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Abstract

We present an energy-based model that uses a product of generalised
Student-t distributions to capture the statistical structure in datasets. This
model is inspired by and particularly applicable to “natural” datasets such
as images. We begin by providing the mathematical framework, where
we discuss complete and overcomplete models, and provide algorithms
for training these models from data. Using patches of natural scenes we
demonstrate that our approach represents a viable alternative to “indepen-
dent components analysis” as an interpretive model of biological visual
systems. Although the two approaches are similar in flavor there are also
important differences, particularly when the representations are overcom-
plete. By constraining the interactions within our model we are also able
to study the topographic organization of Gabor-like receptive fields that
are learned by our model. Finally, we discuss the relation of our new ap-
proach to previous work — in particular Gaussian Scale Mixture models,
and variants of independent components analysis.

1 Introduction

This paper presents a general family of energy-based models, which we refer to as
“Product of Student-t” (PoT) models. They are particularly well suited to modelling
statistical structure in data for which linear projections are expected to result in sparse
marginal distributions. Many kinds of data might be expected to have such structure,
and in particular “natural” datasets such as digitised images or sounds seem to be well
described in this way.

The goals of this paper are two-fold. Firstly, we wish to present the general math-
ematical formulation of PoT models and to describe learning algorithms for them. We
hope that this part of the paper will be useful in introducing a new method to the com-
munity’s toolkit for machine learning and density estimation. Secondly, we focus on
applying PoT’s to capturing the statistical structure of natural scenes. This is motivated
from both a density estimation perspective, and also from the perspective of providing
insight into information processing within the visual pathways of the brain.

PoT models were touched upon briefly in Teh et al. (2003), and in this paper we
present the basic formulation in more detail, provide hierarchical and topographic ex-
tensions, and give an efficient learning algorithm employing auxiliary variables and
Gibbs sampling. We also provide a discussion of the PoT model in relation to similar
existing techniques.

We suggest that the PoT model could be considered as a viable alternative to the
more familiar technique of ICA when constructing density models, or performing fea-
ture extraction, or when building interpretive computational models of biological visual
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systems. As we shall demonstrate, we are able to reproduce many of the successes of
ICA — yielding results which are comparable, but with some interesting and signifi-
cant differences. Similarly, extensions of our basic model can be related to some of the
hierarchical forms of ICA that have been proposed, as well as to Gaussian Scale Mix-
tures. Again there are interesting differences in formulation. An example of a potential
advantage in our approach is that the learned representations can be inferred directly
from the input, without the need for any iterative settling even in hierarchical or highly
overcomplete models.

The paper is organised as follows. Section 2 describes the mathematical form of
the basic PoT model along with extensions to hierarchical and topographic versions.
Section 3 then describes how to learn within the PoE framework using the contrastive
divergence (CD) algorithm (Hinton, 2002) (with Appendix A providing the background
material for running the necessary Markov Chain Monte Carlo sampling). Then in
section 4 we present results of our model when applied to natural images. We are able to
recreate the success of ICA based models like, for example, Bell and Sejnowski (1995,
1997), Olshausen and Field (1996, 1997), Hoyer and Hyvarinen (2000), Hyvarinen
et al. (2001), and Hyvarinen and Hoyer (2001). Our model provides computationally
motivated accounts for the form of simple cell and complex cell receptive fields, as well
as for the basic layout of cortical topographic maps for location, orientation, spatial
frequency, and spatial phase. Additionally, we are easily able to produce such results
in an overcomplete setting.

In section 5 we analyse in more detail the relationships between our PoT model,
ICA models and their extensions, and Gaussian Scale Mixtures, and finally in section 6
we summarise our work.

2 Products of Student-t Models

We will begin with a brief overview of product of expert models (Hinton, 2002) in
section 2.1, before presenting the basic product of Student-t model (Welling et al.,
2002a) in section 2.2. Then we move on to discuss hierarchical topographic extensions
in sections 2.3, 2.4 and 2.5.

2.1 Product of Expert Models

Product of expert models, or PoEs, were introduced in Hinton (2002) as an alternative
method of combining expert models into one joint model. In contrast to mixture of
expert models, where individual models are combined additively, PoEs combine expert
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opinions multiplicatively as follows (see also Heskes (1998)),

PPoE(x|θ) =
1

Z(θ)

M∏
i=1

pi(x|θi) (1)

whereZ(θ) is the global normalization constant andpi(·) are the individual expert
models. Mixture models employ a “divide and conquer” strategy with different “ex-
perts” being used to model different subsets of the training data. In product models,
many experts cooperate to explain each input vector and different experts specialize in
different parts of the input vector or in different types of latent structure. If a scene con-
tainsn different objects that are processed in parallel, a mixture model needs a number
of components that is exponential inn because each component of the mixture must
model acombinationof objects. A product model, by contrast, only requires a number
of components that is linear inn because many different experts can be used at the same
time.

Another benefit of product models is their ability to model sharp boundaries. In
mixture models, the distribution represented by the whole mixture must be vaguer than
the distribution represented by a typical component of the mixture. In product models,
the product distribution is typically much sharper than the distributions of the individual
experts1, which is a major advantage for high dimensional data (Hinton, 2002; Welling
et al., 2002b).

Learning PoE models has been difficult in the past, mainly due to the presence of
the partition functionZ(θ). However, contrastive divergence learning (Hinton, 2002)
(see section 3.2) has opened the way to apply these models to large scale applications.

PoE models are related to many other models that have been proposed in the past.
In particular, log-linear models2 have a similar flavor, but are more limited in their
parametrization:

PLogLin(x|λ) =
1

Z(λ)

M∏
i=1

exp (λifi(x)) (2)

whereexp[λifi(·)] takes the role of an un-normalized expert. A binary product of ex-
perts model was first introduced under the name “harmonium” in Smolensky (1986).
A learning algorithm based on projection pursuit was proposed in Freund and Haussler
(1992). In addition to binary models (Hinton, 2002), the Gaussian case been stud-

1When multiplying togethern equal-variance Gaussians, for example, the variance
is reduced by a factor ofn. It is also possible to make the entropy of the product
distribution higher than the entropy of the individual experts by multiplying together
two very heavy-tailed distributions whose modes are in very different places.

2Otherwise known as exponential family models, maximum entropy models and ad-
ditive models. For example see Zhu et al. (1998)

4



i

i

“OsinderoWellingHinton˙PoT˙NC05˙AccDraft˙SS” — 2005/8/23 — 13:07 — page 5 — #5 i

i

i

i

i

i

ied (Williams et al., 2001; Marks and Movellan, 2001; Williams and Agakov, 2002;
Welling et al., 2003a).

2.2 Product of Student-t (PoT) Models

The basic model we study in this paper is a form of PoE suggested by Hinton and Teh
(2001) where the experts are given by generalized Student-t distributions:

y = Jx (3)

pi(yi|αi) ∝ 1

(1 + 1
2
y2

i )
αi

(4)

The variablesyi are the responses to linearly filtered input vectors and can be thought of
as latent variables that are deterministically related to the observables,x. Through this
deterministic relationship, equation 4 defines a probability density on the observables.
The filters,{Ji}, are learnt from the training data (typically images) by maximizing or
approximately maximizing the log likelihood.

