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Abstract

Conditional Restricted Boltzmann Machines
(CRBMs) are rich probabilistic models that
have recently been applied to a wide range
of problems, including collaborative filtering,
classification, and modeling motion capture
data. While much progress has been made in
training non-conditional RBMs, these algo-
rithms are not applicable to conditional mod-
els and there has been almost no work on
training and generating predictions from con-
ditional RBMs for structured output prob-
lems. We first argue that standard Con-
trastive Divergence-based learning may not
be suitable for training CRBMs. We then
identify two distinct types of structured out-
put prediction problems and propose an im-
proved learning algorithm for each. The first
problem type is one where the output space
has arbitrary structure but the set of likely
output configurations is relatively small, such
as in multi-label classification. The second
problem is one where the output space is arbi-
trarily structured but where the output space
variability is much greater, such as in image
denoising or pixel labeling. We show that
the new learning algorithms can work much
better than Contrastive Divergence on both
types of problems.

1 Introduction

The number of applications for restricted Boltzmann
machines (RBMs) has grown rapidly in the past few
years. They have now been applied to multiclass clas-
sification (Larochelle & Bengio, 2008), collaborative
filtering (Salakhutdinov et al., 2007), motion capture
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modeling (Taylor & Hinton, 2009), information re-
trieval (Gehler et al., 2006; Salakhutdinov & Hinton,
2009), modeling natural images (Osindero & Hinton,
2008) and many other tasks. One problem that has
not received much attention in the RBM literature is
structured output prediction. In this paper, we are
particularly interested in structured output prediction
problems where no obvious and reasonable simplifying
assumptions can be made about the interactions be-
tween the outputs, such as chain-like interactions in
sequential classification problems. One such problem
is multi-label classification, where examples can be la-
beled as simultaneously belonging to several classes.
Another broad class of problems includes image label-
ing, where the goal is to assign a discrete label to each
pixel or region of an image based on some features
extracted from the image.

One difficulty in structured output prediction is that
the output space typically has an exponential num-
ber of possible configurations. In the case of training
RBMs, such a large number of output configurations
means that exact gradients are intractable and approx-
imations to the gradient such as Contrastive Diver-
gence (CD) learning need to be used (Hinton, 2002).
While a number of improved algorithms for training
RBMs with large output spaces have recently been
developed, as we will show, none of them apply to
the problem of training conditional RBMs. In fact,
for large output spaces where exact gradients are in-
tractable (Larochelle & Bengio, 2008), CD learning
has been the only algorithm used to train CRBMs
(Salakhutdinov et al., 2007; Taylor & Hinton, 2009;
Memisevic & Hinton, 2010).

In this work, we argue that CD learning may not be a
very good algorithm for training CRBMs and propose
two new algorithms for tackling structured output pre-
diction problems in two different settings. In the first,
we can assume that the variability in the output space
is limited, meaning that the available training data
covers the set of likely output configurations relatively



well. One example of such problem is multi-label clas-
sification. We propose to use semantic hashing in order
to define and efficiently compute, a small set of possi-
ble outputs to predict given some input. This allows
us to perform exact inference over this set, under the
CRBM’s energy function.

In the second setting, we simply assume that the
output space is high-dimensional and highly vari-
able. Denoising and image labeling are problems that
fall in this category. In this context, we propose
a perceptron-like algorithm for training conditional
RBMs. We then demonstrate that CD-based training
of a conditional RBM fails to find a good solution on
a denoising problem while perceptron-based training
succeeds.

2 Training RBMs

We begin with an overview of maximum likelihood
learning in RBMs before proceeding to learning in con-
ditional RBMs.

