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3. Do wide-content mental states have causal etficacy and
explanatory relevance?

4. Should cognitive science concern itself with both wide-
content and narrow-content psychological states, or
should it rather focus on only one kind?

5. Is there really such a thing as narrow content at alf?

Discussion of such questions has occurred in an intellectual
climate where two broad currents of thought have been
dominant. One approach assumes that most, or perhaps all,
intentional mental states have both wide content and narrow
content (e.g., Fodor 1980, 1987, 1991). A second approach
-eschews narrow content altogether, and construes mental
intentionality as essentially a matter of suitable relational
connections between intrinsic physical states of a creature
and certain features of the creature’s current environment
and/or its evolutionary/developmental history (e.g., Dretske
1981, 1988; Millikan 1984; Fodor 1994). But some philoso-
phers vigorously challenge both orientations—for instance,
David Lewis (1994), whose dissident remarks are eminently
sensible.

Two longer overview discussions of supervenience are
Kim (1990) and Horgan (1993). Useful collections include
Horgan (1984), Beckermann, Flohr, and Kim (1992), and
Kim (1993).

See also EXPLANATORY GAP; FUNCTIONALISM; INTEN-
TIONALITY; REDUCTIONISM

—Terence Horgan
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Supervised Learning in Multilayer
Neural Networks

Neural networks consist of simple processing units that
interact via weighted connections. They are sometimes
implemented in hardware but most research involves soft-
ware simulations. They were originally inspired by ideas
about how the brain computes. and understanding biological
computation is still the major goal of many researchers in the
field (Churchland and Sejnowski 1992). However, some bio-
logically unrealistic neural networks are both computation-
ally interesting and technologically useful (Bishop 1995).

A typical processing unit first computes a “total input,”
which is a weighted sum of the incoming activities from
other units plus a bias. It then puts its total input through an
activation function to determine the activity of the unit. The
most common activation function is the logistic, y = /1 +
exp(—x). For deterministic analog units the activity that is
communicated to other units is simply v. For binary stochas-
tic units, y determines the probability that the activity of the
unit is I rather than 0. For binary threshold units, the activ-
ity is 1 if the total input is positive and 0 otherwise. Sensory
input to the network is typically handled by fixing the activ-
ities of some “input” units. )

The most interesting property of NEURAL NETWORKS 1s
their ability to learn from examples by adapting the weights on
the connections. The most widely used learning algorithms are
supervised: they assume that there is a set of training cases,
each consisting of an input vector and a desired output or out-
put vector. Learning involves sweeping through the training
set many times, gradually adjusting the weights so that the
actual output produced by the network gets closer to the
desired output. The simplest neural network architecture con-
sists of some input units with directed, weighted connectIOI}S
to an output unit. Such networks were extensively studied in
the 1960s because there are very simple learning algorithms
that are guaranteed to find the optimal weights when the out-
put unit uses a linear or binary threshold activation function
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(Widrow and Hoft 1960; Rosenblatt 1962). Unfortunately.
such simple networks can only compute a very limited class of
functions (Minsky and Papert 1969). They cannot, for exam-
ple, compute the exclusive-or of two binary inputs.

The limitations of simple networks can be overcome by
adding one or more intermediate, “hidden” layers of nonlin-
ear units between the input and the output. The architecture
remains feedforward, with each unit only receiving inputs
from units in fower layers. With enough hidden units in a sin-
gle layer, there exist weights that approximate arbitrarily
closely any continuous, differentiable mapping from a com-
pact input space to a compact output space. Finding the opti-

mal weights is generally intractable, but gradient_methods. .

can be used to find sets of weights that work well for many
practical tasks. Provided the hidden units use a nonlinearity
with a well-behaved derivative, an algorithm called “back-
propagation” (Rumethart, Hinton, and Williams 1986) can be
used to compute the derivatives, with respect to each weight
in the network, of the error function. The standard error func-
tion is the squared difference between the actual and desired
outputs, but cross-entropy error functions are more appropri-
ate when the outputs represent class probabilities.

For each training case, the activities of the units are com-
puted by a forward pass through the network. Then, starting
with the output units, a backward pass through the network
is used to compute the derivatives of the error function with
respect to the total input received by each unit. This compu-
tation is a straightforward application of the chain rule and
i1s as efficient as the forward pass. Given these derivatives, it
is easy to compute the derivatives of the error function with
respect to the weights.

There are many different ways of using the derivatives
computed by backpropagation. In “on-line” learning, the
weights are adjusted after each training case in proportion to
the derivatives for that case. In “batch™ learning, the deriva-
tives are accumulated over the whole training set and then
the weights are adjusted in the direction of steepest descent
in the error function, or in some more sensible direction
computed by a technique such as momentum, conjugate
gradients, or delta-bar-delta. The simple on-line method is
the most efficient for very large training sets in which the
data are highly redundant, but batch conjugate gradient is
faster and easier to use for small training sets. There are also
constructive methods that add hidden units one at a time
while keeping the incoming weights of earlier hidden units
frozen (Fahlman and Lebiere 1990).

Feedforward neural networks that have one or more lay-
ers of logistic hidden units and are trained using backpropa-
gation have worked very well for tasks such as discrimi-
nating similar phonemes (Lang, Waibel, and Hinton 1990)
or recognizing handwritten digits (Le Cun et al. 1989; see
also PATTERN RECOGNITION AND FEEDFORWARD NET-
WORKS). Performance is significantly improved if natural
symmetries of the task are imposed on the network by forc-
ing different weights to have the same values.

