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We describe a family of non-linear sequence models thatbstantially more powerful
than hidden Markov models or linear dynamical systems. Oauefs have simple approxi-
mate inference and learning procedures that work well iot@ Multilevel representations
of sequential data can be learned one hidden layer at a tmdeydding extra hidden layers im-
proves the resulting generative models. The models caminett with very high-dimensional,
very non-linear data such as raw pixel sequences. Theiompeaihce is demonstrated using
synthetic video sequences of two balls bouncing in a box.

Introduction

Many different models have been proposed for high-dimeraisequential data such as video
sequences or the sequences of coefficient vectors thateddaisharacterize speech. Models
that use latent variables to propagate information thrdungé can be divided into two classes:
tractable models for which there is an efficient procedure for infegrihe exact posterior
distribution over the latent variables amdractable models for which there is no exact and
efficient inference procedure. Tractable models such asfdidynamical systems and hidden
Markov models have been widely applied but they are verytéichin the types of structure
that they can model. To make inference tractable when tserermmponential hidden state, it
IS necessary to use linear models with Gaussian noise sohihgosterior distribution over
the latent variables is Gaussian. Hidden Markov Models ¢oenbon-linearity with tractable
inference by using a posterior that is a discrete distritbutiver a fixed number of mutually
exclusive alternatives, but the mutual exclusion makes tigponentially inefficient at dealing
with componential structure: to allow the history of a saggeeto imposeV bits of constraint
on the future of the sequence, an HMM requires at I2dstodes. Inference remains tractable
in mixtures of linear dynamical systems [4], but if we wanstatch from one linear dynamical
system to anotheturing a sequence, exact inference becomes intractable [4] eimderis also
tractable in products of hidden Markov models {2].

1Products of linear dynamical systems are linear dynamicstess and mixtures of hidden Markov models
are hidden Markov models.



To overcome the limitations of the tractable models, maffedint schemes have been
proposed for performing approximate inference [10, 5]. &vowynd Koller [1] investigated
the properties of a class of approximate inference schemehich the true posterior density
in the latent space is approximated by a simpler “assumedsitiesuch as a mixture of a
modest number of Gaussians [9]. At each time step, the mguaindics and/or the likelihood
term coming from the next observation causes the inferretiepior density to become more
complicated, but the inferred posterior is then approxadddy a simpler distribution that lies
in the space of assumed distributions. Boyen and Koller shiaivat the stochastic dynamics
attenuates the approximation error created by projectitythe assumed density space and
that this attenuation typically prevents the approxintagaor from diverging.

In this paper we describe a family of generative models fqueatial data that can cap-
ture many of the regularities that cannot be modeled effilsidry hidden Markov models or
linear dynamical systems. The family has @amdirectedmodel for the interactions between
the hidden and visibla.e. observed) variables. This ensures that the contributioheolikeli-
hood term to the posterior over the hidden variables is éxtattorial which greatly facilitates
inference. This model family has some attractive propgrtie

e It has componential hidden state which means it has an expialig large state spaée

e It has non-linear dynamics and it can make multimodal ptegfs.

e There is a very simple on-line filtering procedure which pdeg a good approximation
to the true conditional distribution over the hidden valésbgiven the data observed so
far.

e Even though maximum likelihood learning is intractablesrthis a simple and efficient
learning algorithm that finds good values for the parameters

e There is a simple way to learn multiple layers of hidden \J@da and this can greatly
improve the overall generative model.
By using approximations for both inference and learningpin a family of models that
is much more powerful than those that are normally used fatetiog sequential data.

The empirical question is whether our approximations aredgenough to allow us to
exploit its power for modeling real sequences in which eadeframe is high-dimensional
and the past has high-bandwidth non-linear effects on tuedu

The generative model

The Restricted Boltzmann Machine

We begin by reviewing the Restricted Boltzmann Machine (RBd14]. It has a simple, exact
inference procedure for the hidden variables and an effiegipproximate learning algorithm

2The number of parameters is only quadratic, so there aragstimitations on how the exponentially large
state space can be used, but for sequences in which therevaralsndependent things going on at once, it is
easy to use different subsets of the hidden units to modekdiit components of the sequential structure.
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for the parameters. These two properties make the RBM vesfulias an observation model
for sequential data. When an RBM is modified to be conditiomegrevious hidden and/or
visible states, we get a temporal RBM (TRBM) which can be usadodel sequences.

