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We describe a family of non-linear sequence models that is substantially more powerful
than hidden Markov models or linear dynamical systems. Our models have simple approxi-
mate inference and learning procedures that work well in practice. Multilevel representations
of sequential data can be learned one hidden layer at a time, and adding extra hidden layers im-
proves the resulting generative models. The models can be trained with very high-dimensional,
very non-linear data such as raw pixel sequences. Their performance is demonstrated using
synthetic video sequences of two balls bouncing in a box.

Introduction

Many different models have been proposed for high-dimensional sequential data such as video
sequences or the sequences of coefficient vectors that are used to characterize speech. Models
that use latent variables to propagate information throughtime can be divided into two classes:
tractable models for which there is an efficient procedure for inferring the exact posterior
distribution over the latent variables andintractablemodels for which there is no exact and
efficient inference procedure. Tractable models such as linear dynamical systems and hidden
Markov models have been widely applied but they are very limited in the types of structure
that they can model. To make inference tractable when there is componential hidden state, it
is necessary to use linear models with Gaussian noise so thatthe posterior distribution over
the latent variables is Gaussian. Hidden Markov Models combine non-linearity with tractable
inference by using a posterior that is a discrete distribution over a fixed number of mutually
exclusive alternatives, but the mutual exclusion makes them exponentially inefficient at dealing
with componential structure: to allow the history of a sequence to imposeN bits of constraint
on the future of the sequence, an HMM requires at least2N nodes. Inference remains tractable
in mixtures of linear dynamical systems [4], but if we want toswitch from one linear dynamical
system to anotherduringa sequence, exact inference becomes intractable [4]. Inference is also
tractable in products of hidden Markov models [2].1

1Products of linear dynamical systems are linear dynamical systems and mixtures of hidden Markov models
are hidden Markov models.
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To overcome the limitations of the tractable models, many different schemes have been
proposed for performing approximate inference [10, 5]. Boyen and Koller [1] investigated
the properties of a class of approximate inference schemes in which the true posterior density
in the latent space is approximated by a simpler “assumed” density such as a mixture of a
modest number of Gaussians [9]. At each time step, the model dynamics and/or the likelihood
term coming from the next observation causes the inferred posterior density to become more
complicated, but the inferred posterior is then approximated by a simpler distribution that lies
in the space of assumed distributions. Boyen and Koller showed that the stochastic dynamics
attenuates the approximation error created by projecting into the assumed density space and
that this attenuation typically prevents the approximation error from diverging.

In this paper we describe a family of generative models for sequential data that can cap-
ture many of the regularities that cannot be modeled efficiently by hidden Markov models or
linear dynamical systems. The family has anundirectedmodel for the interactions between
the hidden and visible (i.e. observed) variables. This ensures that the contribution ofthe likeli-
hood term to the posterior over the hidden variables is exactly factorial which greatly facilitates
inference. This model family has some attractive properties:

• It has componential hidden state which means it has an exponentially large state space2.

• It has non-linear dynamics and it can make multimodal predictions.

• There is a very simple on-line filtering procedure which provides a good approximation
to the true conditional distribution over the hidden variables given the data observed so
far.

• Even though maximum likelihood learning is intractable, there is a simple and efficient
learning algorithm that finds good values for the parameters.

• There is a simple way to learn multiple layers of hidden variables and this can greatly
improve the overall generative model.

By using approximations for both inference and learning, weobtain a family of models that
is much more powerful than those that are normally used for modeling sequential data.

The empirical question is whether our approximations are good enough to allow us to
exploit its power for modeling real sequences in which each time-frame is high-dimensional
and the past has high-bandwidth non-linear effects on the future.

The generative model

The Restricted Boltzmann Machine

We begin by reviewing the Restricted Boltzmann Machine (RBM) [6, 14]. It has a simple, exact
inference procedure for the hidden variables and an efficient approximate learning algorithm

2The number of parameters is only quadratic, so there are strong limitations on how the exponentially large
state space can be used, but for sequences in which there are several independent things going on at once, it is
easy to use different subsets of the hidden units to model different components of the sequential structure.
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for the parameters. These two properties make the RBM very useful as an observation model
for sequential data. When an RBM is modified to be conditionedon previous hidden and/or
visible states, we get a temporal RBM (TRBM) which can be usedto model sequences.