Note that due to the presence of theJ parameters this product of Student-t (PoT)
model is not log-linear. However, it is possible to introduce auxiliary variables,u,
such that the joint distributionP (x,u) is log-linear3 and the marginal distributionP (x)
reduces to that of the original PoT distribution,

PPoT (x) =

∫ ∞

0

du P (x,u) (5)

P (x,u) ∝ exp

[
−

M∑
i=1

(
ui

(
1 +

1

2
(Jix)2

)
+ (1− αi) log ui

)]
(6)

whereJi denotes the row-vector corresponding to theith row of the filter matrixJ.
An intuition for this form of reparametrisation with auxiliary variables can be gained
by considering that a one dimensional t-distribution can be written as a continuous
mixture of Gaussians, with a Gamma distribution controlling mixing proportions on
components with different precisions. That is to say,

Γ
(
α + 1

2

)

Γ (α)
√

2π

(
1 +

1

2
τ 2

)−(α+ 1
2)

=

∫
dλ

Gaussian︷ ︸︸ ︷(
1√
2π

λ
1
2 e−

1
2
τ2λ

)
Gamma︷ ︸︸ ︷(

1

Γ (α)
λα−1e−λ

)
(7)

The advantage of this reformulation using auxiliary variables is that it supports an

3Note that it is log-linear in the parametersθijk = JijJik andαi with featuresuixjxk

andlog ui.
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Figure 1: (A) Standard PoT model as an undirected graph or Markov random field
(MRF) involving observables,x and auxiliary variables,u. (B) Standard PoT MRF
redrawn to show the role of deterministic filter outputsy = Jx. (C) Hierarchical PoT
MRF drawn to show both sets of deterministic variables,y andz = W(y)2, as well as
auxiliary variablesu.

efficient, fast-mixing Gibbs sampler which is in turn beneficial for contrastive diver-
gence learning. The Gibbs chain samples alternately fromP (u|x) andP (x|u) given
by,

P (u|x) =
M∏
i=1

Gui

[
αi ; 1 +

1

2
(Jix)2

]
(8)

P (x|u) = Nx

[
0 ; (JVJT )−1

]
V = Diag[u] (9)

whereG denotes a Gamma distribution andN a normal distribution. From (9) we see
that the variablesu can be interpreted asprecisionvariables in the transformed space
y = Jx.

In terms of graphical models the representation that best fits the PoT model with
auxiliary variables is that of a two-layer bipartite undirected graphical model. Figure 1
(A) schematically illustrates the MRF overu andx; figure 1 (B) shows the role of the
deterministic filter outputs in this scheme.

A natural way to interpret the differences between directed models (and in particular
ICA models) and PoE models was provided in Hinton and Teh (2001); Teh et al. (2003).
Whereas directed models intuitively have a top-down interpretation (e.g. samples can
be obtained by ancestral sampling starting at the top-layer units), PoE models (or more
generally “energy-based models”) have a more natural bottom-up interpretation. The
probability of an input vector is proportional toexp(−E(x)) where the energyE(x)
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is computed bottom-up starting at the input layer (e.g.E(y) = E(Jx)). We may thus
interpret the PoE model as modelling a collection of soft constraints, parameterized
through deterministic mappings from the input layer to the top layer (possibly param-
eterized as a neural network) and where the energy serves to penalize inputs that do
not satisfy these constraints (e.g. are different from zero). The costs contributed by the
violated constraints are added to compute the global energy, which is equivalent to mul-
tiplying the distributions of the individual experts to compute the product distribution
(sinceP (x) ∝ ∏

i pi(x) ∝ exp(−∑
i Ei(x))).

For a PoT, we have a two-layer model where the constraint-violations are penalized
using the energy function (see equation.6),

E(x) =
M∑
i=1

αi log

(
1 +

1

2
(Jix)2

)
(10)

We note that the shape of this energy function implies that, relative to a quadratic
penalty, small violations are penalized more strongly whilst large violations are pe-
nalized less strongly. This results in “sparse” distributions of violations (y-values) with
many very small violations and occasional large ones.

In the case of equal number of observables,{xi}, and latent variables,{yi} (the
so called “complete representation”), the PoT model is formally equivalent to square,
noiseless “independent components analysis” (ICA) (Bell and Sejnowski, 1995) with
Student-t priors. However, in the overcomplete setting (more latent variables than ob-
servables) product of experts models are essentially different from overcomplete ICA
models (Lewicki and Sejnowski, 2000). The main difference is that the PoT maintains
a deterministic relationship between latent variables and observables throughy = Jx,
and consequently not all values ofy are allowed. This results in important marginal
dependencies between they-variables. In contrast, in overcomplete ICA the hiddeny-
variables are marginally independent by assumption and have a stochastic relationship
with thex-variables. For more details we refer to Teh et al. (2003).

For undercomplete models (fewer latent variables than observables) there is again a
discrepancy between PoT models and ICA models. In this case the reason can be traced
back to the way noise is added to the models in order to force them to assign non-zero
probability everywhere in input space. In contrast to undercomplete ICA models where
noise is added in all directions of input space, undercomplete PoT models have noise
added only in the directions orthogonal to the subspace spanned by the filter matrixJ.
More details can be found in Welling et al. (2003b, 2004).

2.3 Hierarchical PoT (HPoT) Models

We now consider modifications to the basic PoT by introducing extra interactions be-
tween the activities of filter outputs,yi, and by altering the energy function for the

7
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model. These modifications were motivated by observations of the behaviour of ‘inde-
pendent’ components of natural data, and inspired by similarities between our model
and (hierarchical) ICA. Since the new model essentially involves adding a new layer to
the standard PoT, we refer to it as a hierarchical PoT (HPoT).

As we will show in Section 4, when trained on a large collection of natural image
patches the linear components{Ji} behave similarly to the learnt basis functions in
ICA and grow to resemble the well-known Gabor-like receptive fields of simple cells
found in the visual cortex (Bell and Sejnowski, 1997). These filters, like wavelet trans-
forms, are known to de-correlate input images very effectively. However, it has been
observed that higher order dependencies remain between the filter outputs{yi}. In par-
ticular there are important dependencies between the “activities” or “energies”y2

i (or
more generally|yi|β, β > 0) of the filter outputs. This phenomenon can be neatly
demonstrated through the use of “bow-tie plots”, in which the conditional histogram of
one filter output is plotted given the output value of a different filter (e.g. see Simon-
celli (1997)). The bow-tie shape of the plots implies that the first order dependencies
have been removed by the linear filters{Ji} (since the conditional mean vanishes ev-
erywhere), but that higher order dependencies still remain; specifically, the variance of
one filter output can be predicted from the activity of neighboring filter outputs.

In our modified PoT the interactions between filter outputs will be implemented by
first squaring the filter outputs and subsequently introducing an extra layer of units, de-
noted byz. These units will be used to capture the dependencies between these squared
filter outputs:z = W(y)2 = W(Jx)2, and this is illustrated in figure 1 (c). (Note that
in the previous expression, and in what follows, the use of(·)2 with a vector argument
will imply a component-wise squaring operation.) The modified energy function is

E(x) =
M∑
i=1

αi log

(
1 +

1

2

K∑
j=1

Wij(Jjx)2

)
W ≥ 0 (11)

where the non-negative parametersWij model the dependencies between the activities4

{y2
i }. Note that the forward mapping fromx, throughy, to z is completely deter-

ministic, and can be interpreted as a bottom-up neural network. We can also view
the modified PoT as modelling constraint violations, but this time in terms ofz with
violations now penalized according to the energy in Equation 11.

