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Abstract

Factor analysis, a statistical method for modeling the covariance structure of high

dimensional data using a small number of latent variables, can be extended by allowing

di�erent local factor models in di�erent regions of the input space. This results in a

model which concurrently performs clustering and dimensionality reduction, and can

be thought of as a reduced dimension mixture of Gaussians. We present an exact

Expectation{Maximization algorithm for �tting the parameters of this mixture of factor

analyzers.

1 Introduction

Clustering and dimensionality reduction have long been considered two of the fundamental

problems in unsupervised learning (Duda & Hart, 1973; Chapter 6). In clustering, the goal

is to group data points by similarity between their features. Conversely, in dimensionality

reduction, the goal is to group (or compress) features that are highly correlated. In this

paper we present an EM learning algorithm for a method which combines one of the basic

forms of dimensionality reduction|factor analysis|with a basic method for clustering|the

Gaussian mixture model. What results is a statistical method which concurrently performs

clustering and, within each cluster, local dimensionality reduction.

Local dimensionality reduction presents several bene�ts over a scheme in which clustering

and dimensionality reduction are performed separately. First, di�erent features may be

correlated within di�erent clusters and thus the metric for dimensionality reduction may

need to vary between di�erent clusters. Conversely, the metric induced in dimensionality

reduction may guide the process of cluster formation|i.e. di�erent clusters may appear

more separated depending on the local metric.

Recently, there has been a great deal of research on the topic of local dimensionality

reduction, resulting in several variants on the basic concept with successful applications to

character and face recognition (Bregler and Omohundro, 1994; Kambhatla and Leen, 1994;

Sung and Poggio, 1994; Schwenk and Milgram, 1995; Hinton et al., 1995). The algorithm

used by these authors for dimensionality reduction is principal components analysis (PCA).
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Figure 1: The factor analysis generative model (in vector form).

PCA, unlike maximum likelihood factor analysis (FA), does not de�ne a proper density

model for the data, as the cost of coding a data point is equal anywhere along the principal

component subspace (i.e. the density is un-normalized along these directions). Furthermore,

PCA is not robust to independent noise in the features of the data (see Hinton et al., 1996,

for a comparison of PCA and FA models) . Hinton, Dayan, and Revow (1996), also exploring

an application to digit recognition, were the �rst to extend mixtures of principal components

analyzers to a mixture of factor analyzers. Their learning algorithm consisted of an outer

loop of approximate EM to �t the mixture components, combined with an inner loop of

gradient descent to �t each individual factor model. In this note we present an exact EM

algorithm for mixtures of factor analyzers which obviates the need for an outer and inner

loop. This simpli�es the implementation, reduces the number of heuristic parameters (i.e.

learning rates or steps of conjugate gradient descent), and can potentially result in speed-ups.

In the next section we present background material on factor analysis and the EM al-

gorithm. This is followed by the derivation of the learning algorithm for mixture of factor

analyzers in section 3. We close with a discussion in section 4.

2 Factor Analysis

In maximum likelihood factor analysis (FA), a p-dimensional real-valued data vector x is

modeled using a k-dimensional vector of real-valued factors, z, where k is generally much

smaller than p (Everitt, 1984). The generative model is given by:

x = �z+ u; (1)

where � is known as the factor loading matrix (see Figure 1). The factors z are assumed

to be N (0; I) distributed (zero-mean independent normals, with unit variance). The p-

dimensional random variable u is distributed N (0;	), where 	 is a diagonal matrix. The

diagonality of 	 is one of the key assumptions of factor analysis: The observed variables are

independent given the factors. According to this model, x is therefore distributed with zero

mean and covariance ��0 + 	; and the goal of factor analysis is to �nd the � and 	 that

best model the covariance structure of x. The factor variables z model correlations between

the elements of x, while the u variables account for independent noise in each element of x.

The k factors play the same role as the principal components in PCA: They are infor-

mative projections of the data. Given � and 	, the expected value of the factors can be
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computed through the linear projection:

E(zjx) = �x; (2)

where � � �0(	 + ��0)�1, a fact that results from the joint normality of data and factors:

P

 "
x

z

#!
= N

 "
0

0

#
;

"
��0 +	 �

�0
I

#!
: (3)

Note that since 	 is diagonal, the p� p matrix (	 + ��0), can be e�ciently inverted using

the matrix inversion lemma:

(	 + ��0)�1 = 	�1 �	�1�(I + �0	�1�)�1�0	�1
;

where I is the k � k identity matrix. Furthermore, it is possible (and in fact necessary for

EM) to compute the second moment of the factors,

E(zz0jx) = Var(zjx) + E(zjx)E(zjx)0

= I � ��+ �xx0�0
; (4)

which provides a measure of uncertainty in the factors, a quantity that has no analogue in

PCA.