The RBM defines a distribution ovéV, H) € {0,1}"v x {0, 1}# via the equation
P(V,H) =exp(V'WH +a'V +b'H) /Z, (1)

wherelV are the connection weights of the RBBbl,b are the biases fov and H, and the
variables Ny, and Ny are the number of dimensions bf and H. We use the notatiol”’
for VV transpose, since the standard notation creates confusiater sections. The variable
V' stands for visible and? for hidden, and we us@(V, H) to mean either a distribution
or a single probability, depending on the context. We usentioee cumbersome notation
P(V = v, H = h) to clarify the ambiguous cases.

The joint distributionP(V, H) is from the exponential family antf #’ is the sufficient
statistics, subject to the constraint tli&t /) is a binary vector. The conditional distributions
P(V|H)andP(H|V) are factorial and are given by

P(H;=1V) = o (bj+W/V) (2)
P(Vi=1H) = ol(a+W;i.H), ®3)

whereco(z) = (1 + exp(—=z))~! is the logistic function andV’. ;, I; . are thejth column and
theth row of .

The derivative of the log likelihood with respect to the parameters is given by the very
simple equations

AW;; <ViHj>P(H|V)15(V) — (ViH;) pv,m) 4)
Aa; o< (Vi) pary — (Vidpv) (5)
Ab; <Hj>P(H\V)15(V) — (H;) Py, (6)

where P(V) denotes empirical the data distribution which is the avermigthe datapoints in
the training set. Maximum likelihood estimation is difficdue to the need to compute expec-
tations with respect to the model’s distributidn)p(v, . An obvious way to compute these
expectations is to use alternating Gibbs sampling. Staftom an arbitrary initial distribution,
we alternate between updating all of the hidden units inlfghnasing Eq. 2 and updating all
of the visible units in parallel using Eq. 3. After a sufficierumber of iterations, this method
gives unbiased samples from the distributi®fl’, /) [12]. It is generally much better than
brute-force calculation of the expectation which takesoeegntial time in the size of the RBM,
but it is still slow in practice, since the Markov chain ne¢al®e run foreachiteration of the
learning algorithm.

Fortunately, there is another parameter estimation metffoch we call Contrastive Di-
vergence (CD) because it follows the approximate gradieahmbjective function that is the
difference of two Kullback-Liebler divergences [6]. CD isioh more efficient than maximum
likelihood learning and it works well in practice — RBMs lead with CD produce high-quality
generative models [3]. The weight updates for CD are given by

AWy o< (Vily) pivypery — (ViHj) povim (7)
Aa; <Vi>15(\/) — (Vi Puvor) (8)
Abj <Hj>P(H\V)15(V) - <Hj>P1(V,H)7 (9)
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where a sample from the distributidti is obtained by running Gibbs sampling for 1 full step,
having initialized(V, H) by P(V)P(H|V'). More specifically, we sample the visiblgsfrom
P(V), the hiddend? from P(H|V'), and then sample the visibles and then the hiddens once
more to get a sample from,. For CD to work,) mustbe initialized withP (V).

There is a simple intuitive way to understand what CD leaggnéndoing. Instead of sam-
pling from the model’s distribution, we allow the model tagéitly distort the data distribution
towards a distribution that the model prefers. Then we Iatherfree energy of the data and
raise the free energy of the distorted data to prevent theshabstorting the data in that direc-
tion in future. This can be viewed as a way of making the gradié the free energw. . t.
the distribution be zero at the data distribution.

Even though RBM’s define a distribution ovéd, 1}, they can sometimes be used to
model [0, 1] valued variables by treating intermediate values as piibtie®. For the MNIST
images of handwritten digits, for example, the normalizeclpintensities are mostly very
close to 0 or 1 and it works well to treat the intermediate &alas probabilities. Contrastive
divergence learning works well when the we update the asiakiables in Eg. 3 to have the
real values produced by the logistic without using random@ag. In Eq. 2, we still use
random sampling to obtain binary stochastic valuesHobut on the RHS we simply use the
real values ofl” which amounts to using a mean field approximation. In the Emmeos
described later in the paper, we used the mean-field appabidamfor the pixels.