The RBM defines a distribution over(V, H) ∈ {0, 1}NV × {0, 1}NH via the equation

P (V, H) = exp (V ′WH + a′V + b′H) /Z, (1)

whereW are the connection weights of the RBM,a,b are the biases forV andH, and the
variablesNV andNH are the number of dimensions ofV andH. We use the notationV ′

for V transpose, since the standard notation creates confusion in later sections. The variable
V stands for visible andH for hidden, and we useP (V, H) to mean either a distribution
or a single probability, depending on the context. We use themore cumbersome notation
P (V = v, H = h) to clarify the ambiguous cases.

The joint distributionP (V, H) is from the exponential family andV H ′ is the sufficient
statistics, subject to the constraint that(V, H) is a binary vector. The conditional distributions
P (V |H) andP (H|V ) are factorial and are given by

P (Hj = 1|V ) = σ
(

bj + W ′
:,jV

)

(2)

P (Vi = 1|H) = σ (ai + Wi,:H) , (3)

whereσ(z) = (1 + exp(−z))−1 is the logistic function andW:,j, Wi,: are thejth column and
theith row ofW .

The derivative of the log likelihoodL with respect to the parameters is given by the very
simple equations

∆Wij ∝ 〈ViHj〉P (H|V )P̃ (V ) − 〈ViHj〉P (V,H) (4)

∆ai ∝ 〈Vi〉P̃ (V ) − 〈Vi〉P (V ) (5)

∆bj ∝ 〈Hj〉P (H|V )P̃ (V ) − 〈Hj〉P (H), (6)

whereP̃ (V ) denotes empirical the data distribution which is the average of the datapoints in
the training set. Maximum likelihood estimation is difficult due to the need to compute expec-
tations with respect to the model’s distribution,〈·〉P (V,H). An obvious way to compute these
expectations is to use alternating Gibbs sampling. Starting from an arbitrary initial distribution,
we alternate between updating all of the hidden units in parallel using Eq. 2 and updating all
of the visible units in parallel using Eq. 3. After a sufficient number of iterations, this method
gives unbiased samples from the distributionP (V, H) [12]. It is generally much better than
brute-force calculation of the expectation which takes exponential time in the size of the RBM,
but it is still slow in practice, since the Markov chain needsto be run foreachiteration of the
learning algorithm.

Fortunately, there is another parameter estimation methodwhich we call Contrastive Di-
vergence (CD) because it follows the approximate gradient of an objective function that is the
difference of two Kullback-Liebler divergences [6]. CD is much more efficient than maximum
likelihood learning and it works well in practice – RBMs learned with CD produce high-quality
generative models [3]. The weight updates for CD are given by

∆Wij ∝ 〈ViHj〉P (H|V )P̃ (V ) − 〈ViHj〉P1(V,H) (7)

∆ai ∝ 〈Vi〉P̃ (V ) − 〈Vi〉P1(V,H) (8)

∆bj ∝ 〈Hj〉P (H|V )P̃ (V ) − 〈Hj〉P1(V,H), (9)
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where a sample from the distributionP1 is obtained by running Gibbs sampling for 1 full step,
having initialized(V, H) by P̃ (V )P (H|V ). More specifically, we sample the visiblesV from
P̃ (V ), the hiddensH from P (H|V ), and then sample the visibles and then the hiddens once
more to get a sample fromP1. For CD to work,V mustbe initialized withP̃ (V ).

There is a simple intuitive way to understand what CD learning is doing. Instead of sam-
pling from the model’s distribution, we allow the model to slightly distort the data distribution
towards a distribution that the model prefers. Then we lowerthe free energy of the data and
raise the free energy of the distorted data to prevent the model distorting the data in that direc-
tion in future. This can be viewed as a way of making the gradient of the free energyw. r. t.
the distribution be zero at the data distribution.

Even though RBM’s define a distribution over{0, 1}NV , they can sometimes be used to
model[0, 1] valued variables by treating intermediate values as probabilities. For the MNIST
images of handwritten digits, for example, the normalized pixel intensities are mostly very
close to 0 or 1 and it works well to treat the intermediate values as probabilities. Contrastive
divergence learning works well when the we update the visible variables in Eq. 3 to have the
real values produced by the logistic without using random sampling. In Eq. 2, we still use
random sampling to obtain binary stochastic values forH, but on the RHS we simply use the
real values ofV which amounts to using a mean field approximation. In the simple videos
described later in the paper, we used the mean-field approximation for the pixels.