2.1 Restricted Boltzmann Machines

A Restricted Boltzmann Machine is an undirected
graphical model that defines a probability distribution
over a vector of observed, or visible, variables v and a
vector of latent, or hidden, variables h. In this paper,
we consider the case where v and h are binary vectors.
An RBM defines a joint probability over v and h,

p(v,h) = exp (−E (v,h)) /Z, (1)

where Z is a normalization constant and E is an energy
function given by

E (v,h) = −vT Wh− vT bv − hT bh. (2)

W is a matrix of pairwise weights between elements
of v and h, while bv and bh are biases for the visible
and hidden variables respectively. To obtain p(v) one
simply marginalizes out h from the joint distribution:

p(v) =
∑
h

exp (−E(v,h)) /Z = exp (−F (v)) /Z (3)

where F (v) is called the free energy and can be com-
puted in time linear in the number of elements in v
and h:

F (v) =− log
∑
h

exp (−E(v,h)) (4)

=− vT bv −
∑

j

log
(
1 + exp

(
bh
j + vT W·j

))
(5)
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Figure 1: Illustration of an RBM (A) and a conditional
RBM (B).

RBMs have generally been trained using gradient de-
scent in negative log-likelihood −l(θ) for some set of
training vectors V. By writing the log-likelihood as

log p(v) = log exp (−F (v))− log
∑
v′

exp (−F (v′, )),

(6)

and differentiating −l(θ) with respect to some param-
eter θ, we get the gradient

∂ − l(θ)
∂θ

=
∂F (v)

∂θ
−

∑
v′

∂F (v′)
∂θ

p(v′). (7)

The first term in Equation 7 can be computed exactly.
This term is often referred to as the positive gradi-
ent. It also corresponds to the expected gradient of
the energy (as opposed to the free energy), where the
expectation is with respect to p(h|v). This simplifi-
cation occurs because the gradient of F w.r.t. p(h|v)
is zero, so the effect of changing the parameters on
p(h|v) can be ignored.

The second term in Equation 7, known as the nega-
tive gradient, is an expectation over the model dis-
tribution, p(v), and is intractable to compute exactly
for all but the smallest models. It is possible to esti-
mate the negative gradient by drawing samples from
the model using MCMC methods. Since both p(v|h)
and p(h|v) factor over the variables, it is possible to
efficiently perform Gibbs sampling by alternating be-
tween updating all of v and all of h simultaneously.
We can then ignore the sampled h and only keep the
sampled v. Nevertheless, running a Gibbs chain until
equilibrium for each parameter update is not feasible.

2.2 Contrastive Divergence

The first practical method for training RBMs was in-
troduced by Hinton (2002), who showed that the neg-
ative gradient can be approximated using samples ob-
tained by starting a Gibbs chain at a training vec-
tor and running it for a few steps. This method ap-
proximately minimizes an objective function known
as the Contrastive Divergence. Even though it has
been shown that the resulting gradient estimate is not



the gradient of any function (Sutskever & Tieleman,
2010), CD learning has been used extensively for train-
ing RBMs and other energy-based models.

2.3 Persistent Contrastive Divergence

One problem with CD learning is that it provides bi-
ased estimates of the gradient. The Persistent Con-
trastive Divergence (PCD) algorithm (Tieleman, 2008)
addressed this problem. In the positive phase, PCD
does not differ from CD training. In the negative
phase, however, instead of running a new chain for
each parameter update, PCD maintains a single per-
sistent chain. The update at time t takes the state
of the Gibbs chain at time t − 1, performs one round
of Gibbs sampling, and uses this state in the negative
gradient estimates. When the learning rate is small,
the model does not change much between updates and
the state of the persistent chain is able to stay close
to the model distribution, leading to more accurate
gradient estimates.

A number of other algorithms have been proposed for
obtaining better gradient estimates for training RBMs
(Desjardins et al., 2010; Salakhutdinov, 2010; Tiele-
man & Hinton, 2009). However, these algorithms
make use of persistent Markov chains for obtaining im-
proved gradient estimates and, as we will later show,
this makes these algorithms, as well as PCD, not ap-
plicable to training of conditional RBMs.