Treating intermediate values as probabilities and usiegntiean-field approximation in
Eq. 2 does not work well for most real-valued images, suchraegjes of faces, because it
cannot assign a sharply peaked probability distributioartontermediate pixel intensity. For
these images we can replace Bernoulli-distributed bineiphe units by Gaussian-distributed
real-valued ones [8].

The Temporal Restricted Boltzmann Machine for sequence magling

Figure 1 shows an RBM that has been been augmented by addéwogedi connections from
previous states of the visible and hidden units. We callahiemporal Restricted Boltzmann
Machine (TRBM). The TRBM defines a joint distribution ov@f,, H,) that is conditional on
earlier hidden and visible states. The effect of theseezastates is to dynamically adjust the
effective biases of the visible and hidden units at time
PV, H|V L HE Y = exp(V/CoHy + b Hy + a'Vi+

Vi Gy + Vi Colly o 4+ VL, CoHy o+ (10)

H/ \B\H;+ H, ,BoH;+---+ H,_,, B,H; +

VIAVia + VAV o+ + VALV )/ Z,

where V;, H; denote the state of the variables at timand the notatiothtjnﬁ stands for
Vict, ..., Vi_m, and likewise,H!~! . Z depends on the states ©f~. H}~}, as well as on
the weight matrice$A; } <., { B;}j<m, {C;};j<m and the usual biasesb. That is, we have a
standard RBM with(y as its weight matrix, but the bias féf, isb+ B, H; 1+ - -+ B, H; .+
V4 +---+C,V,_,, and the bias fot; isa + A,V,_y + --- + A,,Vi_,,,, both of which
depend on the states of the variables in the previous tinps st&&henever the TRBM needs to
use a value o/, or H, wherer is less than 1, we use learned “initial” values that depend on
to replace the product of the output of a unit and the weightherdirected connection.
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Figure 1: The TRBM

We model the probability of a whole sequence using a produtieodistributions defined
by a separate TRBM for each time step, with all of the TRBM'argtg the same parameters:

T

PV HY) =[] P(Vi, H|VS) HYZ) (11)

t—m>
t=1

There are three reasons we chose the TRBM as the building fdoour sequence model.
The first is that giverd/ and Hi~* the distribution overf, is factorial as long as the future
variablesV;’,, H},, are unknown. This helps to ensure that a factorial appratidmao the
filtering distribution (P(H,|V})) is reasonably accurate.

The second reason is that parameter estimation for an thdi/iTRBM can be done effi-
ciently using CD if we know the previous hidden and visiblates, so by using the filtering
distribution to approximate the posterior distributioreothe hidden variables we can reduce
the problem of modeling whole sequences to the problem ofetimagithe distribution of the
current time frame of data given the previous data and thequrs hidden states computed by
the filtering distribution.

The third reason is that the TRBM model can easily be extetdedclude additional
hidden layers and by adding more hidden layers we get a hefpeesentation and a better
generative model.

Approximate Filtering

Our model is designed to make it easy to approximate theifigaistributionP(H,|V}). Let
Papprod Hi; = 1|V}') be the probability that thé” hidden unit is on in the factorial approxi-
mation to the filtering distribution. For each timeve maintain a vectop; € [0, 1]¥# such
thatp:;, = PapprodX Hi; = 1|V{). We show how to computp,, which clearly shows how to
immediately obtainPapprox

We derive our factorial approximation from the followingsasvation. Suppose th&f’
and H!~! are known with certainty. In that case, the filtering disitibn is factorial and is



given by

P(Hy =1V, HY) = 0(CoVi+ BiHyy + -+ + B Hy o+ CLViey + - + ColVie 4 by),
(12)
which is simply the sigmoid of all the inputs from the prevsdime frames to unitf,;.