Treating intermediate values as probabilities and using the mean-field approximation in
Eq. 2 does not work well for most real-valued images, such as images of faces, because it
cannot assign a sharply peaked probability distribution toan intermediate pixel intensity. For
these images we can replace Bernoulli-distributed binary visible units by Gaussian-distributed
real-valued ones [8].

The Temporal Restricted Boltzmann Machine for sequence modeling

Figure 1 shows an RBM that has been been augmented by adding directed connections from
previous states of the visible and hidden units. We call thisa Temporal Restricted Boltzmann
Machine (TRBM). The TRBM defines a joint distribution over(Vt, Ht) that is conditional on
earlier hidden and visible states. The effect of these earlier states is to dynamically adjust the
effective biases of the visible and hidden units at timet:

P (Vt, Ht|V
t−1
t−m, H t−1

t−m) = exp(V ′
t C0Ht + b′Ht + a′Vt+

V ′
t−1C1Ht + V ′

t−2C2Ht + · · ·+ V ′
t−mCmHt + (10)

H ′
t−1B1Ht + H ′

t−2B2Ht + · · ·+ H ′
t−mBmHt +

V ′
t A1Vt−1 + V ′

t A2Vt−2 + · · · + V ′
t AmVt−m)/Z,

whereVt, Ht denote the state of the variables at timet and the notationV t−1
t−m stands for

Vt−1, . . . , Vt−m, and likewise,H t−1
t−m. Z depends on the states ofV t−1

t−m, H t−1
t−m, as well as on

the weight matrices{Aj}j≤m, {Bj}j≤m, {Cj}j≤m and the usual biasesa,b. That is, we have a
standard RBM withC0 as its weight matrix, but the bias forHt isb+B1Ht−1+· · ·+BmHt−m+
C1Vt−1 + · · · + CmVt−m and the bias forVt is a + A1Vt−1 + · · · + AmVt−m, both of which
depend on the states of the variables in the previous time steps. Whenever the TRBM needs to
use a value ofVτ or Hτ whereτ is less than 1, we use learned “initial” values that depend onτ
to replace the product of the output of a unit and the weight onthe directed connection.
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Figure 1: The TRBM

We model the probability of a whole sequence using a product of the distributions defined
by a separate TRBM for each time step, with all of the TRBM’s sharing the same parameters:

P (V T
1 , HT

1 ) =

T
∏

t=1

P (Vt, Ht|V
t−1
t−m, H t−1

t−m) (11)

There are three reasons we chose the TRBM as the building block for our sequence model.
The first is that givenV t

1 andH t−1
1 the distribution overHt is factorial as long as the future

variablesV T
t+1, H

T
t+1 are unknown. This helps to ensure that a factorial approximation to the

filtering distribution (P (Ht|V
t
1 )) is reasonably accurate.

The second reason is that parameter estimation for an individual TRBM can be done effi-
ciently using CD if we know the previous hidden and visible states, so by using the filtering
distribution to approximate the posterior distribution over the hidden variables we can reduce
the problem of modeling whole sequences to the problem of modeling the distribution of the
current time frame of data given the previous data and the previous hidden states computed by
the filtering distribution.

The third reason is that the TRBM model can easily be extendedto include additional
hidden layers and by adding more hidden layers we get a betterrepresentation and a better
generative model.

Approximate Filtering

Our model is designed to make it easy to approximate the filtering distributionP (Ht|V
t
1 ). Let

Papprox(Hti = 1|V t
1 ) be the probability that theith hidden unit is on in the factorial approxi-

mation to the filtering distribution. For each timet we maintain a vectorpt ∈ [0, 1]NH such
that pti = Papprox(Hti = 1|V t

1 ). We show how to computept, which clearly shows how to
immediately obtainPapprox.

We derive our factorial approximation from the following observation. Suppose thatV t
1

andH t−1
1 are known with certainty. In that case, the filtering distribution is factorial and is
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given by

P (Hti = 1|V t
1 , H t−1

1 ) = σ(C0Vt + B1Ht−1 + · · ·+ BmHt−m + C1Vt−1 + · · ·+ CmVt−m + bi),
(12)

which is simply the sigmoid of all the inputs from the previous time frames to unitHti.

