by the two
BDFs are combined using .

Let A be the set of actions in our domain, F the set of
fluents, R the set of non-fluent predicates, then, formally the
compilation of a basic desire formula v is defined using the
predicate C: C(vy,SC, ") holds iff SC is a situation con-
straint whose execution will not violate preference 4, and
further ¢/’ is a BDF that needs to be satisfied in the future.
In the following we use STOP as a shorthand for Aa.occ(a).
C is defined by the following set of axioms.

e C(f, f7,TRUE),Vf € FUR
e C(occ(a), nondet([a]), TRUE),Va € A
e C(final(f), SC,¢') =
(SC = (f7,nondet([])) Ay’ = STOP)
V (8C = nondet(A) A ¢’ = final(f))®
L4 0(1/’1 A ¢27 SC} 1/”) =

C(¢h1, SC1,91) AC(h2, SCa,93)
A SC = x(SC1,8C2) A" =4} Ay

e C(1 VP2, SC, 9" = C(31,SC, ") V C(3p2, SC, o)
o C(ihr 192, SC,¢") = C((41 Atp2) V =1, SC,9)")

o C((3)9, SO, ¢") = C(V,ec(¥/7), SC,¢")

o C((Va)y, SO, ¢') = C(N.ec(¥/*), SC, ")

e C(next(¢), nondet(A), ¢)

®nondet([]) states that no action may be taken. Together with the
remaining BDF STOP, it enforces immediate program termination.

"We assume a finite domain. /¥ denotes the result of substi-
tuting the constant ¢ for all instances of the variable v in ¢, and C
denotes the set of constants.

C(always(y), SC,9') =
(C(3, SC, ") A)’=STOPA (1"'=STOPV ¢’=TRUE))
V (C(x A next(always(y)), SC, ")

C(eventually(z), SC,¢') =
C(3 V next(eventually(z)), SC, ")

C(until(1/)1, ¢2)1 SC, ¢’) =
C(2 V (11 A next(until(s1, 2))), SC, ')
e C(TRUE, SC, TRUE) =
SC = nondet([]) vV SC = nondet(.A)

Negation requires special treatment. Golog finds situations,
i.e. action sequences, that satisfy a program, but to address
negation it is not obvious how the complement, that is the sit-
uations that do not satisfy the program, would be computed.
We address this by pushing the negation down to the atomic
level. For parsimony we only show some less obvious cases:

C(=f,(=f)?, TRUE),Vf € FUR
C(-occ(a), SC, 4" =
(SC = nondet([]) A ¢’ = STOP)
V (SC = nondet(A\ {a}) Ay’ = TRUE),Va € A.

C(—always(y), SC, ') = C(eventually(—)), SC, ")

C(ﬂuntil(wl,qu) SCY') =

C((mth2 A (—%1 V next(-until(¢1, 12))))

Vv always(—)2)), SC,1)")
Based on C we can define the following (second-order) for-
mula that relates a BDF 1 to a Golog program P such that
every successful execution of P results in a situation that sat-
isfies ) where h is the maximal number of actions in any such
execution.

E(¢, P,h)=(p = TRUE A P = (nondet(A4))")
V (¢ = STOP A P = nil)
V (h=0A3z.C(xp, P,z) A Jp.P =7(p))

V (h > 0A #TRUE A # STOP A C(3,SC, ") A
E*(¢',P,h — 1) A P = SC; nondet(P) )
E'(Y,P.h)=P={P | E(%,Ph)}

A constructive proof of IP.Z*(¢, P, h) then, as a side-
effect, provides the program PJ} = nondet(P) that describes
all possible execution traces, i.e. situations, of length < h
that satisfy the BDF. These definitions lead to a Prolog im-
plementation, able to conduct the constructive proof, produc-
ing the corresponding Golog program (cf. Section 5). Some
optimization of the generated code is advisable, but for parsi-
mony we omit the rather technical details of this here.
Soundness The soundness of our compilation method fol-
lows from the semantics of our preference language.

Theorem 1. (Soundness) Let 1) be a basic desire formula
and PJ} be the corresponding program for horizon h. Then
for any situation s, = do([a1, as,...,ax],s) such that D
Do(P}, s, sn), it holds that D |= 4)[s, s4].