The expectations (2) and (4) form the basis of the EM algorithm for maximum likelihood

factor analysis (see Appendix A and Rubin & Thayer, 1982):

E-step: Compute E(zjxi) and E(zz0jxi) for each data point xi, given � and 	.

M-step:
�new =

 
nX

i=1

xiE(zjxi)
0

! 
nX

l=1

E(zz0jxl)

!
�1

(5)

	new =
1

n
diag

(
nX

i=1

xix
0

i � �new
E[zjxi]x

0

i

)
; (6)

where the diag operator sets all the o�-diagonal elements of a matrix to zero.

3 Mixture of Factor Analyzers

Assume we have a mixture of m factor analyzers indexed by !j , j = 1; : : : ;m. The generative

model now obeys the following mixture distribution (see Figure 2):

P (x) =
mX
j=1

Z
P (xjz; !j)P (zj!j)P (!j)dz: (7)

As in regular factor analysis, the factors are all assumed to be N (0; I) distributed, therefore,

P (zj!j) = P (z) = N (0; I): (8)
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Figure 2: The mixture of factor analysis generative model.

Whereas in factor analysis the data mean was irrelevant and was subtracted before �tting the

model, here we have the freedom to give each factor analyzer a di�erent mean, �j , thereby

allowing each to model the data covariance structure in a di�erent part of input space,

P (xjz; !j) = N (�j + �jz;	): (9)

The parameters of this model are f(�j;�j)
m
j=1;�;	g;

1 the vector � parametrizes the

adaptable mixing proportions, �j = P (!j). The latent variables in this model are the factors

z and the mixture indicator variable !, where wj = 1 when the data point was generated

by !j. For the E-step of the EM algorithm, one needs to compute expectations of all

the interactions of the hidden variables that appear in the log likelihood. Fortunately, the

following statements can be easily veri�ed,

E[wjzjxi] = E[wjjxi] E[zj!j;xi] (10)

E[wjzz
0jxi] = E[wjjxi] E[zz

0j!j ;xi]: (11)

De�ning

hij = E[wjjxi] / P (xi; !j) = �jN (xi � �j ;�j�
0

j +	) (12)

and using equations (2) and (10) we obtain

E[wjzjxi] = hij �j (xi � �j); (13)

where �j � �0

j(	 + �j�
0

j)
�1. Similarly, using equations (4) and (11) we obtain

E[wjzz
0jxi] = hij

�
I � �j�j + �j(xi � �j)(xi � �j)

0
�
0

j

�
: (14)

The EM algorithm for mixtures of factor analyzers therefore becomes:

E-step: Compute hij , E[zjxi; !j ] and E[zz0jxi; !j] for all data points i and mixture

components j.

M-step: Solve a set of linear equations for �j, �j , �j and 	 (see Appendix B).

The mixture of factor analyzers is, in essence, a reduced dimensionality mixture of Gaus-

sians. Each factor analyzer �ts a Gaussian to a portion of the data, weighted by the posterior

probabilities, hij. Since the covariance matrix for each Gaussian is speci�ed through the

lower dimensional factor loading matrices, the model has mkp+ p, rather than mp(p+1)=2,

parameters dedicated to modeling covariance structure.

1Note that each model can also be allowed to have a separate 	 matrix. This, however, changes its

interpretation as sensor noise.
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4 Discussion

We have described an EM algorithm for �tting a mixture of factor analyzers. Matlab source

code for the algorithm can be obtained from ftp://ftp.cs.toronto.edu/pub/zoubin/

mfa.tar.gz. An extension of this architecture to time series data, in which both the factors

z and the discrete variables ! depend on their value at a previous time step, is currently

being developed.