3 Training Conditional RBMs

A CRBM (see figure 1) models the distribution p(v|u)
by using an RBM to model v and using u to dynami-
cally determine the biases or weights of that RBM. In
this paper we only allow u to determine increments to
the visible and hidden biases of the RBM:

E (v,h,u) =− vT Wvhh− vT bv − uT Wuvv

− uT Wuhh− hT bh (8)

with the associated free energy

F (v,u) =− log
∑
h

exp (−E(v,h,u)) (9)

=−
∑

j

log
(
1 + exp

(
bh
j + vT Wvh

·j + uT Wuh
·j

))
− vT bv − uT Wuvv. (10)

Note that the algorithms we propose in this paper are
not restricted to this model and can be used to train
any energy-based model for which the free-energy (or
just the energy, for models without latent variables)
can be computed. For the CD-PercLoss algorithm

there is an additional requirement that Gibbs sam-
pling can be performed.

The CRBM model defines the following probability
distribution:

p(v|u) =
exp (−F (v,u))∑
v′ exp (−F (v′,u))

. (11)

Learning in conditional RBMs generally involves doing
gradient descent in negative log conditional likelihood.
The gradient of the negative log conditional likelihood
for a conditional RBM is given by

∂ − l(θ)
∂θ

=
∂F (v|u)

∂θ
−

∑
v′

∂F (v′,u)
∂θ

p(v′|u). (12)

In some cases this gradient can be computed exactly
(Larochelle & Bengio, 2008), but it is intractable in
general. However, since p(v|h,u) and p(h|v,u) are
both factorial over v and h, CD can be used to train
a conditional RBM – the positive gradient is still
tractable and it is still possible to do block Gibbs sam-
pling to approximate the negative gradient.

Almost all algorithms that have been proposed for
training RBMs are not applicable to training con-
ditional RBMs because they make use of persistent
chains. With a conditional RBM, each condition-
ing vector u generally leads to a unique distribution
p(v|u), hence one needs to sample from a different
model distribution for each training case, making it
impossible to use a single persistent chain. One could
run a separate persistent chain for each training case,
but this is only feasible on very small datasets. To
learn efficiently on large datasets we need to update
the weights on mini-batches of training data that are
much smaller than the whole training set, so by the
time we revisit a training case the weights will have
changed substantially and the persistent chain for that
case will be far from its stationary distribution.

Unlike algorithms based on persistent chains, a num-
ber of the algorithms recently proposed for training
non-normalized statistical models could be applied to
conditional RBM training (Hyvärinen, 2007; Vickrey
et al., 2010). While we only compare our approaches
to algorithms that have been applied to conditional
RBMs, the Contrastive Constraint Generation (CCG)
algorithm (Vickrey et al., 2010) is the most closely re-
lated approach to our work. CCG is a batch algorithm
that maintains a contrastive set of points for each
training case, where the contrastive points are gen-
erated by running some inference procedure. Both of
our proposed approaches have similarities to the CCG
algorithm. The HashCRBM algorithm uses spectral
hashing to define the contrastive neighborhoods and
only includes values of v that are in the training set,



which ensures that the total number of unique con-
trastive points is reasonable. The CD-PercLoss algo-
rithm generates contrastive examples using inference,
but it is an online algorithm, and hence can scale up
to large datasets unlike CCG.

4 Making Predictions with
Conditional RBMs

While RBMs have primarily been used for learning
new representations of data, conditional RBMs are
generally used for making predictions. This typically
requires inferring either the modes of the conditional
marginals p(vi|u) or the mode of the full conditional
p(v|u). Such inferences are intractable in general,
hence approximate inference algorithms must be used.

The most popular in the RBM literature for condi-
tional models is mean-field inference (Salakhutdinov
et al., 2007; Mandel et al., 2011), which is a fast mes-
sage passing algorithm and can work well in practice.
In the context of structured prediction, it assumes
a full conditional that factorizes into its marginals
q(v|u) =

∏
i q(vi|u) and finds the marginals that pro-

vide the best approximation of the true conditional
distribution.