When training data are limited, a complicated network
with a large number of weights is liable to overfit: it per-
forms very well on the training data, but much less well on
test data drawn from the same distribution. On the other
hand, a simple network with few weights may perform

poorly on both training and test data because it is unable to
approximate the true function (Geman, Bienenstock, and
Doursat 1992). Many different methods have been devel-
oped for optimizing the complexity of the network. If part
of the training data is held out as a validation set, it is possi-
ble to try different numbers of hidden units and to pick the
number that gives best performance on the validation set.
The “early stopping” method, which is appropriate when
computational resources are limited, stops the training of a
complicated network as soon as its performance on the vali-
dation set starts to deteriorate. Another way of limiting the
complexity of a network is to add a penalty to the error

~term. The simplest such penalty is the sum of the squares of

the weights times a penalty coefficient, A. This can be
viewed in Bayesian terms as a zero-mean Gaussian prior
which favors networks that have small weights. A can be
chosen using a validation set but this wastes training data
and is awkward if different values of A are required for the
input-to-hidden and hidden-to-output weights. MacKay
(1995) has developed Bayesian methods that estimate an
appropriate A without using a validation set.

Performance can almost always be improved by averaging
the outputs of many different networks each of which overfits
the data. Finding the appropriate weights to use when averag-
ing the outputs can be viewed as a separate learning task
(Wolpert 1992). The benefits of averaging increase as the net-
works’ errors become less correlated so it helps to train net-
works on different subsets of the data (Breiman 1994).
Training a net on data that earlier nets get wrong is an effec-
tive way of focusing computational resources on the difficult
cases (Drucker, Schapire, and Simard 1993).

When fitting a network to data it is usual to search for a
single good set of weights. The correct Bayesian method, by
contrast, computes the posterior probability distribution
over weight vectors and then combines the predictions made
by all the different weight vectors in proportion to their pos-
terior probabilities. MacKay’s methods approximate the
posterior by constructing a Gaussian distribution around
each of a number of locally optimal weight vectors. Neal
(1996) describes an efficient Monte Carlo method of
approximating the full, multimodal posterior distribution.
Rasmussen (1996) demonstrates that Neal’s method gives
better performance than many other neural network or sta-
tistical methods, but that it is no better than an equivalent
statistical approach called Gaussian Processes.

Many varieties of feedforward net have been investigated.
Radial basis function (RBF) networks use hidden units
whose activations are a radially symmetrical function of the
distance between the input vector and a mean vector associ-
ated with the unit (Broomhead and Lowe 1988). The usual
function is a spherical Gaussian, but they can be generalized
to have different variances on each input dimension or to
have full covariance matrices. RBF networks can be fitted
using the gradient computed by backpropagation. Alterna-
tively, the means and variances of the hidden units can be set
without reference to the desired outputs by fitting a mixture
of Gaussian density models to the input vectors, or by sim-
ply using some of the training input vectors as means.

For tasks in which the data are expected to come from a
number of different but unknown regimes, it is advantageous
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to use a “mixture of experts” architecture containing a dif-
ferent network for each regime and a “gating” network that
decides on the probability of being in cach regime (Jacobs et
al. 1991). The whole system is trained to maximize the log
probability of the correct answer under a mixture of Gauss-
ian distributions. where each expert computes the input-
dependent mean of a Gaussian and the gating network com-
putes the input-dependent mixing proportion. Each expert
can specialize on a specific regime because it only receives
significant backpropagated gradients for cases where the
gating network assigns it a significant mixing proportion.
The gating network can discover the regimes because it
receives backpropagated derivatives that encourage it to
assign the expert that works best for each case. With a hier-
archy of managers, this system is a soft version of decision
trees (Jordan and Jacobs 1994).

See also COGNITIVE ARCHITECTURE: COGNITIVE MODEL-
ING, CONNECTIONIST; CONNECTIONIST APPROACHES TO
LANGUAGE; RECURRENT NETWORKS; UNSUPERVISED LEAR-
NING; VISION AND LEARNING

—Geoffrey Hinton
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Surface Perception

When we view a scene, the world seems to be filled with
objects that have particular shapes, colors, and material prop-
erties. The primary source of information that we use to
acquire information about our world is visual, which relies
on the light reflected oft of object surfaces to a point of
observation. Thus, our knowledge of object structure—or
any aspect of our visual world—is determined by the struc-
ture of the surfaces of objects. since it is here that light inter-
acts with objects. Surface perception refers to our ability to
use the images projected to our eyes to determine the color,
shape, opacity, 3-D layout. and material properties of the
objects in our environment. In this discussion, some of the
basic problems studied in this domain are briefly introduced.

The problem of surface perception is to understand
exactly how the visual system uses the structure” in fight to
recover the 3-D structure of objects in the world. A solution
to this problem requires that the visual system untangle the
different causes that operate collectively to form the varia-
tions in luminance that project images to our cyes. The rea-
son this problem is so hard is that there are a number of
different ways that the same image could have been physi-
cally generated. Consider, for example, the problem of
recovering the apparent lightness of a surface. The same
shade of gray can be created by a dimly illuminated white
surface, or a brightly illuminated black surface: Yet we seem
to be remarkably good at untangling the contributions of illu-
mination from the contributions of reflectance, and recover-
ing the lightness of a surface. One of the major areas of
research in surface perception is in LIGHTNESS PERCEPTION,
which is one of the oldest areas of research in vision science.
Yet even today, we are only beginning to understand how the
photometric and geometric relationships in an image interact
to determine the perceived lightness of a surface.

Another primary difficulty in recovering surface struc-
ture is in classifying the different types of luminance varia-
tions that arise in images. Consider the problem created by
understanding thé cause of a simple luminance discontinu-
ity. Abrupt changes in luminance can be generated by
occluding contours, shadows, or abrupt changes in the
reflectance of a surface. An incorrect classification of lumi-
nance edges would lead to a variety of perceptual disasters.
For example, consider a scene in which a face is brighﬂy
illuminated from the left, casting a strong shadow on the