As with the standard PoT model, there is a reformulation of the hierarchical PoT

4For now, we implicitly assume that the number of first hidden-layer units (i.e. fil-
ters) is greater than or equal to the number of input dimensions. Models with fewer
filters than input dimensions need some extra care, as noted in section 2.3.1. The num-
ber of top-layer units can be arbitrary, but for concreteness we will work with an equal
number of first-layer and top-layer units.

8
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model in terms of auxiliary variables,u,

P (x,u) ∝ exp

[
−

M∑
i=1

(
ui

(
1 +

1

2

K∑
j=1

Wij(Jjx)2

)
+ (1− αi) log ui

)]
(12)

with conditional distributions,

P (u|x) =
M∏
i=1

Gui

[
αi ; 1 +

1

2

K∑
j=1

Wij(Jjx)2

]
(13)

P (x|u) = Nx

[
0 ; (JVJT )−1

]
V = Diag[WTu] (14)

Again, we note that this auxiliary variable representation supports an efficient Gibbs
sampling procedure where all auxiliary variablesu are sampled in parallel given the
inputsx using Eqn. 13 and all input variablesx are sampled jointly from a multivariate
Gaussian distribution according to Eqn.14. As we will discuss in section 3.2, this is an
important ingredient in training (H)PoT models from data using contrastive divergence.

Finally, in a somewhat speculative link to computational neuroscience, in the fol-
lowing discussions we will refer to units,y, in the first hidden layer as ‘simple cells’
and units,z, in the second hidden layer as ‘complex cells’. For simplicity, we will
assume the number of simple and complex cells to be equal. There are no obstacles to
using unequal numbers, but this does not appear to lead to any qualitatively different
behaviour.

2.3.1 Undercomplete HPoT Models

The HPoT models, as defined in section 2.3, were implicitly assumed to be complete
or overcomplete. We may also wish to consider undercomplete models. These models
can be interesting in a variety of applications where one seeks to represent the data in a
lower dimensional yet informative space.

Undercomplete models need a little extra care in their definition, since in the ab-
sence of a proper noise model they are un-normalisable over input space. In Welling
et al. (2003a,b, 2004) a natural solution to this dilemma was proposed where a noise
model is added in directions orthogonal to all of the filters{J}. We note that it is pos-
sible to generalise this procedure to HPoT models, but in the interests of parsimony we
omit detailed discussion of undercomplete models in this paper.

2.4 Topographic PoT Models

The modifications described next were inspired by a similar proposal in Hyvarinen et al.
(2001) named “topographic ICA”. By restricting the interactions between the first and

9
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second layers of a HPoT model we are able to induce a topographic ordering on the
learnt features.

Such ordering can be useful for a number of reasons; for example it may help with
data visualisation by concentrating feature activities in local regions. This restriction
can also help in acting as a regulariser for the density models which we learn. Fur-
thermore, it makes it possible to compare the topographic organisation of features in
our model (and based on the statistical properties of the data) to the organisation found
within cortical topographic maps.

We begin by choosing a topology on the space of filters. This is most conveniently
done by simply considering the filters to be laid out on a grid, and considering local
neighbourhoods with respect to this layout. In our experiments, we use a regular square
grid and apply toroidal boundary conditions to avoid edge effects.

The complex cells receive input from the simple cells in precisely the same way
as in our HPoT model:yi =

∑
j Wij(Jjx)2, but nowW is fixed and we assume

it is chosen such that it computes a localaveragefrom the grid of filter activities.
The free parameters that remain to be learnt using contrastive divergence are{αi,J}.
In the following we will explain why the filters{Ji} should be expected to organize
themselves topographically when learnt from data.

As noted previously, there are important dependencies between the activities of
wavelet coefficients of filtered images. In particular, the variance (but not the mean)
of one coefficient can be predicted from the value of a “neighboring” coefficient. The
topographic PoT model can be interpreted as an attempt to model these dependencies
through a Markov random field on the activities of the simple cells. However, we have
pre-defined the connectivity pattern and have left the filters to be determined through
learning. This is the opposite strategy as the one used in, for instance, Portilla et al.
(2003) where the wavelet transform is fixed and the interactions between wavelet coef-
ficients are modelled. One possible explanation for the emergent topography is that the
model will make optimal use of these pre-defined interactions if it organizes its sim-
ple cells such that dependent cells are nearby in filter space and independent ones are
distant.5

A complementary explanation is based on the interpretation of the model as cap-
turing complex constraints in the data. The penalty function for violations is designed
such that (relative to a squared penalty) large violations are relatively mildly penalized.
However, since the complex cells represent the average input from simple cells, their
values would be well described by a Gaussian distribution if the corresponding simple
cells were approximately independent. (This is a consequence of the central limit theo-
rem for sums of independent random variables.) In order to avoid a mismatch between

5This argument assumes that the shape of the filters remains essentially unchanged
(i.e. Gabor-like) by the introduction of the complex cells in the model. Empirically we
see that this is indeed the case.
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Figure 2: Functionsf(x) = 1/(1 + |x|β) for different values ofβ.

the distribution of complex cell outputs and the way they are penalized, the model ought
to position simple cells that have correlated activities near to each other. In doing so,
the model can escape the central limit theorem because the simple cell outputs that are
being pooled are no longer independent. Consequently, the pattern of violations that
arises is a better match to the pattern of violations which one would expect from the
penalising energy function.

Another way to understand the pressure towards topography is to ask how an indi-
vidual simple cell should be connected to the complex cells in order to minimize the
total cost caused by the simple cell’s outputs on real data. If the simple cell is connected
to complex cells that already receive inputs from the simple cell’s neighbors in position
and spatial frequency, the images that cause the simple cell to make a big contribution
will typically be those in which the complex cells that it excites are already active, so
its additional contribution to the energy will be small because of the gentle slope in the
heavy tails of the cost function. Hence, since complex cells locally pool simple cells,
local similarity of filters is expected to emerge.

2.5 Further Extensions To The Basic PoT Model

The parameters{αi} in the definition of the PoT model control the “sparseness” of the
activities of the complex and simple cells. For large values ofα, the PoT model will
resemble more and more a Gaussian distribution, while for small values there is a very
sharp peak at zero in the distribution which decays very quickly into “fat” tails.

In the HPoT model, the complex cell activities,z, are the result of linearly combin-
ing the (squared) outputs simple cells,y = Jx. The squaring operation is a somewhat

11
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arbitrary choice (albeit a computationally convenient and empirically effective one),
and we may wish to process the first layer activities in other ways before we combining
them in the second layer. In particular, we might consider modifications of the form:
activity=|Jx|β with | · | denoting absolute values andβ > 0. Such a model defines the
a density iny-space of the form,

py(y) =
1

Z(W,α)
exp

[
−

M∑
i=1

αi log

(
1 +

1

2

K∑
j=1

Wij|yj|β
)]

(15)

A plot of the un-normalized distributionf(x) = 1/(1 + |x|β) is shown in figure 2 for
three settings of the parameterβ. One can observe that for smaller values ofβ the peak
at zero become sharper and the tails become “fatter”.

In section 3 we will show that sampling and hence learning with contrastive diver-
gence can be performed efficiently for any setting ofβ.

3 Learning in HPoT Models

In this section we will explain how to perform maximum likelihood learning of the pa-
rameters for the models introduced in the previous section. In the case of complete and
undercomplete PoT models we are able to analytically compute gradients, however in
the general case of overcomplete or hierarchical PoT’s we are required to employ an
approximation scheme and the preferred method in this paper will be contrastive diver-
gence (CD) (Hinton, 2002). Since CD learning is based on Markov chain Monte Carlo
sampling, Appendix A provides a discussion of sampling procedures for the various
models we have introduced.