In the general case, we assume tiatis given by the data with certainty buf!~! is
unknown and its uncertainty is represented by a factorgtriBution Papprox (@ndp). We use
the mean-field equations [13] to compuyig from p‘~! and V. The resulting equation is
very similar to equation 12, except that we replace the wbfdhe variabled?; with their
probabilitiesp,, thus getting the equation

Pt = 0(CoVi + Bipi—1 + -+ BpPtom + C1Vicr + - + CplVie + by). (13)

Learning

To allow online learning, we ignore the effect of future datathe inferred distribution over
H, and use the approximate filtering distribution as an appnate posteriorie. we do not
do smoothing). Consider the following standard lower botaihe log likelihood [11]:

log P(V{") > (log P (V{", HY) + H (Papproy) - (14)

) P
whereH is the entropy of a distribution, an@lppro Hi |Vi') is the approximate filtering distri-
bution. We would like to maximize this lower bound with resp® P and Papprox. Maximizing

this lower bound with respect tB amounts precisely to learning each TRBM separately using
the factorial hidden distribution provided 05 but as a result of this maximization with
respect taP, PaproxChanges as well, and can possibly reduce the value of thedbdine fact
that the learning works in practice suggests that this igth@ffect is not too serious.

Learning a TRBM when the hidden states are known is simplés jlist an RBM with
dynamic biases which can be learned in the same way as noiasakb

In the equation below we write the weight update for a singRBM. In our sequence
model there aré such TRBMs, and the sum of their weight updates constitaefull weight
update. To simplify the notation we assume that there is ong/training sequence in which
case the weight update for time steis

A(Cr)ij < {(Vimn)i(He) i) or — ((Vimn);(He) ) (15)
A(Bn)ij < ((Hi—n);(Hi)j)or — (Hi—n);(He)j) s (16)
A(An)ij o ((Vien); (Vi) i) o — ((Vien); (Vi) )y (7)

The distribution®); is the filtering distributionPaprox H | V') and distributior)? is identical
to @, for framesl1,... ¢t — 1. For timestep it is the TRBM distribution ove(V;, H;) con-
ditioned on the previous statés * and V', averaged over by filtering distribution, hence
the superscript. Note that even though the values Bf ! are uncertain and are averaged
over, in practice we substitute the value of each coordio&td!~' by p!~!, the vector of
probabilities of each coordinate being 1 under the filtedisgribution@; of V;'. This makes
the biases to the TRBM deterministic and eases learningrdatipe also we cannot use the
TRBM distribution, so we use a CD update, in whigh(V;, H,|V} ', HI™') is replaced by the
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distribution obtained from running Gibbs sampling in theBINRat timet for one step starting
atV;, exactly as for an RBM. We assumed that there was only ongingacase in the above
description, but actually it is sampled from the training, s® the gradients are averaged by
the empirical data distribution.

Experiments with a single layer model

To demonstrate that our learning procedure works we usedidatn synthetic video sequences
composed 020 x 20 pixel time-frames of two balls bouncing in a box. The first nomiigure

2 shows a sample from the training data. A movie can be viewed a
www.cs.utoronto.calilya/aistats2008ilter/index.htmi

In the pixel space, the dynamics are highly non-linear. Ef/are could extract the posi-
tions and velocities of the centers of both balls, the dyicamiould be highly non-linear when
the balls bounce off the walls or off each other. Also, theartying coordinates are related to
the pixel intensities in a very non-linear way. For all thes@sons, modeling the raw sequence
of pixel intensities is a challenging task which is made evame difficult if the model class
cannot handle componential structure efficiently. An HMIgr, €&xample, would need about
10* hidden states to distinguisit positions and velocities of one ball on each axis, aofti
states for both balls.

We used several different TRBM models that H&d visible units,300 hidden units, and
direct access to the hidden and visible states for the 4 queuime stepsi.(e. m = 4). The
full TRBM has 3 kinds of connectiods In addition to trying the full TRBM we also tried
leaving out each set of connections in turn. We call theseiapeases TRBM-VV, TRBM-
HH, and TRBM-VH where the last part of the name indicates Witiennections are omitted.
TRBM-VV, for example, has no visible-to-visible connectgo Despite its name, TRBM-VH
retains the undirected connections between the curretaintiations of V and H.