Proof Sketch: The proof proceeds by double induction over
the structure of basic desire formulae and the length of the
situation term. The base case for the structural induction is:

e f e F:aswehave C(f,?(f), TRUE) and by hypothesis
know that D |= Do(P}, s, s) we have from the defini-
tion of Do (Golog semantics) that f[s] and thus f[s, sp];

e occ(a): C(occ(a),nondet([a]), TRUE) enforces that
a1 = a and thus occ(a)[s, sp];



o —f € F:aswehave C(f,(—f)?, TRUE) and by hypoth-
esis know that D = Do(Pj;,s,sh) we have from the

definition of Do that — f[s] and thus — f[s, sx];

e —occ(a): C(occ(a),nondet(A \ {a}), TRUE) enforces
that a; # a and thus —occ(a)[s, sn);

Completeness Completeness likewise follows from the se-
mantics of our preference language. This establishes that all
situations that satisfy the BDF are preserved.

Theorem 2. (Completeness) Let 1) be a basic desire formula
and P[; be the corresponding program for horizon h. Then
for any situation s, = do([a1,as,...,as],s) such that D =
[s, sp] it holds that D = Do(Pg, S, 8h).
Proof Sketch: The proof is established by induction.

Details of both proofs are presented in [11].

4.2 Multi-Program Synchronization

Now that we have a Golog program enforcing satisfaction of
a BDF, we want to combine this with a pre-existing agent pro-
gram or another BDF-induced program to eventually provide
a semantics for our qualitative preference formulae. To this
end, we define multi-program synchronization.

Roughly, we understand two programs to execute syn-
chronously if they traverse the same sequence of situations.
Thus, at each step we need to find a common successor sit-
uation for both programs. This can be done efficiently by
determining the successors of both individually and then in-
tersecting the results. It is however not efficient if both pro-
grams are evaluated completely first. This motivates the use
of a transition semantics as opposed to the evaluation seman-
tics originally used to define DT-Golog.

A transition semantics for Golog was first introduced in
[6] where, for the same reasons as above, it was used to de-
fine the concurrent execution of two programs. Roughly, a
transition semantics is axiomatized through two predicates
Trans(o, s,0’,s') and Final(c, s). The former defines for a
program ¢ and a situation s the set of possible successor con-
figurations (o', s') according to the action theory. The later
defines whether a program is final, i.e. successfully termi-
nated, in a certain situation. For instance, for the program
a1;az, that is the sequence of actions a; and a,, and a situa-
tion s, Trans(as; as, s, a2, do(a1, s)) describes the only pos-
sible transition and is only possible, if the action a; is pos-
sible in situation s according to the action theory. Using the
transitive closure of Trans, denoted Trans*, one can define a

new Do predicate as follows:

Do(4,s,s") 4f 35 Trans* (8,8,8",8) AFinal(§', s").

As is shown in [6], this definition is equivalent to the original
Do. Thus, all results for the one semantics hold equally for
the other.

In transition semantics we can formally define the synchro-
nization of two programs o1, 02 by a new Golog construct
sync(oq,02):

Trans( sync(o1, 02), s, sync(oy,os), s’ ) =
(Trans(o1, s, 01,8") ATrans(os, 5,03, s'))
V(s' = s A ((Trans(o1, s,01,8) Aoy = o3)
V(o = o1 A Trans(os, s, 0%, )) )
Final( sync(o1,02), s) = Final(o1, s) A Final(a2, s)

The program sync(o, o2) can perform a transition in a sit-
uation s to a new situation s’ iff both programs o1 and o4
can perform a transition to s’ or when s’ = s and one of
o1 and o5 can do a transition that does not affect the situa-
tion, for example evaluating a test. In both cases, the pro-
gram that remains to be run will be the synchronous execution
of the two remaining subprograms (¢4, o}). To synchronize
more than two programs we can use nesting, so for instance
sync(o1, sync(oz, o3)) would synchronize three programs.

The following theorem follows immediately from above
definitions.

Theorem 3. Leto,, oy be two Golog programs. Then for any
S',D = Do(oy, So,S') and D = Do(os, So, S") if and only
if D = Do(sync(o,,0%), So,S").

The theorem states that if there is a situation S’ that de-
scribes a legal execution in both programs starting in Sy, then
this is also a legal execution for the synchonization of the two
programs. Further, the inverse also holds, saying that any le-
gal execution of the synchonization is also legal for the two
individual programs.