One of the important issues not addressed in this note is model selection. In �tting a

mixture of factor analyzers the modeler has two free parameters to decide: The number of

factor analyzers to use (m), and the number of factor in each analyzer (k). One method

by which these can be selected is cross-validation: several values of m and k are �t to the

data and the log likelihood on a validation set is used to select the �nal values. Greedy

methods based on pruning or growing the mixture may be more e�cient at the cost of

some performance loss. Alternatively, a full-edged Bayesian analysis, in which these model

parameters are integrated over, may also be possible.
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A EM for Factor Analysis

The expected log likelihood for factor analysis is

Q = E

"
log

Y
i

(2�)p=2j	j�1=2 expf�
1

2
[xi � �z]0	�1[xi � �z]g

#

= c�
n

2
log j	j �

X
i

E

�
1

2
x0i	

�1xi � x0i	
�1�z+

1

2
z0�0	�1�z

�

= c�
n

2
log j	j �

X
i

�
1

2
x0i	

�1xi � x0i	
�1� E[zjxi] +

1

2
tr
h
�0	�1� E[zz0jxi]

i�
;

where c is a constant, independent of the parameters, and tr is the trace operator.

To re-estimate the factor loading matrix we set

@Q

@�
= �

X
i

	�1xiE[zjxi]
0 +

X
l

	�1�new
E[zz0jxl] = 0

obtaining

�new

 X
l

E[zz0jxl]
0

!
=

X
i

xiE[zjxi]
0
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from which we get equation (5).

We re-estimate the matrix 	 through its inverse, setting

@Q

@	�1
=

n

2
	new �

X
i

�
1

2
xix

0

i ��new
E[zjxi] x

0

i +
1

2
�new

E[zz0jxi]�
new

0

�
= 0:

Substituting equation (5),

n

2
	new =

X
i

1

2
xix

0

i �
1

2
�new

E[zjxi] x
0

i

and using the diagonal constraint,

	new =
1

n
diag

(X
i

xix
0

i � �new
E[zjxi]x

0

i

)
:

B EM for Mixture of Factor Analyzers

The expected log likelihood for mixture of factor analysis is

Q = E

2
4logY

i

Y
j

�
(2�)p=2j	j�1=2 expf�

1

2
[xi � �j � �jz]

0	�1[xi � �j � �jz]g
�wj

3
5

To jointly estimate the mean �j and the factor loadings �j it is useful to de�ne an

augmented column vector of factors

~z =

"
z

1

#

and an augmented factor loading matrix ~�j = [�j �j]. The expected log likelihood is then

Q = E

2
4logY

i

Y
j

�
(2�)p=2j	j�1=2 expf�

1

2
[xi � ~�j~z]

0	�1[xi � ~�j~z]g
�wj

3
5

= c�
n

2
log j	j �

X
i;j

1

2
hijx

0

i	
�1xi � hijx

0

i	
�1~�j E[~zjxi; !j] +

1

2
hij tr

h
~�0

j	
�1~�j E[~z~z

0jxi; !j ]
i

where c is a constant. To estimate ~�j we set

@Q

@~�j

= �
X
i

hij	
�1xiE[~zjxi; !j]

0 + hij	
�1~�new

j E[~z~z0jxi; !j] = 0:

This results in a linear equation for re-estimating the means and factor loadings,

h
�new

j �
new

j

i
= ~�new

j =

 X
i

hijxiE[~zjxi; !j]
0

! X
l

hljE[~z~z
0jxl; !j ]

!
�1

(15)
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where

E[~zjxi; !j ] =

"
E[zjxi; !j]

1

#

and

E[~z~z0jxl; !j] =

"
E[zz0jxl; !j] E[zjxl; !j ]

E[zjxl; !j]
0 1

#
:

We re-estimate the matrix 	 through its inverse, setting

@Q

@	�1
=

n

2
	new �

X
ij

1

2
hijxix

0

i � hij
~�new

j E[~zjxi; !j ]x
0

i +
1

2
hij

~�new

j E[~z~z0jxi; !j ]~�
new

0

j = 0:

Substituting equation (15) for ~�j and using the diagonal constraint on 	 we obtain,

	new =
1

n
diag

8<
:
X
ij

hij

�
xi � ~�new

j E[~zjxi; !j]
�
x0i

9=
; : (16)

Finally, to re-estimate the mixing proportions we use the de�nition,

�j = P (!j) =

Z
P (!j jx)P (x) dx:

Since hij = P (!jjxi), using the empirical distribution of the data as an estimate of P (x) we

get

�
new

j =
1

n

nX
i=1

hij:
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