3.1 Maximum Likelihood Learning in (H)PoT Models

To learn the parametersθ = (J,W,α) (and β for the extended models), we will
maximize the log-likelihood of the model,

θML = arg max
θ
L = arg max

θ

1

N

N∑
n=1

log px(xn; θ) (16)

For models which have the Boltzmann form,p(x) = 1
Z

exp[−E(x; θ)], we can compute
the following gradient,

∂L
∂θ

= E
[
∂E(x; θ)

∂θ

]

p

− 1

N

N∑
n=1

∂E(xn; θ)

∂θ
(17)

12
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whereE[·]p denotes expectation with respect to the model’s distribution overx (this
term comes from the derivatives of the log partition function,Z). For the parameters
(J,W,α) in the PoT we obtain the following derivative functions,

∂E(x; θ)

∂Jjk

=
∑

i

αiWij(Jx)jxk

1 + 1
2

∑
j′ Wij′(Jx)2

j′
(18)

∂E(x; θ)

∂Wij

=
1
2
αi(Jx)2

j

1 + 1
2

∑
j′ Wij′(Jx)2

kj′
(19)

∂E(x; θ)

∂αi

= log

(
1 +

1

2

∑
j

Wij(Jx)2
j

)
(20)

Once we have computed the gradients of the log-likelihood, we can maximize it using
any gradient-based optimization algorithm.

Elegant as the gradients in Eqn.17 may seem, in the general case they are intractable
to compute. The reason is the expectation in the first term of Eqn.17 over the model
distribution. One may choose to approximate this average by running a MCMC chain
to equilibrium which hasp(x; θ) as its invariant distribution. However, there are (at
least) two reasons why this might not be a good idea: 1) The Markov chain has to be
run to equilibrium for every gradient step of learning and 2) we need a lot of samples
to reduce the variance in the estimates.

Hence, for the general case, we propose to use the contrastive divergence learning
paradigm which is discussed next.

3.2 Training (H)PoT Models with Contrastive Divergence

For complete and undercomplete HPoT models we can derive the exact gradient of the
log-likelihood with respect to the parametersJ. In the complete case these gradients
turn out to be of the same form as the update rules proposed in Bell and Sejnowski
(1995). However, the gradients for the parametersW andα are much harder to com-
pute.6 Furthermore, in overcomplete settings the exact gradients with respect to all
parameters are computationally intractable.

We now describe an approximate learning paradigm to train the parameters in cases
where evaluation of the exact gradients is intractable. Recall that the bottleneck in com-
puting these gradients is the first term in the equation 17. An approximation to these
expectations can be obtained by running a MCMC sampler withp(x;J,W,α) as its
invariant distribution and computing Monte Carlo estimates of the averages. As men-
tioned in section 3.1 this is a very inefficient procedure because it needs to be repeated

6Although we can obtain exact derivatives forα in the special case whereW is
restricted to be the identity matrix.
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for every step of learning and a fairly large number of samples may be needed to re-
duce the variance in the estimates7. Contrastive divergence (Hinton, 2002), replaces the
MCMC samples in these Monte Carlo estimates with samples from brief MCMC runs,
which were initialized at the data-cases. The intuition is that if the current model is not
a good fit for the data, the MCMC particles will swiftly and consistently move away
from the data cases. On the other hand, if the data population represents a fair sample
from the model distribution, then the average energy will not change when we initialize
our Markov chains at the data cases and run them forward. In general, initializing the
Markov chains at the data and running them only briefly introduces bias but greatly re-
duces both variance and computational cost.Algorithm 1 summarise the steps in this
learning procedure.

Algorithm 1 Contrastive Divergence Learning

1. Compute the gradient of the energy with respect to the parameters,θ, and average
over the data casesxn.

2. Run MCMC samplers fork steps, starting at every data vectorxn, keeping only
the last samplesn,k of each chain.

3. Compute the gradient of the energy with respect to the parameters,θ, and average
over the samplessn,k.

4. Update the parameters using,

∆θ =
η

N


 ∑

samplessn,k

∂E(snk)

∂θ
−

∑
dataxn

∂E(xn)

∂θ


 (21)

whereη is the learning rate andN the number of samples in each mini-batch.

For further details on contrastive divergence learning we refer to the literature (Hin-
ton, 2002; Teh et al., 2003; Yuille, 2004; Carreira-Perpinan and Hinton, 2005). For
highly overcomplete models it often happens that some of theJi-filters (rows ofJ) de-
cay to zero. To prevent this from happening we constrain theL2-norm of these filters to
be one:

∑
j J2

ij = 1 ∀i. Also, constraining the norm of the rows of theW matrix was
helpful during learning. We choose to constrain theL1-norm to unity

∑
j Wij = 1 ∀i,

which makes sense becauseWij ≥ 0.
We note that the objective function is not convex and so the existence of poor local

minima could be a concern. The stochastic nature of our gradient descent procedure
may provide some protection against being trapped in shallow minima, although it has
the concomitant price of being slower than noise-free gradient descent. We also note
that the intractability of the partition function makes it difficult to obtain straightforward

7An additional complication is that it is hard to assess when the Markov chain has
converged to the equilibrium distribution.
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objective measures of model performance since log-probabilities can only be computed
up to an unknown additive constant. This is not so much of a problem when one is using
a trained model for, say, feature extraction, statistical image processing or classification,
but it does make explicit comparison with other models rather hard. (For example
there is no straightforward way to compare the densities provided by our overcomplete
(H)PoT models with those from overcomplete ICA-style models.)

4 Experiments on Natural Images

There are several reasons to believe that the HPoT should be an effective model for
capturing and representing the statistical structure in natural images; indeed much of
its form was inspired by the dependencies that have been observed in natural images.

We have applied our model to small patches taken from digitised natural images.
The motivation for this is several-fold. Firstly, it provides a useful test of the behaviour
of our model on a dataset that we believe to contain sparse structure (and therefore to
be well suited to our framework). Secondly, it allows us to compare our work with that
from other authors and similar models, namely ICA. Thirdly, it allows us to use our
model framework as a tool for interpreting results from neurobiology. Our method can
complement existing approaches and also allows one to suggest alternative interpreta-
tions and descriptions of neural information processing.

Section 4.2 presents results from complete and overcomplete single layer PoT’s
trained on natural images. Our results are qualitatively similar to those obtained using
ICA. In section 4.3 we demonstrate the higher order features learnt in our hierarchi-
cal PoT model, and in section 4.4 we present results from topographically constrained
hierarchical PoT’s. The findings in these two sections are qualitatively similar to the
work by Hyvarinen et al. (2001), however our underlying statistical model is different
and allows us to deal more easily with overcomplete, hierarchical topographic repre-
sentations.

4.1 Datasets and Preprocessing

We performed experiments using standard sets of digitised natural images available
on the World Wide Web from Aapo Hyvarinen8 and Hans van Hateren9. The results
obtained from the two different datasets were not significantly different, and for the
sake of simplicity all results reported here are from the van Hateren dataset.