A Decision-Theoretic Transition Semantics

As stated above, DT-Golog is defined using an evaluation se-
mantics and that does not suit our requirements. Thus, we
have to redefine DT-Golog in an equivalent transition seman-
tics, or, seen differently, extend the available transition se-
mantics to decision-theoretic planning. The semantics fol-
lows intuitively from the established relationship between the
two semantics. In this section we provide an overview of
our new DT-Golog transition semantics. Unfortunately, space
precludes us from stating all but an example of the necessary
definitions:

BestTrans( [nondet([o]) | o], s,d, 7, v, prob, B, D) =
B ={([olo"],s,d, [x,v,prob)] AD = ]

BestTrans( [nondet([o1 | o2]) | '], s, d, 7, v, prob, B, D) =
BestTrans( [nondet(as) | o'], s, d, 72, v2, proba, B2, D2) A
B= [( [0’1|0’I], 8, d, [71'1, ’Ul,p’l"Obl]) | Bz] A
D = [([m, v, prob], [m1,v1, probi], [m2,v,probs]) | D2]

where 7y, vy, proby, e, ve, probs are new variables, s
is the situation, d the recursion depth, = the policy,
v the value, and prob the termination probability. B
is the list of possible successor configurations/branches
and D a list of decisions to be made once all con-
tained values have been determined. Roughly, the tuple
([, v, prob], [m1, v1, probi], [w2, v,probs]) says that [7, v, prob]
is equal to [my,v1,probi] or [me,ve,probs] depending on
which is better. However, this cannot be decided until both
branches have been evaluated.

4.3 Expressing Preferencein DT-Golog

In previous sections we showed how to compile BDFs into
hard constraints, realized as Golog programs. To make these
constraints soft and to rank these constraints to eventually cre-
ate ordered preferences we need to introduce two more Golog
constructs:

® WithPref(opr09, Pjt): FUN Program op.. and try to syn-
chronously run P}, the result of compiling BDF . This is
implemented by creating two branches one with the remain-
ing program sync(oprog, Pyt) and one with o,,.,. We devise



the interpreter so that the first branch will is explored first.
Only if it fails is the second branch explored.

o pref(Py, Py,): Let 11, 1> be two BDFs and P}, Py, their
correspondlng Golog programs as acquired by complfatlon
Then pref(P}, , PJ,) gives semantics to the qualitative prefer-
ence formula +; & 1p2 by creating three branches of decreas-
ing preference: sync(P, o) P}, and P}, . Again, the later
branches are only equforecflf no pIan is found for the first.
Formally this intuition is captured by extending BestTrans
such that it defines clusters of branches (and corresponding
decisions) of equal degree of preference. Then all previously
seen Golog constructs return exactly one cluster of (possibly
multiple) branches and the above two constructs return two,
respectively three clusters:

BestTrans( [withPref(oprog, P,’Z) | '], s,d, v, prob,

[Cy, CL ([ 11D =

C1 = [([sync(oprog, PJ,L) | a'l, s, d, [x, v, prob])] A

Co = [([0prog | 0], 3, d, [, v, prob])]
BestTrans( [pref(Py,, Py,) | '], s,d, m, v, prob,

[C1,Co, Cs, [ [, []) =

[([sync(Py, , Py,) | 0], s, d, [x, v, prob])] A
([P}, | &'], 5,d, [, v, prob])] A
= [([P}, | '], 5, d, [, v, prob])]

C1
Cs

The preference over former clusters is formally defined in
the evaluation strategy of clusters and branches:

BestTrans* (B, h) = B = (o, s,d, [7, v, prob])A
(d < h A BestTrans(o, s, d, 7, v, prob, B, D) A
BestTrans;ai (B, D, prob, b))
V (d > h A =nil A Reward(r)[s] A\v =r Aprob=1)
BestTransqai ([B], [D], prob, h) =
BestTransqani (B, k) A MakeDecisions(D)
BestTrans; i ([B | B, [D | D], prob, h) =
(BestTransyani (B, ) A MakeDecisions(D) A prob > 0)
V BestTrans}; (B, D, prob, h)
BestTransqani([ ], &) = TRUE
BestTransqani ([B1 | B, h) =
BestTrans™ (Bi, h) A BestTranSguai (B, k)

In BestTransg,y; the clusters are evaluated starting with the
first and proceedlng with the next onIy if the termination
probability prob for the first cluster is zero. Thus, we first
explore only that partition of the situation space that is most
preferred and only if within this partition no valid plan is
found, less preferred partitions are considered. The predicate
MakeDecisions(D) makes decisions as described above, once
all variables in D have been instantiated.