Loopy belief propagation (Murphy et al., 1999) is an-
other possible message passing algorithm that could be
used and that tends to provide better approximations
of the conditional marginals of CRBMs (Mandel et al.,
2011). Unfortunately, it is also slower than mean-field,
and we have found it to be practical only on problems
with relatively small output dimensionality and hidden
layer size.

5 Suitability of CD Training

In this section we argue that CD training may not be
very well suited to training conditional RBMs. One
way to look at CD training of RBMs is as a process
that lowers the free energy of the data v in the positive
phase and raises the free energy of the kth state of a
Gibbs chain started at the data v. Such a process can
be seen as minimizing the following loss function

LCD(v,u|θ) = F (v,u|θ)− F (vk(θold),u|θ), (13)

where vk(θold) is the kth state of a Gibbs chain that
is started at the data and uses parameters θold to de-
termine the transition matrix. When the parameters
θ are updated, the Markov chain used to produce vk

also changes, but the CD learning procedure ignores
the effect this has on the second free energy term in
Eq 13.

If the negative samples vk have the same distribution

as the data v, the loss function LCD will be zero on
average, meaning that we have successfully learned the
data distribution p(v|u). However, since the negative
phase Gibbs chain starts at the data, this objective
function will also be small if the chain is mixing slowly.
Indeed, if the chain starts at v and is mixing slowly
then, for small k, vk will be very close to v, in turn
making LCD small. This is particularly troubling be-
cause, when training a conditional RBM, the aim is
usually to be able to make good predictions for v when
given a conditioning vector u and making LCD small
gives no guarantees about the quality of the predic-
tions.

It is interesting to note that CD training of non-
conditional RBMs also suffers from the same problem,
i.e. the gradient estimate will be small when the nega-
tive phase Gibbs chain is mixing slowly. Nevertheless,
this is not as much of an issue when training non-
conditional RBMs because they are generally used for
learning representations of the data. If a Gibbs chain
started at the data v is mixing slowly and not mov-
ing far from v, then the hidden representation h must
contain enough information to reconstruct v well, pos-
sibly making h a reasonable representation of v. In a
conditional RBM being able to reconstruct the data v
is not sufficient for making good predictions, because
at prediction time one only has access to u and not v.

Therefore, it seems that while CD is a reasonable train-
ing procedure for non-conditional RBMs, it may not be
a reasonable training procedure for conditional RBMs
because it does not directly encourage the model to
make good predictions. We provide experimental sup-
port for this argument by showing that CD training of
conditional RBMs can fail on seemingly simple struc-
tured output prediction problems.

6 Two Algorithms for Structured
Output Prediction with CRBMs

We propose two alternatives to CD training of
CRBMs. The first alternative is appropriate when the
variability of observed configurations for v is limited
and the output space is relatively well covered by the
available training data. The second looks at the case
where such assumptions are not reasonable and tries
to address the structured output problem in general.

6.1 Structured Output Prediction when
Output Variability is Limited

As mentioned before, the intractability of learning and
inference is directly related to the exponential size of
the output space – if the number of possible configu-
rations for the output target v was small enough, an



exhaustive enumeration of these configurations would
be possible and exact training/inference could be con-
sidered.

Part of the reason for the exponential size of v is that
we wish to be conservative with respect to the po-
tential configurations of v that the model can output
and not discard any of them before training. For cer-
tain problems however, being this conservative is not
necessary. In particular, if there are enough available
training data to cover (or come very close to) all rea-
sonable configurations of v, it would be sufficient to
constrain the predictions to correspond to a value of v
previously observed. In other words, we would define

p(v|u) =
1v∈V exp (−F (v,u))∑
v′∈V exp (−F (v′,u))

(14)

where the difference with Equation 11 is that we have
explicitly set to zero the probability of outputs not in
the set V ⊆ {0, 1}|v|, corresponding to all values of v
observed in the training set.