The TRBM-HH model is an interesting special case becauskadikeof hidden-to-hidden
connections makes exact inference possible. This modalrtecplarly well suited for hierar-
chical learning, as will be seen in future sections.

We trained each model using 100,000 training sequencés-ofl 28 frames. The weights
were updated at the end of each sequence, with a learningfrates/7" and momentum of
0.9. The learning signal for the connections between the \@silariables was reduced by a
factor of 100, since without doing so the learning procedigtles into poor local minima.
Any parameter setting with a small enough learning rate amsb@entum 010.9 works well
whenever the number of learning iterations is sufficient! flir variations of the TRBM
learned quite good generative models that could continueigal segment of a video (see the
URL for examples of sequences generated by these models)médels could also be used
for online denoising of sequences by performing approx@fiiering and then reconstructing
the visible state from the approximate filtering distributi Figure 2 shows a typical image
sequence and the same sequence corrupted by noise. Thésmmselated in both time and
space which makes denoising much more difficult. All fournatons of the TRBM denoise
the sequence quite well, except for frames 4-7 where themtso severe. Figure 2 shows the

31t would also be possible to have connections from previddidem states to the current visible units, but the
model is complicated enough already.
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Figure 2: Top row: An image sequence. Second row: The samaseq corrupted by noise
that is highly correlated in space and time. Third row: Demg by a TRBM-VV using a
single hidden layer. Bottom row: Denoising by a TRBM-VV withio hidden layers.

denoised sequence produced by the TRBM-VV which must ushitlten states to combine
information across frames. When an extra hidden layer ieédol any of the TRBM’s, there
is a noticeable improvement in the denoising, as well as engéneration. To denoise with
two hidden layers we first compute the approximate filteriisgridbution for the second hidden
layer and then reconstruct each frame of the data from thengdadden layer.

Our models denoise much better than a simple RBM which camad® use of previous
frames. They are not as good as an autoregressive modelahaiekn trained to predict the
clean image from the four previous noisy ones, but our masl@lot trained with noise so
it can denoise without requiring training data that corgdioth the noisy and the noisy-free
sequence.

The biggest disadvantage of our models is that they cuyréatte several days to train and
even then the training is not complete. We also tried tragrarfull TRBM with 400 hidden
units for two weeks after which it had a model that generaktemely well (see the URL).

Multilayer Models

Adding more hidden layers to an RBM

In this section we describe how to improve an RBM by introdgcadditional hidden layers,
and creating a hierarchical representation of the datagsarithed in [7]. LetP(V) denote the
data distribution and®(V, H) denote the joint distribution defined by the RBM. The ideais t
get another RBMQ)(H, U), which hasH as its visible and/ as its hidden variables, to learn
to model the aggregated posterior distributi@r(lH), of the first RBM

=> P(H[V)P(V). (18)

ProvidedQ(H) modelsQ(H) better thanP(H) does, it can be shown that there is an aug-
mented modeM p, (V, H, U) which will be defined shortly that is a better model of the &g
data than theé?(V, H) defined by the first RBM alone [7TMpq(V, H, U) uses the undirected
connections learned by betweenH andU, but it usegdirectedconnections fronf{ to V. It
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thus inheritsP (V| H) from the first RBM but discard®(H|V') and hence’(H ) from its gen-
erative model. Data can be generated from the augmented tmpdampling fromQ(H, U)
(by running a Markov chain), discarding the valuelof and then sampling fron®(V'|H)
(in a single step) to obtaif’. This implements\/po(V) = >, P(V|H)Q(H). Provided
Ny > Ny, @ can be initialized by using the parameters frénto ensure that the two RBM’s
define the same distribution ovAr. Starting from this initialization, optimization then emss
thatQ(H) modelsQ(H) better thanP(H) does.