A Qualitative Preference Formulae ¥ is compiled by com-
piling the contained BDFs and replacing any occurence of
& by a pref construct. We denote the compilation by
Q(T, Pk h).

Example 2. Consider the following Golog program for de-
termining transprotation: o = nondet([drive, plane]) and the

preference ¥ = final(eco) & always(—(occ(drive)))8. Compi-
lation with horizon one, Q(¥, P, 1), of the preference will
provide us with the following Golog program Pg:
pref(nondet([eco?, [nondet([plane, drive]); eco?]]),
nondet([nil, nondet([drive])]))
This will be combined with the original Golog program, out-
lining the rough planning problem, by withPref(s, P§). When
fed into our interpreter this will produce different clusters of
decreasing preference, which will be explored for a solution
one at a time. The most preferred is:
sync(nondet([plane, drive]),
sync(nondet([[eco?], [nondet([plane, drive]), eco?]]),
nondet([nil, nondet([plane])])))
Let’s assume that driving is the only economical means of
transporation. Then obviously we cannot satisfy both desires
and in fact after the only possible synchronized transition, do-
ing plane, the test eco? fails. We thus move on to the next
best cluster:
sync(nondet([plane, drive]),
nondet([[eco?], [nondet([plane, drive]), eco?]])).
There are two possible synchronized transitions here, either
doing plane or drive, however, only the second will let the
test eco? succeed and will thus be chosen.

The following corollary follows from the soundness and
completeness of our compilation, Theorem 3, and the cor-
rectness of above decision-theoretic transition semantics.

Corollary 1. Let ¢ be an arbitrary Golog program, ¥ a qual-
itative preference formula, and A € IN a horizon. Let further
Pyg be such that Q(¥, Py, h). Then any constructive proof of

D = 3w, v, probd.

BestTrans*((withPref(a, P%), Sy, 0, [, v, prob)), h)

as a side-effect returns a policy® 7 which has the following
properties:

e any successful execution of 7 leads to a situation that is
most preferred among all possible situations, i.e., the set of
situations of length < h which describe a legal execution
trace for o according to the action theory D and there is no
situation s’ in this set that is more preferred;

e 7 maximizes the expected reward according to the utility
theory.

In other words, 7 is the best we can do with respect to sat-
isfying the hard constraints in the first place, generating the
most qualitatively preferred plan in second place, and finally
maximizing the quantitative expected reward in third place.

5 Implementation and Application

As noted previously, we have implemented the approach re-
ported in this paper as an extension to Readylog [10]. We
have also turned our travel agency example into a working ap-
plication by creating wrappers for the flight and hotel pages of
Yahoo!-Travel. Recall the planning procedure from Section
2. The actions sear chFl i ght (From To, CQutDate, ReturnDate)

8eco is a fluent stating that the transportation is economical.
%i.e. a Golog program without any non-deterministic choices



and sear chHot el (Destination, CheckinDate, CheckoutDate) I'E-
alize the querying and wrapping of the relevant Web pages*°.
With respect to the quality of the results generated from
our implementation, our theoretical results and correctness
of the implementation (which we do not prove) ensure that
the travel plan generated is optimized with respect to a user’s
quantitative preferences, within the best realization of their
qualitative preferences. No benchmarks exist for the empiri-
cal evaluation of our system, nor was it our objective to op-
timize our implementation. Nevertheless, as an illustration
of the power of our system, we argue that our implementa-
tion enables a level of customization of travel planning (and
more generally, agent programming), heretofore unattainable
in an automated system. For example, in the described case,
for each of the 9 date combinations there are over 90 hotels
with about 5 room types each and 9 flights. To gather all rel-
evant information, the system issues more than 800 queries
to Yahoo!-Travel, considers 36450 combinations, and returns
the most preferred travel plan. Manually this would not be
feasible and existing systems, although allowing customiza-
tion to a certain extent, cannot account for the complex pref-
erences a customer may have. We now can! We intend to
make this application available as a service at our website.