Spectral Hashing

While technically possible, this approach will be terri-
bly slow for large V, even if relatively small compared
to {0, 1}|v|. Moreover, given some input u, only a
subset of V will correspond to likely prediction candi-
dates. So computationally, it would be even better to
construct a subset V(u) ⊆ V for each given input u,
as long as constructing this subset is fast.

Fortunately, this can be achieved by viewing the prob-
lem of constructing this subset V(u) as one of per-
forming fast retrieval of relevant “documents” v for
some given “query” u. The spectral hashing algo-
rithm of Weiss et al. (2009) then provides a method for
constructing such subsets without having to explicitly
search through the training set.

The original spectral hashing algorithm allows for fast
retrieval of (approximate) nearest neighbors by learn-
ing a binary code for the inputs u and then con-
structing a hash map where the values are the training
set inputs u and the keys are their associated binary
codes. Neighbors can then be retrieved by comput-
ing the given input’s binary code and using the hash
map to fetch the training inputs whose binary codes
are within a small hamming distance. In this paper
we use a maximum hamming distance of 1 which gives
n + 1 hash map accesses for a binary code of n bits.
We could probably achieve better results at the cost of
more computation by using a slightly larger hamming
ball, especially for codes with many bits or for codes
that return few candidates because their immediate
neighbors never occur in the training data.

One important advantage of spectral hashing over

other variants like its precursor semantic hash-
ing (Salakhutdinov & Hinton, 2007) is that training
is very efficient and has an analytical solution. It is
based on a spectral relaxation of the general semantic
hashing problem and mainly requires the computation
of a few principal components (PCA) of the inputs.
See Weiss et al. (2009) for more details.

In the context of this work, there is one simple modifi-
cation we must apply to the original spectral hashing
algorithm. Since we wish to obtain a set of outputs
V(u), when constructing the hash map, we associate
to the binary code keys the training set target v as-
sociated with the input u that generated the binary
code. Moreover, when merging the n + 1 sets of out-
puts v obtained from each hash map access, duplicated
configurations of v must be filtered out1.

Training and Inference

When using input dependent output subsets V(u), the
CRBM conditional distribution becomes:

p(v|u) =
1v∈V(u) exp (−F (v,u))∑
v′∈V(u) exp (−F (v′,u))

(15)

where we now explicitly assign a probability of zero to
even more output configurations. We can then train
this CRBM by exact gradient descent on the negative
log conditional likelihood. The gradient is similar to
that of Equation 12, but where the so-called negative
gradient requires a sum over elements in V(u) only. No
approximations are needed. We will refer to CRBMs
trained using this proposed spectral hashing method
as HashCRBMs.

For inferring a prediction at test time, one sim-
ple option would be to output the element of V(u)
with smallest free energy F (v,u), which would cor-
respond to predicting the mode of the global condi-
tional p(v|u). However, the quality of this prediction
relies heavily on the quality of potential predictions
in V(u). In particular, with predictions based on the
conditional mode, if the correct target isn’t present in
V(u), then there is no way for the HashCRBM to make
a perfect prediction.

Another option would be to make predictions for each
element of v based on the modes of each marginal
p(vi|u). Noting v̂ as the HashCRBM prediction, this
would correspond to computing

v̂i = argmax
a∈{0,1}

p(vi = a|u) = argmax
a∈{0,1}

∑
v∈V(u)

s.t. vi=a

p(v|u).

(16)
1This issue doesn’t come up in the original spectral

hashing since the hash map values directly generated the
keys (binary codes), and hence the same hash map value
can only be associated with one key



Such a prediction is much more appropriate when
the performance measure for the task to solve de-
composes into individual costs for each element of
v̂. More importantly, this allows the HashCRBM to
make predictions that are not in V(u). For instance,
if V(u) = {[1, 1, 0], [1, 0, 1], [0, 1, 1]} and the free en-
ergy F (v,u) is the same for all v ∈ V(u), then the
HashCRBM prediction will be v̂ = [1, 1, 1] /∈ V(u).