The second RBMQ(H, U), learns by fitting the distributio@( H ), which is not equivalent
to maximizinglog Mpq(V'). Nevertheless, it can be proved [7] that this learning place
maximizes a variational lower bound sz Mpo (V). Even thoughV/pg(V, H,U) has dis-
cardedP(H|V) from its generative model, we can still approximate the gist distribution
Mpo(H|V) by P(H|V). Applying the standard variational bound, we get

L > (log Q(H)P(V|H))pmv) + H(P(H[V)). (19)

whereH(P(H|V)) is the entropy of?( H |V'). Maximizing this lower bound with respect to the
parameters of) whilst holding the parameters &f and the approximating posterié¥{ H|V)
fixed is precisely equivalent to fitting to Q(H ). Note that the details @ are unimportant)
could be any kind of a model, and not just an RBM. The main atgnof using another RBM
is that it is possible to initializ€)(H) to be equal taP(H ), so the variational bound starts as
an equality and any improvement in the bound guarantees\faat(V') is a better model of
the data thaP(1).

This procedure can be repeated recursively as many timessagd, creating very deep
hierarchical representations. For example, a third RBNI/, X'), can be used to model the
aggregated approximate posterior ot/eobtained by

RU)=> Y QUI|H)P(H|V)P(V) (20)
V. H

ProvidedR(U) is initialized to be the same &XU), Mgr(H) will be a better model of)(H)
than@(H), but this does not mean thafpo (V) is necessarily a better model 8{1) than
Mpo(V). It does mean, however, that learniRgwill improve the variational bound obtained
by usingP(H|V) andQ(U|H) to approximate the posterior distributidtipgr(U|V').

There have been many previous attempts to train multilayedets in a greedy, layer-
by-layer way. These attempts have not met with much suceasmube they generally use a
directed model of the form

P(V) =" P(V|H)P(H) (21)
H

whereP(H) is a factorial prior over{ that is defined by a separate set of parameters. The use
of a factorial prior encourages the learning to make theeggged posterior ovef as factorial

as possible and this leaves little structure to be modelatidyext hidden layer. In an RBM,

the posterior over is factorial for each possible value of, but both the implicitly defined
prior over H and the aggregated posterior ovérare typically very far from factorial, thus
leaving plenty of structure for the next layer to model.
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Multilayer TRBMs

We straightforwardly generalize the idea to our sequencgetd-irst we learn a TRBM, and
then learn another TRBM that learns to model the hiddenstaitéhe first TRBM, which is
precisely analogous to the way the RBM was augmented.

Recall that we denote bi;” the set of all the visible time frames and By the set of all
the hidden time frames. Denote B V", H!) the distribution defined by the first TRBM.

P(HT|V]')is not factorial, so we approximate it by the filtering distriion, Papprol H{ |Vi").
Let Q(HT,UT) be a TRBM that we use to learn the aggregated approximaterfgtelistri-

bution 3"+ Papprod H{ V") P(V1"), whereUY is the sequence of the hidden variables of the
TRBM Q. The approximate posterior &f], Qappro Ui |H ) Papprox Hi |Vi) allows U to
represent higher-level features that can be computednendince neithePapprox NOT Qapprox
make use of future frames. The resulting augmented gewenatodel, Mg (Vi'), is one
where we first sample fro®@(H{ ), then fromP (V{"| H'), so, as with the RBMs)/pq (V{!) =
Sour P(VEIHD)Q(HT). If we can initializeQ so thatQ(H{) = P(H{'), then the augmented
model is identical to thé and has the same likelihood. By maki@gearn the distribution of
the hidden states d?, which is>",, Papprox HY |ViT) P(V/'), we maximize the lower bound

L > (logQ (HY) P (V]"|HT) >Pappmx + H (Papprox) (22)

with respect ta). This is very similar to the bound in equation 19, except far tise of the
approximate posterior. At the beginning of the optimizattbis bound is strictljessthan

log P(VI') even wherQ(H!') = P(HT), because an approximate posterior is used. It could,
therefore, remain less thawg P(V[1). This is not the case for RBMs, since the exact posterior
P(H|V) is easily computable, so the lower bound is equabgaP (V') at the beginning of the
optimization.