To produce training data of a manageable size, small square patches were extracted
from randomly chosen locations in the images. As is common for unsupervised learn-
ing, these patches were filtered according to computationally well-justified versions

8http://www.cis.hut.fi/projects/ica/data/images/
9http://hlab.phys.rug.nl/imlib/index.html
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of the sort of whitening transformations performed by the retina and LGN (Atick and
Redlich, 1992). First we applied a log transformation to the ‘raw’ pixel intensities. This
procedure somewhat captures the contrast transfer function of the retina. It is not criti-
cal, but for consistency with past work we incorporated it for the results presented here.
The extracted patches were subsequently normalized such that mean pixel intensity for
a given pixel across the data-set was zero, and also so that the mean intensity within
each patch was zero — effectively removing the DC component from each input. The
patches were then whitened, usually in conjunction with dimensionality reduction. This
is a standard technique in many ICA approaches and speeds up learning without having
much impact on the final results obtained.

4.2 Single Layer PoT Models

Figure 3 illustrates results from our basic approach, and shows for comparison results
obtained using ICA. The data consisted of150, 000 patches of size18 × 18 that were
reduced to vectors of dimension256 by projection onto the leading256 eigenvectors of
the data covariance matrix, and then whitened to give unit variance along each axis.

Complete Models

We first present the results of our basic approach in a complete setting, and display a
comparison of the filters learnt using our method with a set obtained from an equivalent
ICA model learnt using direct gradient ascent in the likelihood. We trained both models
(learning justJ, and keepingα fixed10 at 1.5) for 200 passes through the entire dataset
of 150, 000 patches. The PoT was trained using one-step contrastive divergence as
outlined in section 3.2 and the ICA model was trained using the exact gradient of the
log-likelihood (as in Bell and Sejnowski (1995) for instance). As expected, at the end
of learning the two procedures delivered very similar results, exemplars of which are
given in figure 3 (A) & (B). Furthermore, both sets of filters bear a strong resemblance
to the types of simple cell receptive fields found in V1.

Overcomplete Models

We next consider our model in an overcomplete setting; this is no longer equivalent
to any ICA model. In the PoT, overcomplete representations are simple generalisa-
tions of the complete case and,unlike causal generative approaches, the features are
conditionally independent since they are just given by a deterministic mapping.

10This is the minimum value ofα that allows us to have a well behaved density model
in the complete case. As alpha gets smaller than this, the tails of the distribution get
heavier and heavier and the variance and eventually mean are no longer well defined.
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A B

C D

Figure 3: Learnt filters shown in the raw data space. Each small square represents
a filter vector, plotted as an image. The gray scale of each filter display has been
(symmetrically) scaled to saturate at the maximum absolute weight value. (A) Random
subset of filters learnt in a complete PoT model. (B) Random subset of filters learnt in a
complete ICA model. (C) Random subset of filters learnt in a1.7× overcomplete PoT
model. (D) Random subset of filters learnt in a2.4× overcomplete PoT model.
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To facilitate learning in the overcomplete setting we have found it beneficial to
make two modifications to the basic set-up. Firstly, we setαi = α ∀i, and makeα a
free parameter to be learnt from the data. The learnt value ofα is typically less than 1.5
and gets smaller as we increase the degree of overcompleteness11. One intuitive way of
understanding why this might be expected is the following. Decreasingα reduces the
“energy cost” for violating the constraints specified by each individual feature, however
this is counterbalanced by the fact that in the overcomplete setting we expect an input to
violate more of the constraints at any given time. Ifα remains constant as more features
are added, the mass in the tails may no longer be sufficient to model the distribution
well.

The second modification that we make is to constrain theL2-norm of the filters tol,
makingl another free parameter to be learnt. If this modification is not made then there
is a tendency for some of the filters to become very small during learning. Once this
has happened, it is difficult for them to grow again since the magnitude of the gradient
dependson the filter output, which in turn depends on the filter length.

The first manipulation simply extends the power of the model, but one could argue
that the second manipulation is something of a fudge — if we have sufficient data,
a good model and a good algorithm, it should be unnecessary to restrict ourselves in
this way. There are several counter arguments to this, the principal ones being: (i)
we might be interested, from a biological point of view, in representational schemes
in which the representational units all receive comparable amounts of input; (ii) we
can view it as approximate posterior inference under a prior belief that in an effective
model, all the units should play a roughly equal part in defining the density and forming
the representation. We also note that a similar manipulation is also applied by most
practitioners dealing with overcomplete ICA models (eg: Olshausen and Field (1996)).

In figure 3 (C) and (D) we show example filters typical of those learnt in overcom-
plete simulations. As in the complete case, we note that the majority of learnt filters
qualitatively match the linear receptive fields of simple cells found in V1. Like V1
spatial receptive fields, most (although not all) of the learnt filters are well fit by Gabor
functions. We analysed in more detail the properties of filter sets produced by different
models by fitting a Gabor function to each filter (using a least squares procedure), and
then looking at the population properties in terms of Gabor parameters.12

Figure 4 shows the distribution of parameters obtained by fitting Gabor functions

11Note that in an overcomplete setting, depending on the direction of the filters,α
may be less than1.5 and still yield a normalisable distribution overall.

12Approximately5−10% of the filters failed to localise well in orientation or location
— usually appearing somewhat like noise or checkerboard patterns — and were not
well described by a Gabor function. These were detected during the parametric fitting
process and were eliminated from our subsequent population analyses. It is unclear
exactly what role these filters play in defining densities within our model.
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Figure 4: A summary of the distribution of some parameters derived by fitting Gabor
functions to receptive fields of three models with different degrees of overcompleteness
in the representation size. The leftmost column (A-E) is a complete representation, the
middle column is1.7× overcomplete and the rightmost column is2.4× overcomplete.
(A) Each dot represents the center location, in pixel coordinates within a patch, of a
fitted Gabor. (B) Scatterplots showing the joint distribution of orientation (azimuthally)
and spatial frequency in cycles per pixel (radially). (C) Histograms of Gabor fit phase
(mapped to range0◦–90◦ since we ignore the envelope sign.) (D) Histograms of the
aspect ratio of the Gabor envelope (Length/Width) (E) A plot of “normalized width”
versus “normalized length”, c.f. Ringach (2002). (F) For comparison, we include data
from real macaque experiments Ringach (2002).
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to complete and overcomplete filters. For reference, similar plots for linear spatial
receptive fields measuredin vivo are given in Ringach (2002) and van Hateren and
van der Schaaf (1998).

The plots are all reasonable qualitative matches to those shown for the “real” V1
receptive fields as shown for instance in Ringach (2002). They also help to indicate the
effects of representational overcompleteness. With increasing overcompleteness the
coverage in the spaces of location, spatial frequency and orientation becomes denser
and more uniform whilst at the same time the distribution of receptive fields shapes
remains unchanged. Further, the more overcomplete models give better coverage in
lower spatial frequencies that are not directly represented in complete models.

Ringach (2002) reports that the distribution of shapes from ICA/sparse coding can
be a poor fit to the data from real cells — the main problem being that there are too
few cells near the origin of the plot, which corresponds roughly to cells with smaller
aspect ratios and small numbers of cycles in their receptive fields. The results which
we present here appear to be a slightly better fit. (One source of the differences might
be Ringach’s choice of ICA prior.) A large proportion of our fitted receptive fields are
in the vicinity of the macaque results, although as we become more overcomplete we
see a spread further away from the origin.

In summary, our results from these single layer PoT models can account for many
of the properties of simple cell linear spatial receptive fields in V1.

4.3 Hierarchical PoT Models

We now present results from the hierarchical extension of the basic PoT model. In
principle we are able to learn both sets of weights, the top level connectionsW and
the lower level connectionsJ, simultaneously. However, effective learning in this full
system has proved difficult when starting from random initial conditions. The results
which we present in this section were obtained by initialisingW to the identity matrix
and first learningJ, before subsequently releasing theW weights and then letting the
system learn freely. This is therefore equivalent to initially training a single layer PoT
and then subsequently introducing a second layer.