In the general case, we assume thatV t
1 is given by the data with certainty butH t−1

1 is
unknown and its uncertainty is represented by a factorial distributionPapprox (andp). We use
the mean-field equations [13] to computept from pt−1

1 and V t
1 . The resulting equation is

very similar to equation 12, except that we replace the values of the variablesHt with their
probabilitiespt, thus getting the equation

pti = σ(C0Vt + B1pt−1 + · · · + Bmpt−m + C1Vt−1 + · · ·+ CmVt−m + bi). (13)

Learning

To allow online learning, we ignore the effect of future dataon the inferred distribution over
Ht and use the approximate filtering distribution as an approximate posterior (i.e. we do not
do smoothing). Consider the following standard lower boundto the log likelihood [11]:

log P (V T
1 ) ≥

〈

log P
(

V T
1 , HT

1

)〉

Papprox
+ H (Papprox) , (14)

whereH is the entropy of a distribution, andPapprox(H
T
1 |V

T
1 ) is the approximate filtering distri-

bution. We would like to maximize this lower bound with respect toP andPapprox. Maximizing
this lower bound with respect toP amounts precisely to learning each TRBM separately using
the factorial hidden distribution provided byPapprox, but as a result of this maximization with
respect toP , Papprox changes as well, and can possibly reduce the value of the bound. The fact
that the learning works in practice suggests that this ignored effect is not too serious.

Learning a TRBM when the hidden states are known is simple. Itis just an RBM with
dynamic biases which can be learned in the same way as normal biases.

In the equation below we write the weight update for a single TRBM. In our sequence
model there areT such TRBMs, and the sum of their weight updates constitutes the full weight
update. To simplify the notation we assume that there is onlyone training sequence in which
case the weight update for time stept is

∆(Cn)ij ∝〈(Vt−n)i(Ht)j〉Q1
− 〈(Vt−n)i(Ht)j〉Qt

2
(15)

∆(Bn)ij ∝〈(Ht−n)i(Ht)j〉Q1
− 〈(Ht−n)i(Ht)j〉Qt

2
(16)

∆(An)ij ∝〈(Vt−n)i(Vt)j〉Q1
− 〈(Vt−n)i(Vt)j〉Qt

2
, (17)

The distributionQ1 is the filtering distributionPapprox(H|V ) and distributionQt
2 is identical

to Q1 for frames1, . . . , t − 1. For timestept it is the TRBM distribution over(Vt, Ht) con-
ditioned on the previous statesH t−1

1 andV t−1
1 , averaged over by filtering distribution, hence

the superscriptt. Note that even though the values ofH t−1
1 are uncertain and are averaged

over, in practice we substitute the value of each coordinateof H t−1
1 by pt−1

1 , the vector of
probabilities of each coordinate being 1 under the filteringdistributionQ1 of V T

1 . This makes
the biases to the TRBM deterministic and eases learning. In practice also we cannot use the
TRBM distribution, so we use a CD update, in whichQt

2(Vt, Ht|V
t−1
1 , H t−1

1 ) is replaced by the
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distribution obtained from running Gibbs sampling in the TRBM at timet for one step starting
at Vt, exactly as for an RBM. We assumed that there was only one training case in the above
description, but actually it is sampled from the training set, so the gradients are averaged by
the empirical data distribution.

Experiments with a single layer model

To demonstrate that our learning procedure works we used it to learn synthetic video sequences
composed of20 × 20 pixel time-frames of two balls bouncing in a box. The first rowin figure
2 shows a sample from the training data. A movie can be viewed at
www.cs.utoronto.ca/∼ilya/aistats2006filter/index.html

In the pixel space, the dynamics are highly non-linear. Evenif we could extract the posi-
tions and velocities of the centers of both balls, the dynamics would be highly non-linear when
the balls bounce off the walls or off each other. Also, the underlying coordinates are related to
the pixel intensities in a very non-linear way. For all thesereasons, modeling the raw sequence
of pixel intensities is a challenging task which is made evenmore difficult if the model class
cannot handle componential structure efficiently. An HMM, for example, would need about
104 hidden states to distinguish10 positions and velocities of one ball on each axis, and108

states for both balls.

We used several different TRBM models that had400 visible units,300 hidden units, and
direct access to the hidden and visible states for the 4 previous time steps (i. e. m = 4). The
full TRBM has 3 kinds of connections3. In addition to trying the full TRBM we also tried
leaving out each set of connections in turn. We call these special cases TRBM-VV, TRBM-
HH, and TRBM-VH where the last part of the name indicates which connections are omitted.
TRBM-VV, for example, has no visible-to-visible connections. Despite its name, TRBM-VH
retains the undirected connections between the current instantiations of V and H.