6.1.1 Experiments with HashCRBM

In multi-label classification, the target v to predict
corresponds to a binary vector which encodes whether
input u belongs to class l (ul = 1) or not (ul = 0), for
all classes l ∈ {1, . . . , L}. Alternatively, we say that
u has label l if ul = 1. Labels (or classes) are not
mutually exclusive, hence the name multi-label clas-
sification. Modeling the tendency of certain labels to
co-occur can then bring potential improvements in per-
formance.

We compare the HashCRBM of Section 6.1 to three
other different models: a model consisting of sev-
eral label-specific logistic regressors (LogReg), a condi-
tional random field (CRF) with fully connected output
units and a standard CRBM trained using contrastive
divergence. We looked at either mean-field (CRBM
+ MF) or loopy belief propagation (CRBM + LBP)
to perform approximate inference of the conditional
marginals p(vi|u), with different numbers of iterations
(in {5, 10, 20}). For the CRF, we used 50 iterations
of loopy belief propagation to approximate the con-
ditional likelihood gradients and to make predictions.
Whenever loopy belief propagation was used, differ-
ent damping factors (in {0, 0.3, 0.6}) were also tested.
All models made predictions at test time based on the
(estimated) conditional marginals’ modes, which is ap-
propriate for multi-label classification since the perfor-
mance measure is the average of the individual label
classification errors.

All models were trained by stochastic gradient descent,
with learning rate chosen among {2−4, 2−6, 2−8, 2−10}.
Hidden layer sizes in {32, 64, 128, 256}, number of
Gibbs steps for CD training in {1, 10, 20} were tested
for both CRBM baselines. For HashCRBM, binary
codes of size n in {5, 7, 9} were used. The best combi-
nation of hyper-parameters values was selected based
on the validation set performance for each model.
Early stopping based on the validation set error pro-
gression was also employed.

Table 1 gives the average (over all labels) classifica-
tion error for each model, on four different datasets:
Yeast (Elisseeff & Weston, 2002), Scene (Boutell
et al., 2004), MTurk (Mandel et al., 2010) and Ma-
jMin (Mandel & Ellis, 2008). The first two are com-

Model Yeast scene MTurk MajMin

LogReg 19.92 10.55 7.32 4.26
CRF 21.03 9.75 7.21 4.24
CRBM + MF 20.73 9.85 7.27 4.28
CRBM + LBP 20.58 9.47 7.25 4.22
HashCRBM 20.02 8.80 7.24 4.20

Table 1: Average test errors for multi-label experiment
on four datasets. For each dataset, we put in bold the
lowest average error as well as any other average error
that is not statistically significantly different from the
lowest, based on a 95% two-sided t-test on the test
error differences for the 10 folds.

mon public benchmarks for multi-label classification.
The last two correspond to music tagging problems
and were provided by the authors of Mandel et al.
(2010) and Mandel and Ellis (2008). For each dataset,
we report the average test performance over 10 folds,
each consisting in a training (80%), validation (10%)
and test (10%) split of the whole data.

As we can see, the HashCRBM is consistently amongst
the best performing models, with a particularly big
improvement over all methods on the Scene dataset.

6.2 General Structured Output Prediction

Minimizing the Generalized Perceptron Loss

As we argued in Section 5, Contrastive Divergence
learning may not be a suitable procedure for train-
ing conditional RBMs because it does not seem to
directly discourage the model from making bad pre-
dictions. We propose circumventing this problem in
training conditional RBMs by instead minimizing a
loss function that depends on the model’s prediction.
Given a training case (v,u), the generalized percep-
tron loss (LeCun et al., 2006) is defined as

LP (v,u, θ) = F (v,u, θ)− min
v∗(θold)

F (v∗(θold),u, θ).

(17)
When using argminv∗ F (v∗,u) as the model’s predic-
tion for a vector u, minimizing the generalized percep-
tron loss will directly discourage the model from mak-
ing bad predictions by continuously raising the free en-
ergy of the model’s predictions and lowering the free
energy of the data.