When models are trained in this way, the form of the first layer filters remains
essentially unchanged from the Gabor receptive fields shown previously. Moreover, we
see interesting structure being learnt in theW weights as illustrated by figure 5. The
figure is organised to display the filters connected most strongly to a top layer unit.
There is a strong organisation by what might be termed “themes” based upon location,
orientation and spatial frequency. An intuition for this grouping behaviour is as follows:
there will be correlations between the squared outputs of some pairs of filters, and by
having them feed into the same top-level unit the model is able to capture this regularity.
For most input images all members of the group will have small combined activity, but
for a few images they will have significant combined activity. This is exactly what the

20



i

i

“OsinderoWellingHinton˙PoT˙NC05˙AccDraft˙SS” — 2005/8/23 — 13:07 — page 21 — #21 i

i

i

i

i

i

Figure 5: Each panel in this figure illustrates the “theme” represented by a different top
level unit. The filters in each row are arranged in descending order, from left to right,
of the strengthWij with which they connect to the particular top layer unit.

energy function favours, as opposed to a grouping of very different filters which would
lead to a rather Gaussian distribution of activity in the top layer.

Interestingly, these themes lead to responses in the top layer (if we examine the
outputszi = Wi(Jx)2) that resemble complex cell receptive fields. It can be difficult
to accurately describe the response of non-linear units in a network, and we choose a
simplification in which we consider the response of the top layer units to test stimuli
that are gratings or Gabor patches. The test stimuli were created by finding the grating
or Gabor stimulus that was most effective at driving a unit and then perturbing various
parameters about this maximum. Representative results from such a characterisation
are shown are shown in figure 6.

In comparison to the first layer units, the top layer units are considerably more in-
variant to phase, and somewhat more invariant to position. However, both the sharpness
of tuning to orientation and spatial frequency remain roughly unchanged. These results
typify the properties that we see when we consider the responses of the second layer in
our hierarchical model and are a striking match to the response properties of complex
cells.

4.4 Topographic Hierarchical PoT Models

We next consider the topographically constrained form of the hierarchical PoT which
we proposed in an attempt to induce spatial organisation upon the representations learnt.
TheW weights are fixed and define local, overlapping neighbourhoods on a square grid
with toroidal boundary conditions. TheJ weights are free to learn, and the model is
trained as usual.

Representative results from such a simulation are given in figure 7. The inputs were
patches of size25×25, whitened and dimensionality reduced to vectors of size256; the
representation is1.7× overcomplete. By simple inspection of the filters in figure 7 (A)
we see that there is strong local continuity in the receptive field properties of orientation
and spatial frequency and location, with little continuity of spatial phase.

With notable similarity to experimentally observed cortical topography, we see pin-
wheel singularities in the orientation map and a low frequency cluster in the spatial
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Figure 6: (A) Tuning curves for “simple cells”, i.e. first layer units. (B) Tuning curves
for “complex cells”, i.e. second layer units. The tuning curves for Phase, Orientation
and Spatial Frequency were obtained by probing responses using grating stimuli, the
curve for location was obtained by probing using a localised Gabor patch stimulus.
The optimal stimulus was estimated for each unit, and then one parameter (Phase, Lo-
cation, Orientation or Spatial Frequency) was varied and the changes in responses were
recorded. The response for each unit was normalized such that the maximum output
was1, before combining the data over the population. The solid line shows the popu-
lation average (median of441 units in a1.7× overcomplete model), whilst the lower
and upper dotted lines show the10% and90% centiles respectively. We use a style of
display as used in Hyvarinen et al. (2001)
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Figure 7: An example of a filter map. (The grayscale is saturating in each cell indepen-
dently.) This model was trained on25× 25 patches that had been whitened and dimen-
sionality reduced to 256 dimensions, and the representation layer is1.7×overcomplete
in terms of the inputs. The neighbourhood size was a3× 3 square (i.e. 8 nearest neigh-
bours.) We see a topographically ordered array of learnt filters with local continuity
of orientation, spacial frequency, and location. The local variations in phase seem to
be random. Considering the map for orientation we see evidence for pinwheels, in the
map for spacial frequency there is a distinct low-frequency cluster.
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frequency map which seems to be somewhat aligned with one of the pinwheels. Whilst
the map of location (retinotopy) shows good local structure, there is poor global struc-
ture. We suggest that this may be due to the relatively small scale of the model and
the use of toroidal boundary conditions (which eliminated the need to deal with edge
effects.)

5 Relation to Earlier Work

5.1 Gaussian Scale Mixtures

We can consider the complete version of our model as a Gaussian scale mixture (An-
drews and Mallows, 1974; Wainwright and Simoncelli, 2000; Wainwright et al., 2000)
with a particular (complicated) form of scaling function.13

The basic form for a GSM density on a variable,g, can be given as follows (Wain-
wright and Simoncelli, 2000),

pGSM(g) =

∫ ∞

−∞

1

(2π)
N
2 |cQ| 12

exp

(
−gT (cQ)−1g

2

)
φc(c)dc (22)

wherec is a non-negative scalar variate andQ is a positive definite covariance matrix.
This is the distribution that results if we drawc from φc(c) and a variablev from a
multi-dimensional GaussianNV(0,Q) and then takeg =

√
cv.

Wainwright et al. (2000) discuss a more sophisticated model in which the distribu-
tions of coefficients in a wavelet decomposition for images are described by a GSM
which has a separate scaling variable,ci, for each coefficient. Theci have a Markov
dependency structure based on the multi-resolution tree which underlies the wavelet
decomposition.

In the complete setting, where they variables are in linear one-to-one correspon-
dence with the input variables,x, we can interpret the distributionp(y) as a Gaussian
scale mixture. To see this we first rewritep(y,u) = p(y|u)p(u), where the conditional
p(y|u) =

∏
j Nyj

[0, (
∑

i Wijui)
−1] is Gaussian (see Eqn.14). The distributionp(u)

needs to be computed by marginalizingp(x,u) in Eqn. 12 overx resulting in,

p(u) =
1

Zu

∏
i

e−uiui
αi−1

∏

k

(∑
j

Wjkuj

)− 1
2

(23)

where the partition functionZu ensures normalisation. We see that the marginal dis-

13In simple terms a GSM density is one that can be written as a (possibly infinite)
mixture of Gaussians that differ only in the scale of their covariance structure. A wide
range of distributions can be expressed in this manner.
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tribution of eachyi is a Gaussian scale mixture in which the scaling variate foryi is
given byci(u) = (

∑
j Wjiuj)

−1. The neighbourhoods defined byW in our model play
an analogous role to the tree-structured cascade process in Wainwright et al. (2000),
and determine the correlations between the different scaling coefficients. However, a
notable difference in this respect is that Wainwright et al. (2000) assume a fixed tree
structure for the dependencies whereas our model is more flexible in that the interac-
tions through theW parameters can be learned.

The overcomplete version of our PoT is not so easily interpreted as a GSM because
the{yi} are no longer independent givenu, nor is the distribution overx a simple GSM
due to the way in whichu is incorporated into the covariance matrix (see equation 9).
However, much of the flavour of a GSM remains.

5.2 Relationship to tICA

In this section we show that, in the complete case, the topographic PoT model is iso-
morphic to the model optimised (but not the one initially proposed) by Hyvarinen et al.
(2001) in their work on topographic ICA (tICA). These authors define an ICA genera-
tive model in which the components/sources are not completely independent but have
a dependency that is defined with relation to some topology, such as a toroidal grid
— components close to one another in this topology have greater co-dependence than
those that are distantly separated.