The TRBM-HH model is an interesting special case because thelack of hidden-to-hidden
connections makes exact inference possible. This model is particularly well suited for hierar-
chical learning, as will be seen in future sections.

We trained each model using 100,000 training sequences ofT = 128 frames. The weights
were updated at the end of each sequence, with a learning rateof 0.05/T and momentum of
0.9. The learning signal for the connections between the visible variables was reduced by a
factor of 100, since without doing so the learning proceduresettles into poor local minima.
Any parameter setting with a small enough learning rate and amomentum of0.9 works well
whenever the number of learning iterations is sufficient. All four variations of the TRBM
learned quite good generative models that could continue aninitial segment of a video (see the
URL for examples of sequences generated by these models). The models could also be used
for online denoising of sequences by performing approximate filtering and then reconstructing
the visible state from the approximate filtering distribution. Figure 2 shows a typical image
sequence and the same sequence corrupted by noise. The noiseis correlated in both time and
space which makes denoising much more difficult. All four variations of the TRBM denoise
the sequence quite well, except for frames 4-7 where the noise is too severe. Figure 2 shows the

3It would also be possible to have connections from previous hidden states to the current visible units, but the
model is complicated enough already.
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Figure 2: Top row: An image sequence. Second row: The same sequence corrupted by noise
that is highly correlated in space and time. Third row: Denoising by a TRBM-VV using a
single hidden layer. Bottom row: Denoising by a TRBM-VV withtwo hidden layers.

denoised sequence produced by the TRBM-VV which must use thehidden states to combine
information across frames. When an extra hidden layer is added to any of the TRBM’s, there
is a noticeable improvement in the denoising, as well as in the generation. To denoise with
two hidden layers we first compute the approximate filtering distribution for the second hidden
layer and then reconstruct each frame of the data from the second hidden layer.

Our models denoise much better than a simple RBM which cannotmake use of previous
frames. They are not as good as an autoregressive model that has been trained to predict the
clean image from the four previous noisy ones, but our model is not trained with noise so
it can denoise without requiring training data that contains both the noisy and the noisy-free
sequence.

The biggest disadvantage of our models is that they currently take several days to train and
even then the training is not complete. We also tried training a full TRBM with 400 hidden
units for two weeks after which it had a model that generated extremely well (see the URL).

Multilayer Models

Adding more hidden layers to an RBM

In this section we describe how to improve an RBM by introducing additional hidden layers,
and creating a hierarchical representation of the data, as described in [7]. LetP̃ (V ) denote the
data distribution andP (V, H) denote the joint distribution defined by the RBM. The idea is to
get another RBM,Q(H, U), which hasH as its visible andU as its hidden variables, to learn
to model the aggregated posterior distribution,Q̃(H), of the first RBM

Q̃(H) =
∑

V

P (H|V )P̃ (V ). (18)

ProvidedQ(H) modelsQ̃(H) better thanP (H) does, it can be shown that there is an aug-
mented modelMPQ(V, H, U) which will be defined shortly that is a better model of the original
data than theP (V, H) defined by the first RBM alone [7].MPQ(V, H, U) uses the undirected
connections learned byQ betweenH andU , but it usesdirectedconnections fromH to V . It
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thus inheritsP (V |H) from the first RBM but discardsP (H|V ) and henceP (H) from its gen-
erative model. Data can be generated from the augmented model by sampling fromQ(H, U)
(by running a Markov chain), discarding the value ofU , and then sampling fromP (V |H)
(in a single step) to obtainV . This implementsMPQ(V ) =

∑

H P (V |H)Q(H). Provided
NU ≥ NV , Q can be initialized by using the parameters fromP to ensure that the two RBM’s
define the same distribution overH. Starting from this initialization, optimization then ensures
thatQ(H) modelsQ̃(H) better thanP (H) does.