Although our learning procedure maximizes a lower bound ighanitially smaller than
log P(VI), it is very likely that by the end of learning the bound willegedlog P(VT).
In addition, since we use an approximate posterior duriegeharning ofP(V/1) (recall that
inference is intractable in our TRBM model), we are perforgpproximate maximization of
a lower bound orog P(V/") (this is also equation 14):

log P(VlT) = <10gP (HlT) P (VlT‘HlT) + H ( Papprox) (23)

>Papprox
(the maximization is approximate in that we ignore the eftbat changing the approximate
posterior has on the bound), so by introducipghe new lower bound of equation 22 will be
equal to the bound in equation 23¢¥ is properly initialized. Therefore, the lower bound in
Eq. 22 will be greater than the lower bound in Eq. 23.

In order to initializeQ such thatQ(H!) = P(HY{), itis necessary fo) to have directed
connections between its visible variables (the variablé¥so thatQ ( H{') can represent every
distribution P(H[) can. For RBM's, learning one hidden layer at a time works \seén if
Q(H) is not initialized to be equal t&(H) [7], so in our experiments, we did not initialize
Q(H{) = P(H{).

We can also add further hidden layers in the same was as iSOOR8M’s and each time
another layer is added we should get a better generativelmode
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Notice that for the model TRBM-HH, for whict’( HT|V') is exactly factorial, the sit-
uation is significantly better. Not only does it have an exaatning procedure (if we ig-
nore the approximations introduced by contrastive divecgg but its augmented modal
wayshas a greater likelihood since the lower bound (Eq. 23) iskfuthe log likelihood if
Q(HT) = P(H), becauseappol HY [V) = P(HT|VT).

A drawback of all of our TRBM models is thd@ (V" |HT) is not factorial because of the
directed connections intd. This makes it intractable to generate unbiased samplestiie
augmented models, so further approximations must be used.

Results for multilevel models

We conducted experiments to determine whether adding aa bidden layer improves the
quality of generative models. For each of TRBM, TRBM-VV, TRB/H, TRBM-HH, we
used the same type of TRBM with 400 hidden units (and 300 i&s)lio learn the aggregated
posterior distribution of the hidden units in the first-lemeodel. The learning parameters
of all these models were the same as those for the originalM'®&Bnd training lasted for
100,000 updates. All of the generative models improved ey all became better at denoising
(see figure for a typical denoising example, or the URL for ynarovies of denoising and
generation).

Despite the improved performance, we cannot generatelgxXemn the improved multi-
level models. Recall that to generate, we first need ta(gé! , U!) to sample the activities
of H! and then we need to sample fraRfV,['|H]'), which is the distribution ovesequences
of visible frames given a sequence of hidden frames. Thisilligion is intractable for the
same reasons inference is intractable in our models, angprexmate it in a similar spirit.

The conditional distributio (V' | HT) is intractable to sample from, but H andV;~*
are known and the rest of the variablgg, , are not given, then generatifigis easy. Indeed,
all the explaining away effects disappear and the distobutverV; is factorial. We therefore
use an “on-line” approximation t& (V" | H]'), one where we go overfrom 1 to 7', sampling
V, given H} andV;~" ignoring H/. ;.

Conclusions and discussion

In this paper we introduced a family of sequence models tatiearn good generative mod-
els in an online fashion. We demonstrated that the learnioigsvdespite relying on several
approximations:

e The filtering distribution is approximate because it useseamdfield approximation to
model the effects of the previous filtering distribution de turrent one.

e There is no smoothing so the learning is using the filterirggridiution to approximate
the posterior. This means that it is ignoring the effect cdralfing parameters on the
likelihood of the future observations.

e Even if the posterior was correct, the learning would beofeihg the approximate gra-
dient of the contrastive divergence instead of the exadtignd of the log likelihood.
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We believe that there are two main reasons why the family afetsthat we have described
will work much better than the more familiar family of direct modelsi( e. dynamic Bayes
nets) for modeling video sequences at the pixel level. Tiséifrthat our observation model
leads to a factorial posterior over the hidden variableg §étond is that we have an effective
way to decompose the task of learning a model with many hidiagars into a series of one
hidden layer tasks.
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