Their generative model is shown schematically in figure 8. The first layer takes a
linear combination of “variance-generating” variables,t, and then passes them through
some non-linearity,φ(·), to give positive scaling variates,σ. These are then used to set
the variance of the sources,s, and conditioned on these scaling variates, the components
in the second layer are independent. These sources are then linearly mixed to give the
observables,x.

The joint density for(s, t) is given by

p(s, t) =
∏

i

psi

(
si

φ (HT
i t)

)
pti(ti)

φ (HT
i t)

(24)

and the log-likelihood of the data given the parameters is

L(B) =
∑
datax

∫ ∏
i

psi

(
BT

i x

φ (HT
i t)

)
pti(ti)

φ (HT
i t)

| detB|dt (25)

whereB = A−1.
As noted in their paper, this likelihood is intractable to compute because of the inte-

gral over possible states oft. This prompts the authors to derive an approach that makes
various simplifications and approximations to give a lower bound on the likelihood.
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Figure 8: Graphical model for topographic ICA (Hyvarinen et al., 2001). First the vari-
ance “generating variables”,ti, are generated independently from their prior. They are
then linearly mixed through the matrixH, before being non-linearly transformed using
function φ(·) to give the variances,σi = φ(HT

i t), for each of the sources,i. Values
for these sources,si, are then generated from independent zero mean distributions with
variancesσi, before being linearly mixed through matrixA to give observablesxi.
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Firstly, they restrict the form of the base density fors to be gaussian14, botht and
H are constrained to be non-negative, andφ(·) is taken to be(·)− 1

2 . This yields the
following expression for the marginal density ofs,

p(s) =

∫
1

(2π)
d
2

exp

(
−1

2

∑

k

tk

[∑
i

Hiks
2
i

])∏
i

pti(ti)
√

HT
i tdt (26)

This expression is then simplified by the approximation,
√

HT
i t ≈

√
Hiiti (27)

Whilst this approximation may not always be a good one, it is a strict lower bound on
the true quantity and thus allows for a lower bound on the likelihood as well. Their

final approximate likelihood objective,̃L(B), is then given by,

L̃(B) =
∑

data

(
d∑

j=1

G

(
d∑

i=1

Hij(B
T
i x)2

)
+ log | det(B)|

)
(28)

where the form of the scalar functionG is given by,

G(τ) = log

∫
1√
2π

exp

(
1

2
tτ

)
pt(t)

√
Hiidt (29)

The results obtained by Hyvarinen and Hoyer (2001); Hyvarinen et al. (2001) are
very similar to those presented here in section 4. These authors also noted the similarity
between elements of their model and the response properties of simple and complex
cells in V1.

Interestingly, the optimisation problem that theyactuallysolve (i.e. maximisation
of equation 28), rather than the one they originally propose, can be mapped directly onto
the optimisation problem for a square, topographic PoT model if we take:B ≡ JPoT,
H ≡ WPoT andG(τ) = log(1 + 1

2
τ). More generally, we can construct an equivalent,

square energy-based model whose likelihood optimisation corresponds exactly to the
optimisation of their “approximate” objective function. In this sense, we feel that our
perspective has some advantages. Firstly, in that we have a more accurate picture of
what model weactually (try to) optimise. Secondly, in that we are able to move more
easily to overcomplete representations. If Hyvarinen et al. (2001) were to make their
model overcomplete there would no longer be a deterministic relationship between their
sourcess andx — this additional complication would make the already difficult prob-

14Their model can therefore be considered as type of GSM, although the authors do
not comment on this.

27



i

i

“OsinderoWellingHinton˙PoT˙NC05˙AccDraft˙SS” — 2005/8/23 — 13:07 — page 28 — #28 i

i

i

i

i

i

lems of inference and learning significantly harder. Thirdly, in the HPoT framework
we are able to learn the top-level weightsW in a principled way using the techniques
discussed in section 3.2, whereas current tICA approaches have treated only fixed local
connectivity.

5.3 Relationship to other ICA extensions

Karklin and Lewicki (2003, 2005) also propose a hierarchical extension to ICA that
involves a second hidden layer of marginally independent sparsely active units. Their
model is of the general form proposed in Hyvarinen et al. (2001) but uses a different
functional dependency between the first and second hidden layers to that employed in
the topographic ICA model which Hyvarinen et al. (2001) fully develop.

In the generative pass from Karklin and Lewicki’s model, linear combinations of
the second layer activities are fed through an exponential function to specify scaling or
variance parameters for the first hidden layer. Conditioned upon these variances, the
units in the first hidden layer are independent and behave like the hidden variables in a
standard ICA model. This model can be described by the graph in figure 8 where the
transfer functionφ(·) is given by an exponential. Using the notation of this figure, the
relevant distributions are ,

p(ti) =
qi

2Γ(q−1
i )

exp (|ti|qi) (30)

σj = ce[Ht]j (31)

p(sj|σj) =
qj

2σjΓ(q−1
j )

exp

(∣∣∣∣
sj

σj

∣∣∣∣
qj

)
(32)

xk = [As]k (33)

The authors have so far only considered complete models and in this case, as with tICA,
the first layer of hidden variables are deterministically related to the observables.15

To link this model to our energy-based PoT framework first we consider the follow-
ing change of variables,

B = A−1 (34)

K = H−1 (35)

νj = σ−1
j (36)

Then, considering theq variables to be fixed, can write the energy function of their

15Furthermore, as well as focussing their attention on the complete case, the authors
assume the first level weights are fixed to a set of filters obtained using regular ICA.
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model as

E(x,ν) =
∑

i

∣∣∣∣∣
∑

k

Kik log(cνk)

∣∣∣∣∣

qi

+
∑

j

(
log νj + |νj|qj | [Bx]j |qj

)
(37)

I.e. when we take the Boltzmann distribution with the energies defined in equation 37
we recover the joints and marginals specified by Karklin and Lewicki (2003, 2005).

Whilst the overall models are different, there are some similarities between this for-
mulation and the auxiliary variable formulation of extended HPoT models (i.e. equation
12 with generalised exponentβ from section 2.5). Viewed from an energy based per-
spective, they both have the property that an energy ‘penalty’ is applied to (a magnitude
function of) a linear filtering of the data. The ‘scale’ of this energy penalty is given by
a supplementary set of random variables which themselves are subject to an additional
energy function.

As with standard ICA, in overcomplete extensions of this model the similarities
to an energy based perspective would be further reduced. We note as an aside that it
might be interesting to consider the ‘energy-based’ overcomplete extension of Karklin
and Lewicki’s model, in addition to the standard causal overcomplete extension. In the
overcomplete version of the causal model inference would likely be much more difficult
because of posterior dependencies both within and between the two hidden layers. For
the overcomplete energy-based model, the necessary energy function appears not to
be amenable to efficient Gibbs sampling, but parameters could still be learned using
Contrastive Divergence and Monte Carlo methods such as Hybrid Monte Carlo.

5.4 Representational differences between causal models and energy-
based models

As well as specifying different probabilistic models, overcomplete energy-based mod-
els (EBM’s) such as the PoT differ from overcomplete causal models in the types of
representation they (implicitly) entail. This has interesting consequences when we con-
sider the “population codes” suggested by the two types of model. We focus on the
representation in the first layer (“simple cells”), although similar arguments might be
for deeper layers as well.