The second RBM,Q(H, U), learns by fitting the distributioñQ(H), which is not equivalent
to maximizinglog MPQ(V ). Nevertheless, it can be proved [7] that this learning procedure
maximizes a variational lower bound onlog MPQ(V ). Even thoughMPQ(V, H, U) has dis-
cardedP (H|V ) from its generative model, we can still approximate the posterior distribution
MPQ(H|V ) by P (H|V ). Applying the standard variational bound, we get

L ≥ 〈log Q(H)P (V |H)〉P (H|V ) + H(P (H|V )). (19)

whereH(P (H|V )) is the entropy ofP (H|V ). Maximizing this lower bound with respect to the
parameters ofQ whilst holding the parameters ofP and the approximating posteriorP (H|V )
fixed is precisely equivalent to fittingQ to Q̃(H). Note that the details ofQ are unimportant;Q
could be any kind of a model, and not just an RBM. The main advantage of using another RBM
is that it is possible to initializeQ(H) to be equal toP (H), so the variational bound starts as
an equality and any improvement in the bound guarantees thatMPQ(V ) is a better model of
the data thanP (V ).

This procedure can be repeated recursively as many times as desired, creating very deep
hierarchical representations. For example, a third RBM,R(U, X), can be used to model the
aggregated approximate posterior overU obtained by

R̃(U) =
∑

V

∑

H

Q(U |H)P (H|V )P̃ (V ) (20)

ProvidedR(U) is initialized to be the same asQ(U), MQR(H) will be a better model of̃Q(H)
thanQ(H), but this does not mean thatMPQR(V ) is necessarily a better model ofP̃ (V ) than
MPQ(V ). It does mean, however, that learningR will improve the variational bound obtained
by usingP (H|V ) andQ(U |H) to approximate the posterior distributionMPQR(U |V ).

There have been many previous attempts to train multilayer models in a greedy, layer-
by-layer way. These attempts have not met with much success because they generally use a
directed model of the form

P (V ) =
∑

H

P (V |H)P (H) (21)

whereP (H) is a factorial prior overH that is defined by a separate set of parameters. The use
of a factorial prior encourages the learning to make the aggregated posterior overH as factorial
as possible and this leaves little structure to be modeled bythe next hidden layer. In an RBM,
the posterior overH is factorial for each possible value ofV , but both the implicitly defined
prior overH and the aggregated posterior overH are typically very far from factorial, thus
leaving plenty of structure for the next layer to model.
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Multilayer TRBMs

We straightforwardly generalize the idea to our sequence model. First we learn a TRBM, and
then learn another TRBM that learns to model the hidden states of the first TRBM, which is
precisely analogous to the way the RBM was augmented.

Recall that we denote byV T
1 the set of all the visible time frames and byHT

1 the set of all
the hidden time frames. Denote byP (V T

1 , HT
1 ) the distribution defined by the first TRBM.

P (HT
1 |V

T
1 ) is not factorial, so we approximate it by the filtering distribution,Papprox(H

T
1 |V

T
1 ).

Let Q(HT
1 , UT

1 ) be a TRBM that we use to learn the aggregated approximate filtering distri-
bution

∑

V T

1

Papprox(H
T
1 |V

T
1 )P̃ (V T

1 ), whereUT
1 is the sequence of the hidden variables of the

TRBM Q. The approximate posterior ofUT
1 , Qapprox(U

T
1 |H

T
1 )Papprox(H

T
1 |V

T
1 ) allows UT

1 to
represent higher-level features that can be computed on-line, since neitherPapprox nor Qapprox

make use of future frames. The resulting augmented generative model,MPQ(V T
1 ), is one

where we first sample fromQ(HT
1 ), then fromP (V T

1 |HT
1 ), so, as with the RBMs,MPQ(V T

1 ) =
∑

HT

1

P (V T
1 |HT

1 )Q(HT
1 ). If we can initializeQ so thatQ(HT

1 ) = P (HT
1 ), then the augmented

model is identical to theP and has the same likelihood. By makingQ learn the distribution of
the hidden states ofP , which is

∑

V Papprox(H
T
1 |V

T
1 )P̃ (V T

1 ), we maximize the lower bound

L ≥
〈

log Q
(

HT
1

)

P
(

V T
1 |HT

1

)〉

Papprox
+ H (Papprox) , (22)

with respect toQ. This is very similar to the bound in equation 19, except for the use of the
approximate posterior. At the beginning of the optimization this bound is strictlylessthan
log P (V T

1 ) even whenQ(HT
1 ) = P (HT

1 ), because an approximate posterior is used. It could,
therefore, remain less thanlog P (V T

1 ). This is not the case for RBMs, since the exact posterior
P (H|V ) is easily computable, so the lower bound is equal tolog P (V ) at the beginning of the
optimization.

Although our learning procedure maximizes a lower bound that is initially smaller than
log P (V T

1 ), it is very likely that by the end of learning the bound will exceedlog P (V T
1 ).