Since the minimization in Equation 17 is equivalent to
finding the mode of the distribution p(v|u), it is, in
general, intractable for conditional RBMs. When this
minimization cannot be performed exactly, we propose
using the free energy at the model’s prediction v̂ for
the conditioning vector u in place of the minimum free
energy value. The loss function LP can then be ap-



proximately optimized efficiently for the same class of
energy functions for which the free energy can be com-
puted efficiently. Intuitively, training a conditional
RBM in this manner has the appealing quality that
the gradient should be large when the model makes a
bad prediction.

To fully specify our training algorithm we now de-
scribe our procedure for making predictions. First,
we initialize the states of the visible units. When con-
nections between u and v are present, we initialize vi

to σ(bv
i + uT Wuv

·i ), where σ(x) = 1/(1 + exp(−x)).
These starting values for vi correspond to the proba-
bilities given by the logistic regression component of
the conditional RBM. When there are no connections
between the conditioning vector u and the visible units
v we initialize visible units randomly by setting each
unit to 1 with probability 0.5 and 0 otherwise. Start-
ing with the initialized states for v we run k steps of
Gibbs sampling producing k sets of states of the visi-
ble units v(1), . . . ,v(k) (one for each iteration of Gibbs
sampling). Finally, out of these k configurations, we
select the configuration of the visible units with the
lowest free energy as the prediction. This procedure
corresponds to a stochastic search through the space
of possible outputs.

The proposed training procedure then corresponds to
minimizing

LP (v,u) = F (v,u)− F (v̂,u),

where v̂ is seen as a constant and is the prediction
produced by the stochastic search procedure (in other
words we ignore the dependence of v̂ on the param-
eters during optimization). Since stochasticity is not
a desirable property of a prediction procedure, at test
time, we use k steps of mean field inference instead
of k steps of Gibbs sampling to produce v(1), . . . ,v(k).
We refer to this algorithm as CD-PercLoss.

6.2.1 Experiments

We consider the problem of image denoising, where
the goal is to predict a clean image v from some noisy
image u. We use two datasets derived from the MNIST
digit database2. In both cases, we first binarized all
digits by thresholding the pixel values at 0.5.

In the first dataset, which we will refer to as corrupted
MNIST, the vector v is the clean binarized digit while
the vector u is obtained by flipping 10% of the entries
in v. Having a good model of digits is not essential

2We do not provide results on the multi-label classifi-
cation datasets used to evaluate HashCRBM because we
do not expect it to outperform HashCRBM in this setting,
and preliminary results confirm that CD-PercLoss has per-
formance comparable to CRBM+MF on such problems.

for doing well on this dataset because it is possible to
do well just by doing local voting among entries of u
when making a prediction.

For the second dataset, the vector u is obtained by
setting a random 8 by 8 patch of the image v to 0.
With this type of noise, the distribution p(v|u) can be
bimodal when, for example, the upper part of a 7 is
replace by 0s, making it difficult to determine whether
the original digit was a 1 or a 7. An approach that
takes structure in the entries of v into account should
do well on this type of problem. We will refer to this
dataset as occluded MNIST.

CRBMs with the energy function of Equation 8 should
be able to do well on both the corrupted and occluded
MNIST tasks. The weights W should learn features
that are good for representing handwritten digits, such
as parts of digits. The weights Wuh then correspond
to a set of linear filters on the vector u (one for each
hidden unit) that bias the hidden units to being on or
off. The weights Wuv similarly bias visible units.

We fix the number of hidden units at 256 and train
the model with CD-k for k = 1 and k = 10 for
128 epochs. We also test logistic regression and the
CD-PercLoss algorithm with 10-step predictions. We
used stochastic gradient descent with batches of size
128 and did not use momentum or weight decay. A
fixed learning rate was selected from the choices in
{20, 2−2, 2−4, . . . , 2−14} using a validation set. Early
stopping based on the validation error was also used.