In an overcomplete causal model, many configurations of the sources are compat-
ible with a configuration of the input.16 For a given input, a posterior distribution is
induced over the sources in which the inferred values for different sources are con-
ditionally dependent. As a result, even for models which are linear in the generative
direction, the formation of a posterior representation in overcomplete causal models is
essentiallynon-linearand moreover it isnon-localdue to the lack of conditional in-

16In fact, strictly speaking there is a subspace of compatible source configurations.
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dependence. This implies that unlike EBM’s inference in overcomplete causal models
is typically iterative, often intractable, and therefore time consuming. Also, although
we can specify the basis functions associated with a unit, it is much harder to specify
any kind of feed-forward receptive field in causal models. The issue of how such a
posterior distribution could be encoded in a representation remains open; a common
postulate (made on the grounds of efficient coding) is that a maximum a posteriori
(MAP) representation should be used, but we note that even computing the MAP value
is usually iterative and slow.

Conversely, in overcomplete EBM’s with deterministic hidden units such as we
have presented in this paper, the mapping from inputs to representations remains simple
and non-iterative and requires only local information.

In figure 9 we use a somewhat absurd example to schematically illustrate a salient
consequence of this difference between EBM’s and causal models that have sparse
priors. The array of vectors in figure 9 (A) should be understood to be either a subset
of the basis functionsin an overcomplete causal model, or a subset of thefilters in
overcomplete PoT model. In panel (B) we show four example input images. These
have been chosen to be identical to four of the vectors shown in panel (A). The left-hand
column of panel (C) shows the representation responses of the units in an EBM-style
model for these four inputs; the right-hand column shows the MAP responses from an
overcomplete causal model with a sparse source prior.

This is admittedly an extreme case, but it provides a good illustration of the point
we wish to make. More generally, although representations in an overcomplete PoT
are sparse there is also some redundancy; the PoT population response is typically less
sparse (Willmore and Tolhurst, 2001) than an causal model with an “equivalent” prior.

Interpreting the two models as a description of neural coding, one might expect the
EBM representation to be more robust to the influences of neural noise as compared
with the representation suggested from a causal approach. Furthermore, the EBM style
representation is shiftable — it has the property that for small changes in the input
there are small changes in the representation. This property would not necessarily hold
for a highly overcomplete causal model. Such a discontinuous representation might
make subsequent computations difficult and non-robust, and it also seems somewhat
at odds with the neurobiological data — however proper comparison is difficult since
there is no real account of dynamic stimuli or spiking in either model. At present, it
remains unclear which type of model — causal or energy-based — provides the more
appropriate description of coding in the visual system, especially since there are many
aspects that neither approach captures.
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Figure 9: Representational differences between overcomplete causal models and over-
complete deterministic EBM’s. (A) The 11 vectors in this panel should be considered as
the vectors associated with a subset of representational units in either an overcomplete
EBM or an overcomplete causal model. In the EBM they would be the feed-forward
filter vectors; in the causal model they would be basis functions. (B) Probe stimuli
— these images exactly match the vectors as those associated with units 4,5,6, & 1.
(C) The left-hand column shows the normalized responses in an EBM model of the 11
units assuming they are filters. The right-hand column shows the normalized response
from the units assuming that they are basis functions in a causal model with a sparse
prior, and that we have formed a representation by taking the MAP configuration for
the source units.
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6 Summary

We have presented a hierarchical energy-based density model that we suggest is gener-
ally applicable to data-sets that have a sparse structure, or that can be well characterised
by constraints that are often well-satisfied, but occasionally violated by a large amount.

By applying our model to natural scene images we are able to provide an interpreta-
tional account for many aspects of receptive field and topographic map structure within
primary visual cortex, and which also develops sensible high-dimensional population
codes. Deterministic features (i.e. the first- and second-layer filter outputs) within our
model play a key role in defining the density of a given image patch, and we are able to
make a close relationship between these features and the responses of simple cells and
complex cells in V1. Furthermore, by constraining our model to interact locally we are
able to provide some computational motivation for the forms of the cortical maps for
retinotopy, phase, spatial frequency and orientation.

Whilst our model is closely related to some previous work, most prominently Hy-
varinen et al. (2001), it bestows a different interpretation on the learnt features, is dif-
ferent in its formulation and describes rather different statistical relations in the over-
complete case.

We present our model as both a general alternative tool to ICA for describing sparse
data distributions and also as an alternative interpretive account for some of the neuro-
biological observations from the mammalian visual system. Finally we suggest that the
models outlined here could be used as a starting point for image processing applications
such as denoising or deblurring, and that it might also be adapted to time series data
such as natural audio sequences.
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Appendices

A Sampling in HPoT models

Complete Models

We start our discussion with sampling in complete HPoT models. In this case there
is a simple invertible relationship betweenx andy, implying that we may focus on
samplingy and subsequently transforming these samples back tox-space throughx =
J−1y. Unfortunately, unlessW is diagonal, ally variables are coupled throughW,
which makes it difficult to devise an exact sampling procedure. Hence, we resort to
Gibbs sampling using Eqn.13 where we replaceyj = Jjx to acquire sampleu|y. To
obtain a sampley|u we convert Eqn.9 into

P (y|u) = Ny

[
y; 0,Diag[WTu]−1

]
(38)

We iterate this process (alternatingly samplingu ∼ P (u|y) andy ∼ P (y|u)) until
the Gibbs sampler has converged. Note that bothP (u|y) andP (y|u) are factorized
distributions implying that bothu andy variables can be sampled in parallel.

Overcomplete Models

In the overcomplete case we are no longer allowed to first sample they variables,
and subsequently transform them intox space. The reason is that the deterministic
relationy = Jx means that when there are morey variables thanx variables, somey
configurations are not allowed, i.e. they are not in the range of the mappingx → Jx
with x ∈ R. If we sampley, all these samples (with probability one) will have some
components in these forbidden dimensions, and it is unclear how to transform them
correctly intox-space. An approximation is obtained by projecting they-samples into
x-space using̃x = J#y. We have often used this approximation in our experiments
and have obtained good results, but we note that its accuracy is expected to decrease as
we increase the degree of overcompleteness.

A more expensive but correct sampling procedure for the overcomplete case is to
use a Gibbs chain in the variablesu andx (instead ofu andy) by using Eqns.13 and
14 directly. In order to samplex|u we need to compute a Cholesky factorization of the
inverse-covariance matrix of the Gaussian distributionP (x|u),

RTR = JVJT V = Diag[WTu] (39)

The samplesx|u are now obtained by first sampling from a multivariate standard nor-
mal distribution,n ∼ Nn[n;0, I], and subsequently setting:x = R−1n. The reason
this procedure is expensive is thatR depends onu which changes at each iteration.
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Hence, the expensive Cholesky factorization and inverse have to be computed at each
iteration of Gibbs sampling.

Extended PoT Models

The sampling procedures for the complete and undercompleteextendedmodels dis-
cussed in section 2.5 are very similar, apart from the fact that the conditional distribu-
tion P (y|u) is now given by,

Pext(x|u) ∝
M∏
i=1

exp(−1

2
Vii|yi|β) V = Diag[WTu] (40)

Efficient sampling procedures exist for this generalized Gaussian-Laplace probability
distribution. In the overcomplete case it has proven more difficult to devise an efficient
Gibbs chain (the Cholesky factorization is no longer applicable), but the approximate
projection method using the pseudo-inverse,J# still seems to work well.
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