6 Summary and Discussion

Motivated by the need to personalize agent programs to meet
individual users’ preferences and constraints, we addressed
the problem of integrating non-Markovian qualitative user
preferences with quantitative decision-theoretic planning in
Golog. We approached the problem by compiling preferences
into Golog programs using a notion of multi-program syn-
chronization which we introduced. This required the redefi-
nition of DT-Golog using a transition semantics which, as a
nice side-effect, enables the implementation of more efficient
and any-time solution algorithms. We proved the soundness
and completeness of our compilation. The resulting system is
able to handle infinite state spaces and allows for an efficient
programmatic restriction of planning tasks using Golog’s pro-
cedural expressiveness. Also, this is, to the best of our knowl-
edge, the first work on integrating qualitative and quantitative
preferences for temporal reasoning. We implemented our ap-
proach, and as a demonstration of its utility developed a cus-
tomizable travel planner for the Web. The results in this paper
are applicable to both symbolic and decision-theoretic agent
programming systems, and may be used not only for the per-
sonalization of agent programs, but also for the realization of
defeasible control strategies for planning.

References

[1] F Bacchus, C. Boutilier, and A. Grove. Structured solution
methods for non-markovian decision processes. In Proceed-
ings of the Fourteenth National Conference on Artificial Intel-
ligence (AAAI-97), Providence, RI, pages 112-117, 1997.

OTechnically speaking these are so-called sensing actions, but
space preclude a thorough discussion of this issue. The interested
reader is referred to the literature, e.g. [14].

(2]

(3]

[4]

(5]

(6]

(71

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

F. Bacchus and F. Kabanza. Using temporal logics to express
search control knowledge for planning. Artificial Intelligence,
16:123-191, 2000.

M. Bienvenu and S. Mcllraith. Specifying and generating pre-
ferred plans. In Proceedings of the 7th International Sympo-
sium on Logical Formalizations of Commonsense Reasoning,
May 22-24, 2005, Corfu, Greece, 2005.

C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole.
Reasoning with conditional ceteris paribus preference state-
ments. In Proceedings of the Fifteenth Annual Conference
on Uncertainty in Artificial Intelligence (UAI-99), Stockholm,
pages 71-80, 1999.

C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun.
Decision-theoretic, high-level agent programming in the sit-
uation calculus. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence (AAAI-2000), Austin, TX,
pages 355-362, 2000.

G. De Giacomo, Y. Lespérance, and H. Levesque. ConGolog,
a concurrent programming language based on the situation cal-
culus. Artificial Intelligence, 121(1-2):109-169, 2000.

J. Delgrande, T. Schaub, and H. Tompits. Domain-specific
preferences for causual reasoning and planning. In Proceed-
ings of the 9th International Conference on Principles of
Knowledge Representation and Reasoning (KR’04) Whistler,
BC, Canada, pages 673-682, 2004.

P. Doherty and J. Kvarnstrom. TALplanner: A temporal logic
based planner. Al Magazine, 2001. Fall Issue.

C. Domshlak, F. Rossi, B. Venable, and T. Walsh. Reasoning
about soft constraints and conditional preferences: complexity
results and approximation techniques. In Proceedings of the
18th International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, August, 2003.

A. Ferrein, C. Fritz, and G. Lakemeyer. On-line decision-
theoretic Golog for unpredictable domains. In Proceedings of
the 27th German Conference on Artificial Intelligence, 2004.

C. Fritz and S. Mcllraith. Compiling qualitative preferences
into decision-theoretic Golog programs: Extended version.
Technical Report CSRG-522, University of Toronto, May
2005. http://www.cs.toronto.edu/ fritz/publications.

A. Gabaldon. Precondition control and the progression algo-
rithm. In Proceedings of the 9th International Conference
on Principles of Knowledge Representation and Reasoning
(KR’04) Whistler, BC, Canada, pages 634-643, 2004.

M. Puterman. Markov Decision Processes: Discrete Dynamic
Programming. Wiley, New York, 1994.

R. Reiter. Knowledge in Action: Logical Foundations for Spec-
ifying and Implementing Dynamical Systems. MIT Press, Cam-
bridge, MA, 2001.

S. Sardina and S. Shapiro. Rational action in agent pro-
grams with prioritized goals. In Proceedings of Autonomous
Agents and Multi-Agent Systems Conference (AAMAS-2003),
Melbourne, Australia. July, 2003, pages 417-424, 2003.

T.C. Son and E. Pontelli. Planning with preferences using logic
programming. In V. Lifschitz and I. Niemela, editors, Proceed-
ings of the 7th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR-2004), number
2923 in Lecture Notes in Computer Science, pages 247-260.
Springer, 2004.