Table 2 shows the fraction of incorrectly labeled pixels
on the corrupted and occluded MNIST for the different
algorithms. We also include a baseline that uses the
corrupted image as the prediction to show that the
algorithms are indeed cleaning up the noisy images. As
expected, all algorithms perform well on the Corrupted
MNIST task with the CD-PercLoss algorithm slightly
outperforming the others.

On the Occluded MNIST dataset, the CD-PercLoss
training algorithm outperforms the other algorithms
by a wider margin. The error rate on the pixels
that were deleted by the noise process for the model
trained with CD-PercLoss is 20% lower than the mod-
els trained with CD. Somewhat surprisingly, even lo-
gistic regression achieves lower error than the condi-
tional RBMs trained with CD-1 and CD-10. Since
the weights Wuv essentially define a logistic regression
component inside the conditional RBM model, the in-
ability of CD to train a richer model to achieve lower
error on a dataset where structured prediction should
help confirms our theory that CD may not be a good
algorithm for training such models. Figure 2 shows
the predictions for the best models trained with CD-
1, CD-10 and CD-PercLoss. This figure shows that



Dataset Corrupted Occluded

Model All Changed All Changed

Baseline 9.993 100.0 1.920 100.0
LogReg 1.937 12.54 1.560 60.10
CD-1 1.923 10.95 1.800 62.90
CD-10 1.816 11.1 1.704 67.93
CD-PercLoss 1.755 10.71 1.357 41.89

Table 2: Average test errors for the denoising exper-
iment on MNIST. Two numbers are shown for each
model and dataset. All Denotes the percentage of
incorrectly labeled pixels among all pixels. Changed

denotes the percentage of incorrectly labeled pixels
among pixels that were changed by the noise process.
Bold has the same meaning as in Table 1.

while the error rates over all pixels seem quite low, the
models trained with CD-1 and CD-10 are unable to re-
construct most digits correctly while the model trained
with CD-PercLoss correctly cleans up most digits.

7 Conclusions and Future Work

We have presented two new algorithms for training
conditional RBMs and shown that they perform bet-
ter than alternative methods in the regimes for which
they are appropriate. The CD-PercLoss procedure is
actually more like the original learning procedure for
Boltzmann Machines than like contrastive divergence
because the chain is started at a random state instead
of the data.

The training procedure that was first proposed for
Boltzmann machines (Ackley et al., 1985) involved es-
timating the derivative of the log partition function
by starting both the hidden and the visible units at
a random state and then using simulated annealing
down to a temperature of 1 to try to sample from the
stationary distribution. For RBMs, contrastive diver-
gence was a practical advance on the original learning
procedure for two main reasons. First, if the model
is highly multi-modal with widely separated modes, it
is hard to ensure that randomly initiated chains sam-
ple the different modes with the right relative frequen-
cies. For a good model, the modes of the model should
roughly correspond to the modes of the data distribu-
tion, so starting the chain at a random datapoint helps
to ensure that it samples the modes better, especially
towards the end of learning. Second, when training on
large datasets using small mini-batches, starting the
chain at the data helps to ensure that the sampling
error in the data caused by using a small mini-batch
is roughly balanced by a highly correlated sampling
error in the “negative” data.

For CRBMs, the joint distribution of the visible and
hidden units conditioned on u is generally much less
multi-modal than the joint distribution in an RBM, so
the advantages of CD over the original learning pro-
cedure can be diminished to the point where it is no
longer an effective technique.

One interesting direction of future work is to investi-
gate a structured output max-margin variant of CD-
PercLoss, with loss margin scaling. This should only
require two changes: that loss-augmented inference be
performed by subtracting a loss term l(v∗(θold),v) in-
side of the minimization of Equation 17, and that a
parameter update be performed only when the differ-
ence in free energies of v̂ and v is smaller than the
loss l(v̂,v). Using the hamming loss, it should be
straightforward to define loss-adapted Gibbs sampling
iterations for the approximate stochastic minimization
search. L2 regularization would also need to be added.
HashCRBM could similarly be adjusted.
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