In addition, since we use an approximate posterior during the learning ofP (V T
1 ) (recall that

inference is intractable in our TRBM model), we are performing approximate maximization of
a lower bound onlog P (V T

1 ) (this is also equation 14):

log P (V T
1 ) ≥

〈

log P
(

HT
1

)

P
(

V T
1 |HT

1

)〉

Papprox
+ H (Papprox) (23)

(the maximization is approximate in that we ignore the effect that changing the approximate
posterior has on the bound), so by introducingQ the new lower bound of equation 22 will be
equal to the bound in equation 23 ifQ is properly initialized. Therefore, the lower bound in
Eq. 22 will be greater than the lower bound in Eq. 23.

In order to initializeQ such thatQ(HT
1 ) = P (HT

1 ), it is necessary forQ to have directed
connections between its visible variables (the variablesHT

1 ) so thatQ(HT
1 ) can represent every

distributionP (HT
1 ) can. For RBM’s, learning one hidden layer at a time works welleven if

Q(H) is not initialized to be equal toP (H) [7], so in our experiments, we did not initialize
Q(HT

1 ) = P (HT
1 ).

We can also add further hidden layers in the same was as is donefor RBM’s and each time
another layer is added we should get a better generative model.
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Notice that for the model TRBM-HH, for whichP (HT
1 |V

T
1 ) is exactly factorial, the sit-

uation is significantly better. Not only does it have an exactlearning procedure (if we ig-
nore the approximations introduced by contrastive divergence), but its augmented modelal-
wayshas a greater likelihood since the lower bound (Eq. 23) is equal to the log likelihood if
Q(HT

1 ) = P (HT
1 ), becausePapprox(H

T
1 |V

T
1 ) = P (HT

1 |V
T
1 ).

A drawback of all of our TRBM models is thatP (V T
1 |HT

1 ) is not factorial because of the
directed connections intoV . This makes it intractable to generate unbiased samples from the
augmented models, so further approximations must be used.

Results for multilevel models

We conducted experiments to determine whether adding an extra hidden layer improves the
quality of generative models. For each of TRBM, TRBM-VV, TRBM-VH, TRBM-HH, we
used the same type of TRBM with 400 hidden units (and 300 visibles) to learn the aggregated
posterior distribution of the hidden units in the first-level model. The learning parameters
of all these models were the same as those for the original TRBM’s and training lasted for
100,000 updates. All of the generative models improved and they all became better at denoising
(see figure for a typical denoising example, or the URL for many movies of denoising and
generation).

Despite the improved performance, we cannot generate exactly from the improved multi-
level models. Recall that to generate, we first need to useQ(HT

1 , UT
1 ) to sample the activities

of HT
1 and then we need to sample fromP (V T

1 |HT
1 ), which is the distribution oversequences

of visible frames given a sequence of hidden frames. This distribution is intractable for the
same reasons inference is intractable in our models, and we approximate it in a similar spirit.

The conditional distributionP (V T
1 |HT

1 ) is intractable to sample from, but ifH t
1 andV t−1

1

are known and the rest of the variablesHT
t+1 are not given, then generatingVt is easy. Indeed,

all the explaining away effects disappear and the distribution overVt is factorial. We therefore
use an “on-line” approximation toP (V T

1 |HT
1 ), one where we go overt from 1 to T , sampling

Vt givenH t
1 andV t−1

1 ignoringHT
t+1.

Conclusions and discussion

In this paper we introduced a family of sequence models that can learn good generative mod-
els in an online fashion. We demonstrated that the learning works despite relying on several
approximations:

• The filtering distribution is approximate because it uses a mean-field approximation to
model the effects of the previous filtering distribution on the current one.

• There is no smoothing so the learning is using the filtering distribution to approximate
the posterior. This means that it is ignoring the effect of changing parameters on the
likelihood of the future observations.

• Even if the posterior was correct, the learning would be following the approximate gra-
dient of the contrastive divergence instead of the exact gradient of the log likelihood.

12



We believe that there are two main reasons why the family of models that we have described
will work much better than the more familiar family of directed models (i. e. dynamic Bayes
nets) for modeling video sequences at the pixel level. The first is that our observation model
leads to a factorial posterior over the hidden variables. The second is that we have an effective
way to decompose the task of learning a model with many hiddenlayers into a series of one
hidden layer tasks.
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